Merge prusa 2.6.1

This commit is contained in:
QIDI TECH
2023-09-16 16:26:29 +08:00
parent 1338e60f8b
commit 963e22db99
203 changed files with 25254 additions and 6453 deletions

View File

@@ -0,0 +1,82 @@
#ifndef ARRANGETASK_HPP
#define ARRANGETASK_HPP
#include "libslic3r/Arrange/Arrange.hpp"
#include "libslic3r/Arrange/Items/TrafoOnlyArrangeItem.hpp"
namespace Slic3r { namespace arr2 {
struct ArrangeTaskResult : public ArrangeResult
{
std::vector<TrafoOnlyArrangeItem> items;
bool apply_on(ArrangeableModel &mdl) override
{
bool ret = true;
for (auto &itm : items) {
if (is_arranged(itm))
ret = ret && apply_arrangeitem(itm, mdl);
}
return ret;
}
template<class ArrItem>
void add_item(const ArrItem &itm)
{
items.emplace_back(itm);
if (auto id = retrieve_id(itm))
imbue_id(items.back(), *id);
}
template<class It>
void add_items(const Range<It> &items_range)
{
for (auto &itm : items_range)
add_item(itm);
}
};
template<class ArrItem> struct ArrangeTask : public ArrangeTaskBase
{
struct ArrangeSet
{
std::vector<ArrItem> selected, unselected;
} printable, unprintable;
ExtendedBed bed;
ArrangeSettings settings;
static std::unique_ptr<ArrangeTask> create(
const Scene &sc,
const ArrangeableToItemConverter<ArrItem> &converter);
static std::unique_ptr<ArrangeTask> create(const Scene &sc)
{
auto conv = ArrangeableToItemConverter<ArrItem>::create(sc);
return create(sc, *conv);
}
std::unique_ptr<ArrangeResult> process(Ctl &ctl) override
{
return process_native(ctl);
}
std::unique_ptr<ArrangeTaskResult> process_native(Ctl &ctl);
std::unique_ptr<ArrangeTaskResult> process_native(Ctl &&ctl)
{
return process_native(ctl);
}
int item_count_to_process() const override
{
return static_cast<int>(printable.selected.size() +
unprintable.selected.size());
}
};
} // namespace arr2
} // namespace Slic3r
#endif // ARRANGETASK_HPP

View File

@@ -0,0 +1,159 @@
#ifndef ARRANGETASK_IMPL_HPP
#define ARRANGETASK_IMPL_HPP
#include <random>
#include <boost/log/trivial.hpp>
#include "ArrangeTask.hpp"
namespace Slic3r { namespace arr2 {
// Prepare the selected and unselected items separately. If nothing is
// selected, behaves as if everything would be selected.
template<class ArrItem>
void extract_selected(ArrangeTask<ArrItem> &task,
const ArrangeableModel &mdl,
const ArrangeableToItemConverter<ArrItem> &itm_conv)
{
// Go through the objects and check if inside the selection
mdl.for_each_arrangeable(
[&task, &itm_conv](const Arrangeable &arrbl) {
bool selected = arrbl.is_selected();
bool printable = arrbl.is_printable();
try {
auto itm = itm_conv.convert(arrbl, selected ? 0 : -SCALED_EPSILON);
auto &container_parent = printable ? task.printable :
task.unprintable;
auto &container = selected ?
container_parent.selected :
container_parent.unselected;
container.emplace_back(std::move(itm));
} catch (const EmptyItemOutlineError &ex) {
BOOST_LOG_TRIVIAL(error)
<< "ObjectID " << std::to_string(arrbl.id().id) << ": " << ex.what();
}
});
// If the selection was empty arrange everything
if (task.printable.selected.empty() && task.unprintable.selected.empty()) {
task.printable.selected.swap(task.printable.unselected);
task.unprintable.selected.swap(task.unprintable.unselected);
}
}
template<class ArrItem>
std::unique_ptr<ArrangeTask<ArrItem>> ArrangeTask<ArrItem>::create(
const Scene &sc, const ArrangeableToItemConverter<ArrItem> &converter)
{
auto task = std::make_unique<ArrangeTask<ArrItem>>();
task->settings.set_from(sc.settings());
task->bed = get_corrected_bed(sc.bed(), converter);
extract_selected(*task, sc.model(), converter);
return task;
}
// Remove all items on the physical bed (not occupyable for unprintable items)
// and shift all items to the next lower bed index, so that arrange will think
// that logical bed no. 1 is the physical one
template<class ItemCont>
void prepare_fixed_unselected(ItemCont &items, int shift)
{
for (auto &itm : items)
set_bed_index(itm, get_bed_index(itm) - shift);
items.erase(std::remove_if(items.begin(), items.end(),
[](auto &itm) { return !is_arranged(itm); }),
items.end());
}
inline int find_first_empty_bed(const std::vector<int>& bed_indices,
int starting_from = 0) {
int ret = starting_from;
for (int idx : bed_indices) {
if (idx == ret) {
ret++;
} else if (idx > ret) {
break;
}
}
return ret;
}
template<class ArrItem>
std::unique_ptr<ArrangeTaskResult>
ArrangeTask<ArrItem>::process_native(Ctl &ctl)
{
auto result = std::make_unique<ArrangeTaskResult>();
auto arranger = Arranger<ArrItem>::create(settings);
class TwoStepArrangeCtl: public Ctl
{
Ctl &parent;
ArrangeTask &self;
public:
TwoStepArrangeCtl(Ctl &p, ArrangeTask &slf) : parent{p}, self{slf} {}
void update_status(int remaining) override
{
parent.update_status(remaining + self.unprintable.selected.size());
}
bool was_canceled() const override { return parent.was_canceled(); }
} subctl{ctl, *this};
auto fixed_items = printable.unselected;
// static (unselected) unprintable objects should not be overlapped by
// movable and printable objects
std::copy(unprintable.unselected.begin(),
unprintable.unselected.end(),
std::back_inserter(fixed_items));
arranger->arrange(printable.selected, fixed_items, bed, subctl);
std::vector<int> printable_bed_indices =
get_bed_indices(crange(printable.selected), crange(printable.unselected));
// If there are no printables, leave the physical bed empty
constexpr int SearchFrom = 1;
// Unprintable items should go to the first logical (!) bed not containing
// any printable items
int first_empty_bed = find_first_empty_bed(printable_bed_indices, SearchFrom);
prepare_fixed_unselected(unprintable.unselected, first_empty_bed);
arranger->arrange(unprintable.selected, unprintable.unselected, bed, ctl);
result->add_items(crange(printable.selected));
for (auto &itm : unprintable.selected) {
if (is_arranged(itm)) {
int bedidx = get_bed_index(itm) + first_empty_bed;
arr2::set_bed_index(itm, bedidx);
}
result->add_item(itm);
}
return result;
}
} // namespace arr2
} // namespace Slic3r
#endif //ARRANGETASK_IMPL_HPP

View File

@@ -0,0 +1,54 @@
#ifndef FILLBEDTASK_HPP
#define FILLBEDTASK_HPP
#include "MultiplySelectionTask.hpp"
#include "libslic3r/Arrange/Arrange.hpp"
namespace Slic3r { namespace arr2 {
struct FillBedTaskResult: public MultiplySelectionTaskResult {};
template<class ArrItem>
struct FillBedTask: public ArrangeTaskBase
{
std::optional<ArrItem> prototype_item;
std::vector<ArrItem> selected, unselected;
ArrangeSettings settings;
ExtendedBed bed;
size_t selected_existing_count = 0;
std::unique_ptr<FillBedTaskResult> process_native(Ctl &ctl);
std::unique_ptr<FillBedTaskResult> process_native(Ctl &&ctl)
{
return process_native(ctl);
}
std::unique_ptr<ArrangeResult> process(Ctl &ctl) override
{
return process_native(ctl);
}
int item_count_to_process() const override
{
return selected.size();
}
static std::unique_ptr<FillBedTask> create(
const Scene &sc,
const ArrangeableToItemConverter<ArrItem> &converter);
static std::unique_ptr<FillBedTask> create(const Scene &sc)
{
auto conv = ArrangeableToItemConverter<ArrItem>::create(sc);
return create(sc, *conv);
}
};
} // namespace arr2
} // namespace Slic3r
#endif // FILLBEDTASK_HPP

View File

@@ -0,0 +1,202 @@
#ifndef FILLBEDTASKIMPL_HPP
#define FILLBEDTASKIMPL_HPP
#include "FillBedTask.hpp"
#include "Arrange/Core/NFP/NFPArrangeItemTraits.hpp"
#include <boost/log/trivial.hpp>
namespace Slic3r { namespace arr2 {
template<class ArrItem>
int calculate_items_needed_to_fill_bed(const ExtendedBed &bed,
const ArrItem &prototype_item,
size_t prototype_count,
const std::vector<ArrItem> &fixed)
{
double poly_area = fixed_area(prototype_item);
auto area_sum_fn = [](double s, const auto &itm) {
return s + (get_bed_index(itm) == 0) * fixed_area(itm);
};
double unsel_area = std::accumulate(fixed.begin(),
fixed.end(),
0.,
area_sum_fn);
double fixed_area = unsel_area + prototype_count * poly_area;
double bed_area = 0.;
visit_bed([&bed_area] (auto &realbed) { bed_area = area(realbed); }, bed);
// This is the maximum number of items,
// the real number will always be close but less.
auto needed_items = static_cast<int>(
std::ceil((bed_area - fixed_area) / poly_area));
return needed_items;
}
template<class ArrItem>
void extract(FillBedTask<ArrItem> &task,
const Scene &scene,
const ArrangeableToItemConverter<ArrItem> &itm_conv)
{
task.prototype_item = {};
auto selected_ids = scene.selected_ids();
if (selected_ids.empty())
return;
std::set<ObjectID> selected_objects = selected_geometry_ids(scene);
if (selected_objects.size() != 1)
return;
ObjectID prototype_geometry_id = *(selected_objects.begin());
auto set_prototype_item = [&task, &itm_conv](const Arrangeable &arrbl) {
if (arrbl.is_printable())
task.prototype_item = itm_conv.convert(arrbl);
};
scene.model().visit_arrangeable(selected_ids.front(), set_prototype_item);
if (!task.prototype_item)
return;
// Workaround for missing items when arranging the same geometry only:
// Injecting a number of items but with slightly shrinked shape, so that
// they can fill the emerging holes. Priority is set to lowest so that
// these filler items will only be inserted as the last ones.
ArrItem prototype_item_shrinked;
scene.model().visit_arrangeable(selected_ids.front(),
[&prototype_item_shrinked, &itm_conv](const Arrangeable &arrbl) {
if (arrbl.is_printable())
prototype_item_shrinked = itm_conv.convert(arrbl, -SCALED_EPSILON);
});
set_bed_index(*task.prototype_item, Unarranged);
auto collect_task_items = [&prototype_geometry_id, &task,
&itm_conv](const Arrangeable &arrbl) {
try {
if (arrbl.geometry_id() == prototype_geometry_id) {
if (arrbl.is_printable()) {
auto itm = itm_conv.convert(arrbl);
raise_priority(itm);
task.selected.emplace_back(std::move(itm));
}
} else {
auto itm = itm_conv.convert(arrbl, -SCALED_EPSILON);
task.unselected.emplace_back(std::move(itm));
}
} catch (const EmptyItemOutlineError &ex) {
BOOST_LOG_TRIVIAL(error)
<< "ObjectID " << std::to_string(arrbl.id().id) << ": " << ex.what();
}
};
// Set the lowest priority to the shrinked prototype (hole filler) item
set_priority(prototype_item_shrinked,
lowest_priority(range(task.selected)) - 1);
scene.model().for_each_arrangeable(collect_task_items);
int needed_items = calculate_items_needed_to_fill_bed(task.bed,
*task.prototype_item,
task.selected.size(),
task.unselected);
task.selected_existing_count = task.selected.size();
task.selected.reserve(task.selected.size() + needed_items);
std::fill_n(std::back_inserter(task.selected), needed_items,
*task.prototype_item);
// Add as many filler items as there are needed items. Most of them will
// be discarded anyways.
std::fill_n(std::back_inserter(task.selected), needed_items,
prototype_item_shrinked);
}
template<class ArrItem>
std::unique_ptr<FillBedTask<ArrItem>> FillBedTask<ArrItem>::create(
const Scene &sc, const ArrangeableToItemConverter<ArrItem> &converter)
{
auto task = std::make_unique<FillBedTask<ArrItem>>();
task->settings.set_from(sc.settings());
task->bed = get_corrected_bed(sc.bed(), converter);
extract(*task, sc, converter);
return task;
}
template<class ArrItem>
std::unique_ptr<FillBedTaskResult> FillBedTask<ArrItem>::process_native(
Ctl &ctl)
{
auto result = std::make_unique<FillBedTaskResult>();
if (!prototype_item)
return result;
result->prototype_id = retrieve_id(*prototype_item).value_or(ObjectID{});
class FillBedCtl: public ArrangerCtl<ArrItem>
{
ArrangeTaskCtl &parent;
FillBedTask &self;
bool do_stop = false;
public:
FillBedCtl(ArrangeTaskCtl &p, FillBedTask &slf) : parent{p}, self{slf} {}
void update_status(int remaining) override
{
parent.update_status(remaining);
}
bool was_canceled() const override
{
return parent.was_canceled() || do_stop;
}
void on_packed(ArrItem &itm) override
{
// Stop at the first filler that is not on the physical bed
do_stop = get_bed_index(itm) > PhysicalBedId && get_priority(itm) < 0;
}
} subctl(ctl, *this);
auto arranger = Arranger<ArrItem>::create(settings);
arranger->arrange(selected, unselected, bed, subctl);
auto arranged_range = Range{selected.begin(),
selected.begin() + selected_existing_count};
result->add_arranged_items(arranged_range);
auto to_add_range = Range{selected.begin() + selected_existing_count,
selected.end()};
for (auto &itm : to_add_range)
if (get_bed_index(itm) == PhysicalBedId)
result->add_new_item(itm);
return result;
}
} // namespace arr2
} // namespace Slic3r
#endif // FILLBEDTASKIMPL_HPP

View File

@@ -0,0 +1,109 @@
#ifndef MULTIPLYSELECTIONTASK_HPP
#define MULTIPLYSELECTIONTASK_HPP
#include "libslic3r/Arrange/Arrange.hpp"
#include "libslic3r/Arrange/Items/TrafoOnlyArrangeItem.hpp"
namespace Slic3r { namespace arr2 {
struct MultiplySelectionTaskResult: public ArrangeResult {
ObjectID prototype_id;
std::vector<TrafoOnlyArrangeItem> arranged_items;
std::vector<TrafoOnlyArrangeItem> to_add;
bool apply_on(ArrangeableModel &mdl) override
{
bool ret = prototype_id.valid();
if (!ret)
return ret;
for (auto &itm : to_add) {
auto id = mdl.add_arrangeable(prototype_id);
imbue_id(itm, id);
ret = ret && apply_arrangeitem(itm, mdl);
}
for (auto &itm : arranged_items) {
if (is_arranged(itm))
ret = ret && apply_arrangeitem(itm, mdl);
}
return ret;
}
template<class ArrItem>
void add_arranged_item(const ArrItem &itm)
{
arranged_items.emplace_back(itm);
if (auto id = retrieve_id(itm))
imbue_id(arranged_items.back(), *id);
}
template<class It>
void add_arranged_items(const Range<It> &items_range)
{
arranged_items.reserve(items_range.size());
for (auto &itm : items_range)
add_arranged_item(itm);
}
template<class ArrItem> void add_new_item(const ArrItem &itm)
{
to_add.emplace_back(itm);
}
template<class It> void add_new_items(const Range<It> &items_range)
{
to_add.reserve(items_range.size());
for (auto &itm : items_range) {
to_add.emplace_back(itm);
}
}
};
template<class ArrItem>
struct MultiplySelectionTask: public ArrangeTaskBase
{
std::optional<ArrItem> prototype_item;
std::vector<ArrItem> selected, unselected;
ArrangeSettings settings;
ExtendedBed bed;
size_t selected_existing_count = 0;
std::unique_ptr<MultiplySelectionTaskResult> process_native(Ctl &ctl);
std::unique_ptr<MultiplySelectionTaskResult> process_native(Ctl &&ctl)
{
return process_native(ctl);
}
std::unique_ptr<ArrangeResult> process(Ctl &ctl) override
{
return process_native(ctl);
}
int item_count_to_process() const override
{
return selected.size();
}
static std::unique_ptr<MultiplySelectionTask> create(
const Scene &sc,
size_t multiply_count,
const ArrangeableToItemConverter<ArrItem> &converter);
static std::unique_ptr<MultiplySelectionTask> create(const Scene &sc,
size_t multiply_count)
{
auto conv = ArrangeableToItemConverter<ArrItem>::create(sc);
return create(sc, multiply_count, *conv);
}
};
}} // namespace Slic3r::arr2
#endif // MULTIPLYSELECTIONTASK_HPP

View File

@@ -0,0 +1,128 @@
#ifndef MULTIPLYSELECTIONTASKIMPL_HPP
#define MULTIPLYSELECTIONTASKIMPL_HPP
#include "MultiplySelectionTask.hpp"
#include <boost/log/trivial.hpp>
namespace Slic3r { namespace arr2 {
template<class ArrItem>
std::unique_ptr<MultiplySelectionTask<ArrItem>> MultiplySelectionTask<ArrItem>::create(
const Scene &scene, size_t count, const ArrangeableToItemConverter<ArrItem> &itm_conv)
{
auto task_ptr = std::make_unique<MultiplySelectionTask<ArrItem>>();
auto &task = *task_ptr;
task.settings.set_from(scene.settings());
task.bed = get_corrected_bed(scene.bed(), itm_conv);
task.prototype_item = {};
auto selected_ids = scene.selected_ids();
if (selected_ids.empty())
return task_ptr;
std::set<ObjectID> selected_objects = selected_geometry_ids(scene);
if (selected_objects.size() != 1)
return task_ptr;
ObjectID prototype_geometry_id = *(selected_objects.begin());
auto set_prototype_item = [&task, &itm_conv](const Arrangeable &arrbl) {
if (arrbl.is_printable())
task.prototype_item = itm_conv.convert(arrbl);
};
scene.model().visit_arrangeable(selected_ids.front(), set_prototype_item);
if (!task.prototype_item)
return task_ptr;
set_bed_index(*task.prototype_item, Unarranged);
auto collect_task_items = [&prototype_geometry_id, &task,
&itm_conv](const Arrangeable &arrbl) {
try {
if (arrbl.geometry_id() == prototype_geometry_id) {
if (arrbl.is_printable()) {
auto itm = itm_conv.convert(arrbl);
raise_priority(itm);
task.selected.emplace_back(std::move(itm));
}
} else {
auto itm = itm_conv.convert(arrbl, -SCALED_EPSILON);
task.unselected.emplace_back(std::move(itm));
}
} catch (const EmptyItemOutlineError &ex) {
BOOST_LOG_TRIVIAL(error)
<< "ObjectID " << std::to_string(arrbl.id().id) << ": " << ex.what();
}
};
scene.model().for_each_arrangeable(collect_task_items);
task.selected_existing_count = task.selected.size();
task.selected.reserve(task.selected.size() + count);
std::fill_n(std::back_inserter(task.selected), count, *task.prototype_item);
return task_ptr;
}
template<class ArrItem>
std::unique_ptr<MultiplySelectionTaskResult>
MultiplySelectionTask<ArrItem>::process_native(Ctl &ctl)
{
auto result = std::make_unique<MultiplySelectionTaskResult>();
if (!prototype_item)
return result;
result->prototype_id = retrieve_id(*prototype_item).value_or(ObjectID{});
class MultiplySelectionCtl: public ArrangerCtl<ArrItem>
{
ArrangeTaskCtl &parent;
MultiplySelectionTask<ArrItem> &self;
public:
MultiplySelectionCtl(ArrangeTaskCtl &p, MultiplySelectionTask<ArrItem> &slf)
: parent{p}, self{slf} {}
void update_status(int remaining) override
{
parent.update_status(remaining);
}
bool was_canceled() const override
{
return parent.was_canceled();
}
} subctl(ctl, *this);
auto arranger = Arranger<ArrItem>::create(settings);
arranger->arrange(selected, unselected, bed, subctl);
auto arranged_range = Range{selected.begin(),
selected.begin() + selected_existing_count};
result->add_arranged_items(arranged_range);
auto to_add_range = Range{selected.begin() + selected_existing_count,
selected.end()};
result->add_new_items(to_add_range);
return result;
}
}} // namespace Slic3r::arr2
#endif // MULTIPLYSELECTIONTASKIMPL_HPP