mirror of
https://github.com/QIDITECH/klipper.git
synced 2026-01-30 15:38:42 +03:00
repair missing update
This commit is contained in:
@@ -1,10 +1,10 @@
|
||||
# Support for reading acceleration data from an adxl345 chip
|
||||
#
|
||||
# Copyright (C) 2020-2021 Kevin O'Connor <kevin@koconnor.net>
|
||||
# Copyright (C) 2020 Kevin O'Connor <kevin@koconnor.net>
|
||||
#
|
||||
# This file may be distributed under the terms of the GNU GPLv3 license.
|
||||
import logging, time, collections, threading, multiprocessing, os
|
||||
from . import bus, motion_report
|
||||
import logging, math, time, collections, multiprocessing, os
|
||||
from . import bus, manual_probe, probe
|
||||
|
||||
# ADXL345 registers
|
||||
REG_DEVID = 0x00
|
||||
@@ -14,6 +14,15 @@ REG_DATA_FORMAT = 0x31
|
||||
REG_FIFO_CTL = 0x38
|
||||
REG_MOD_READ = 0x80
|
||||
REG_MOD_MULTI = 0x40
|
||||
REG_THRESH_TAP = 0x1D
|
||||
REG_DUR = 0x21
|
||||
REG_INT_MAP = 0x2F
|
||||
REG_TAP_AXES = 0x2A
|
||||
REG_OFSX = 0x1E
|
||||
REG_OFSY = 0x1F
|
||||
REG_OFSZ = 0x20
|
||||
REG_INT_ENABLE = 0x2E
|
||||
REG_INT_SOURCE = 0x30
|
||||
|
||||
QUERY_RATES = {
|
||||
25: 0x8, 50: 0x9, 100: 0xa, 200: 0xb, 400: 0xc,
|
||||
@@ -21,66 +30,67 @@ QUERY_RATES = {
|
||||
}
|
||||
|
||||
ADXL345_DEV_ID = 0xe5
|
||||
SET_FIFO_CTL = 0x90
|
||||
|
||||
FREEFALL_ACCEL = 9.80665 * 1000.
|
||||
SCALE = 0.0039 * FREEFALL_ACCEL # 3.9mg/LSB * Earth gravity in mm/s**2
|
||||
DUR_SCALE = 0.000625 # 0.625 msec / LSB
|
||||
TAP_SCALE = 0.0625 * FREEFALL_ACCEL # 62.5mg/LSB * Earth gravity in mm/s**2
|
||||
OFS_SCALE = 0.0156 * FREEFALL_ACCEL # 15.6mg/LSB * Earth gravity in mm/s**2
|
||||
|
||||
PROBE_CALIBRATION_TIME = 1.
|
||||
ADXL345_REST_TIME = .01
|
||||
|
||||
Accel_Measurement = collections.namedtuple(
|
||||
'Accel_Measurement', ('time', 'accel_x', 'accel_y', 'accel_z'))
|
||||
|
||||
# Helper class to obtain measurements
|
||||
class AccelQueryHelper:
|
||||
def __init__(self, printer, cconn):
|
||||
self.printer = printer
|
||||
self.cconn = cconn
|
||||
print_time = printer.lookup_object('toolhead').get_last_move_time()
|
||||
self.request_start_time = self.request_end_time = print_time
|
||||
self.samples = self.raw_samples = []
|
||||
def finish_measurements(self):
|
||||
toolhead = self.printer.lookup_object('toolhead')
|
||||
self.request_end_time = toolhead.get_last_move_time()
|
||||
toolhead.wait_moves()
|
||||
self.cconn.finalize()
|
||||
def _get_raw_samples(self):
|
||||
raw_samples = self.cconn.get_messages()
|
||||
if raw_samples:
|
||||
# Sample results
|
||||
class ADXL345Results:
|
||||
def __init__(self):
|
||||
self.raw_samples = None
|
||||
self.samples = []
|
||||
self.drops = self.overflows = 0
|
||||
self.time_per_sample = self.start_range = self.end_range = 0.
|
||||
def get_stats(self):
|
||||
return ("drops=%d,overflows=%d"
|
||||
",time_per_sample=%.9f,start_range=%.6f,end_range=%.6f"
|
||||
% (self.drops, self.overflows,
|
||||
self.time_per_sample, self.start_range, self.end_range))
|
||||
def setup_data(self, axes_map, raw_samples, end_sequence, overflows,
|
||||
start1_time, start2_time, end1_time, end2_time):
|
||||
if not raw_samples or not end_sequence:
|
||||
return
|
||||
self.axes_map = axes_map
|
||||
self.raw_samples = raw_samples
|
||||
return self.raw_samples
|
||||
def has_valid_samples(self):
|
||||
raw_samples = self._get_raw_samples()
|
||||
for msg in raw_samples:
|
||||
data = msg['params']['data']
|
||||
first_sample_time = data[0][0]
|
||||
last_sample_time = data[-1][0]
|
||||
if (first_sample_time > self.request_end_time
|
||||
or last_sample_time < self.request_start_time):
|
||||
continue
|
||||
# The time intervals [first_sample_time, last_sample_time]
|
||||
# and [request_start_time, request_end_time] have non-zero
|
||||
# intersection. It is still theoretically possible that none
|
||||
# of the samples from raw_samples fall into the time interval
|
||||
# [request_start_time, request_end_time] if it is too narrow
|
||||
# or on very heavy data losses. In practice, that interval
|
||||
# is at least 1 second, so this possibility is negligible.
|
||||
return True
|
||||
return False
|
||||
def get_samples(self):
|
||||
raw_samples = self._get_raw_samples()
|
||||
if not raw_samples:
|
||||
self.overflows = overflows
|
||||
self.start2_time = start2_time
|
||||
self.start_range = start2_time - start1_time
|
||||
self.end_range = end2_time - end1_time
|
||||
self.total_count = (end_sequence - 1) * 8 + len(raw_samples[-1][1]) // 6
|
||||
total_time = end2_time - start2_time
|
||||
self.time_per_sample = time_per_sample = total_time / self.total_count
|
||||
self.seq_to_time = time_per_sample * 8.
|
||||
actual_count = sum([len(data)//6 for _, data in raw_samples])
|
||||
self.drops = self.total_count - actual_count
|
||||
def decode_samples(self):
|
||||
if not self.raw_samples:
|
||||
return self.samples
|
||||
total = sum([len(m['params']['data']) for m in raw_samples])
|
||||
count = 0
|
||||
self.samples = samples = [None] * total
|
||||
for msg in raw_samples:
|
||||
for samp_time, x, y, z in msg['params']['data']:
|
||||
if samp_time < self.request_start_time:
|
||||
continue
|
||||
if samp_time > self.request_end_time:
|
||||
break
|
||||
samples[count] = Accel_Measurement(samp_time, x, y, z)
|
||||
count += 1
|
||||
del samples[count:]
|
||||
(x_pos, x_scale), (y_pos, y_scale), (z_pos, z_scale) = self.axes_map
|
||||
actual_count = 0
|
||||
self.samples = samples = [None] * self.total_count
|
||||
for seq, data in self.raw_samples:
|
||||
d = bytearray(data)
|
||||
count = len(data)
|
||||
sdata = [(d[i] | (d[i+1] << 8)) - ((d[i+1] & 0x80) << 9)
|
||||
for i in range(0, count-1, 2)]
|
||||
seq_time = self.start2_time + seq * self.seq_to_time
|
||||
for i in range(count//6):
|
||||
samp_time = seq_time + i * self.time_per_sample
|
||||
x = sdata[i*3 + x_pos] * x_scale
|
||||
y = sdata[i*3 + y_pos] * y_scale
|
||||
z = sdata[i*3 + z_pos] * z_scale
|
||||
samples[actual_count] = Accel_Measurement(samp_time, x, y, z)
|
||||
actual_count += 1
|
||||
del samples[actual_count:]
|
||||
return self.samples
|
||||
def write_to_file(self, filename):
|
||||
def write_impl():
|
||||
@@ -90,8 +100,9 @@ class AccelQueryHelper:
|
||||
except:
|
||||
pass
|
||||
f = open(filename, "w")
|
||||
f.write("#time,accel_x,accel_y,accel_z\n")
|
||||
samples = self.samples or self.get_samples()
|
||||
f.write("##%s\n#time,accel_x,accel_y,accel_z\n" % (
|
||||
self.get_stats(),))
|
||||
samples = self.samples or self.decode_samples()
|
||||
for t, accel_x, accel_y, accel_z in samples:
|
||||
f.write("%.6f,%.6f,%.6f,%.6f\n" % (
|
||||
t, accel_x, accel_y, accel_z))
|
||||
@@ -100,184 +111,383 @@ class AccelQueryHelper:
|
||||
write_proc.daemon = True
|
||||
write_proc.start()
|
||||
|
||||
# Helper class for G-Code commands
|
||||
class AccelCommandHelper:
|
||||
def __init__(self, config, chip):
|
||||
class BedOffsetHelper:
|
||||
def __init__(self, config):
|
||||
self.printer = config.get_printer()
|
||||
self.chip = chip
|
||||
self.bg_client = None
|
||||
name_parts = config.get_name().split()
|
||||
self.base_name = name_parts[0]
|
||||
self.name = name_parts[-1]
|
||||
self.register_commands(self.name)
|
||||
if len(name_parts) == 1:
|
||||
if self.name == "adxl345" or not config.has_section("adxl345"):
|
||||
self.register_commands(None)
|
||||
def register_commands(self, name):
|
||||
# Register BED_OFFSET_CALIBRATE command
|
||||
zconfig = config.getsection('stepper_z')
|
||||
self.z_position_endstop = zconfig.getfloat('position_endstop', None,
|
||||
note_valid=False)
|
||||
if self.z_position_endstop is None:
|
||||
return
|
||||
self.bed_probe_point = None
|
||||
if config.get('bed_probe_point', None) is not None:
|
||||
try:
|
||||
self.bed_probe_point = [
|
||||
float(coord.strip()) for coord in
|
||||
config.get('bed_probe_point').split(',', 1)]
|
||||
except:
|
||||
raise config.error(
|
||||
"Unable to parse bed_probe_point '%s'" % (
|
||||
config.get('bed_probe_point')))
|
||||
self.horizontal_move_z = config.getfloat(
|
||||
'horizontal_move_z', 5.)
|
||||
self.horizontal_move_speed = config.getfloat(
|
||||
'horizontal_move_speed', 50., above=0.)
|
||||
gcode = self.printer.lookup_object('gcode')
|
||||
gcode.register_command(
|
||||
'BED_OFFSET_CALIBRATE', self.cmd_BED_OFFSET_CALIBRATE,
|
||||
desc=self.cmd_BED_OFFSET_CALIBRATE_help)
|
||||
def bed_offset_finalize(self, pos, gcmd):
|
||||
if pos is None:
|
||||
return
|
||||
z_pos = self.z_position_endstop - pos[2]
|
||||
gcmd.respond_info(
|
||||
"stepper_z: position_endstop: %.3f\n"
|
||||
"The SAVE_CONFIG command will update the printer config file\n"
|
||||
"with the above and restart the printer." % (z_pos,))
|
||||
configfile = self.printer.lookup_object('configfile')
|
||||
configfile.set('stepper_z', 'position_endstop', "%.3f" % (z_pos,))
|
||||
cmd_BED_OFFSET_CALIBRATE_help = "Calibrate a bed offset using ADXL345 probe"
|
||||
def cmd_BED_OFFSET_CALIBRATE(self, gcmd):
|
||||
manual_probe.verify_no_manual_probe(self.printer)
|
||||
probe = self.printer.lookup_object('probe')
|
||||
lift_speed = probe.get_lift_speed(gcmd)
|
||||
toolhead = self.printer.lookup_object('toolhead')
|
||||
oldpos = toolhead.get_position()
|
||||
if self.bed_probe_point is not None:
|
||||
toolhead.manual_move([None, None, self.horizontal_move_z],
|
||||
lift_speed)
|
||||
toolhead.manual_move(self.bed_probe_point + [None],
|
||||
self.horizontal_move_speed)
|
||||
curpos = probe.run_probe(gcmd)
|
||||
offset_pos = [0., 0., curpos[2] - probe.get_offsets()[2]]
|
||||
if self.bed_probe_point is not None:
|
||||
curpos[2] = self.horizontal_move_z
|
||||
else:
|
||||
curpos[2] = oldpos[2]
|
||||
toolhead.manual_move(curpos, lift_speed)
|
||||
self.bed_offset_finalize(offset_pos, gcmd)
|
||||
|
||||
# ADXL345 virtual endstop wrapper for probing
|
||||
class ADXL345EndstopWrapper:
|
||||
def __init__(self, config, adxl345, axes_map):
|
||||
self.printer = config.get_printer()
|
||||
self.printer.register_event_handler("klippy:connect", self.calibrate)
|
||||
self.calibrated = False
|
||||
self.adxl345 = adxl345
|
||||
self.axes_map = axes_map
|
||||
self.ofs_regs = (REG_OFSX, REG_OFSY, REG_OFSZ)
|
||||
int_pin = config.get('int_pin').strip()
|
||||
self.inverted = False
|
||||
if int_pin.startswith('!'):
|
||||
self.inverted = True
|
||||
int_pin = int_pin[1:].strip()
|
||||
if int_pin != 'int1' and int_pin != 'int2':
|
||||
raise config.error('int_pin must specify one of int1 or int2 pins')
|
||||
self.int_map = 0x40 if int_pin == 'int2' else 0x0
|
||||
probe_pin = config.get('probe_pin')
|
||||
self.position_endstop = config.getfloat('z_offset')
|
||||
self.tap_thresh = config.getfloat('tap_thresh', 5000,
|
||||
minval=TAP_SCALE, maxval=100000.)
|
||||
self.tap_dur = config.getfloat('tap_dur', 0.01,
|
||||
above=DUR_SCALE, maxval=0.1)
|
||||
self.next_cmd_time = self.action_end_time = 0.
|
||||
# Create an "endstop" object to handle the sensor pin
|
||||
ppins = self.printer.lookup_object('pins')
|
||||
pin_params = ppins.lookup_pin(probe_pin, can_invert=True,
|
||||
can_pullup=True)
|
||||
mcu = pin_params['chip']
|
||||
mcu.register_config_callback(self._build_config)
|
||||
self.mcu_endstop = mcu.setup_pin('endstop', pin_params)
|
||||
# Wrappers
|
||||
self.get_mcu = self.mcu_endstop.get_mcu
|
||||
self.add_stepper = self.mcu_endstop.add_stepper
|
||||
self.get_steppers = self.mcu_endstop.get_steppers
|
||||
self.home_start = self.mcu_endstop.home_start
|
||||
self.home_wait = self.mcu_endstop.home_wait
|
||||
self.query_endstop = self.mcu_endstop.query_endstop
|
||||
# Register commands
|
||||
gcode = self.printer.lookup_object('gcode')
|
||||
gcode.register_mux_command("ACCELEROMETER_MEASURE", "CHIP", name,
|
||||
self.cmd_ACCELEROMETER_MEASURE,
|
||||
desc=self.cmd_ACCELEROMETER_MEASURE_help)
|
||||
gcode.register_mux_command("ACCELEROMETER_QUERY", "CHIP", name,
|
||||
self.cmd_ACCELEROMETER_QUERY,
|
||||
desc=self.cmd_ACCELEROMETER_QUERY_help)
|
||||
gcode.register_mux_command("ACCELEROMETER_DEBUG_READ", "CHIP", name,
|
||||
self.cmd_ACCELEROMETER_DEBUG_READ,
|
||||
desc=self.cmd_ACCELEROMETER_DEBUG_READ_help)
|
||||
gcode.register_mux_command("ACCELEROMETER_DEBUG_WRITE", "CHIP", name,
|
||||
self.cmd_ACCELEROMETER_DEBUG_WRITE,
|
||||
desc=self.cmd_ACCELEROMETER_DEBUG_WRITE_help)
|
||||
cmd_ACCELEROMETER_MEASURE_help = "Start/stop accelerometer"
|
||||
def cmd_ACCELEROMETER_MEASURE(self, gcmd):
|
||||
if self.bg_client is None:
|
||||
# Start measurements
|
||||
self.bg_client = self.chip.start_internal_client()
|
||||
gcmd.respond_info("accelerometer measurements started")
|
||||
return
|
||||
# End measurements
|
||||
name = gcmd.get("NAME", time.strftime("%Y%m%d_%H%M%S"))
|
||||
if not name.replace('-', '').replace('_', '').isalnum():
|
||||
raise gcmd.error("Invalid NAME parameter")
|
||||
bg_client = self.bg_client
|
||||
self.bg_client = None
|
||||
bg_client.finish_measurements()
|
||||
# Write data to file
|
||||
if self.base_name == self.name:
|
||||
filename = "/tmp/%s-%s.csv" % (self.base_name, name)
|
||||
gcode.register_mux_command(
|
||||
"ACCEL_PROBE_CALIBRATE", "CHIP", None,
|
||||
self.cmd_ACCEL_PROBE_CALIBRATE,
|
||||
desc=self.cmd_ACCEL_PROBE_CALIBRATE_help)
|
||||
gcode.register_mux_command(
|
||||
"SET_ACCEL_PROBE", "CHIP", None, self.cmd_SET_ACCEL_PROBE,
|
||||
desc=self.cmd_SET_ACCEL_PROBE_help)
|
||||
# Register bed offset calibration helper
|
||||
BedOffsetHelper(config)
|
||||
def _build_config(self):
|
||||
kin = self.printer.lookup_object('toolhead').get_kinematics()
|
||||
for stepper in kin.get_steppers():
|
||||
if stepper.is_active_axis('z'):
|
||||
self.add_stepper(stepper)
|
||||
def calibrate(self, gcmd=None, retries=3):
|
||||
adxl345 = self.adxl345
|
||||
if not adxl345.is_initialized():
|
||||
# ADXL345 that works as a probe must be initialized from the start
|
||||
adxl345.initialize()
|
||||
adxl345.set_reg(REG_POWER_CTL, 0x00)
|
||||
if self.inverted:
|
||||
adxl345.set_reg(REG_DATA_FORMAT, 0x2B)
|
||||
adxl345.set_reg(REG_INT_MAP, self.int_map)
|
||||
adxl345.set_reg(REG_TAP_AXES, 0x7)
|
||||
adxl345.set_reg(REG_THRESH_TAP, int(self.tap_thresh / TAP_SCALE))
|
||||
adxl345.set_reg(REG_DUR, int(self.tap_dur / DUR_SCALE))
|
||||
# Offset freefall accleration on the true Z axis
|
||||
for reg in self.ofs_regs:
|
||||
adxl345.set_reg(reg, 0x00)
|
||||
adxl345.start_measurements()
|
||||
reactor = self.printer.get_reactor()
|
||||
reactor.register_callback(lambda ev: self._offset_axes(gcmd, retries),
|
||||
reactor.monotonic() + PROBE_CALIBRATION_TIME)
|
||||
def _offset_axes(self, gcmd, retries):
|
||||
res = self.adxl345.finish_measurements()
|
||||
msg_func = gcmd.respond_info if gcmd is not None else logging.info
|
||||
samples = res.decode_samples()
|
||||
x_ofs = sum([s.accel_x for s in samples]) / len(samples)
|
||||
y_ofs = sum([s.accel_y for s in samples]) / len(samples)
|
||||
z_ofs = sum([s.accel_z for s in samples]) / len(samples)
|
||||
meas_freefall_accel = math.sqrt(x_ofs**2 + y_ofs**2 + z_ofs**2)
|
||||
if abs(meas_freefall_accel - FREEFALL_ACCEL) > FREEFALL_ACCEL * 0.5:
|
||||
err_msg = ("Calibration error: ADXL345 incorrectly measures "
|
||||
"freefall accleration: %.0f (measured) vs %.0f "
|
||||
"(expected)" % (meas_freefall_accel, FREEFALL_ACCEL))
|
||||
if retries > 0:
|
||||
msg_func(err_msg + ", retrying (%d)" % (retries-1,))
|
||||
self.calibrate(gcmd, retries-1)
|
||||
else:
|
||||
filename = "/tmp/%s-%s-%s.csv" % (self.base_name, self.name, name)
|
||||
bg_client.write_to_file(filename)
|
||||
gcmd.respond_info("Writing raw accelerometer data to %s file"
|
||||
% (filename,))
|
||||
cmd_ACCELEROMETER_QUERY_help = "Query accelerometer for the current values"
|
||||
def cmd_ACCELEROMETER_QUERY(self, gcmd):
|
||||
aclient = self.chip.start_internal_client()
|
||||
self.printer.lookup_object('toolhead').dwell(1.)
|
||||
aclient.finish_measurements()
|
||||
values = aclient.get_samples()
|
||||
if not values:
|
||||
raise gcmd.error("No accelerometer measurements found")
|
||||
_, accel_x, accel_y, accel_z = values[-1]
|
||||
gcmd.respond_info("accelerometer values (x, y, z): %.6f, %.6f, %.6f"
|
||||
% (accel_x, accel_y, accel_z))
|
||||
cmd_ACCELEROMETER_DEBUG_READ_help = "Query register (for debugging)"
|
||||
def cmd_ACCELEROMETER_DEBUG_READ(self, gcmd):
|
||||
reg = gcmd.get("REG", minval=0, maxval=126, parser=lambda x: int(x, 0))
|
||||
val = self.chip.read_reg(reg)
|
||||
gcmd.respond_info("Accelerometer REG[0x%x] = 0x%x" % (reg, val))
|
||||
cmd_ACCELEROMETER_DEBUG_WRITE_help = "Set register (for debugging)"
|
||||
def cmd_ACCELEROMETER_DEBUG_WRITE(self, gcmd):
|
||||
reg = gcmd.get("REG", minval=0, maxval=126, parser=lambda x: int(x, 0))
|
||||
val = gcmd.get("VAL", minval=0, maxval=255, parser=lambda x: int(x, 0))
|
||||
self.chip.set_reg(reg, val)
|
||||
|
||||
# Helper class for chip clock synchronization via linear regression
|
||||
class ClockSyncRegression:
|
||||
def __init__(self, mcu, chip_clock_smooth, decay = 1. / 20.):
|
||||
self.mcu = mcu
|
||||
self.chip_clock_smooth = chip_clock_smooth
|
||||
self.decay = decay
|
||||
self.last_chip_clock = self.last_exp_mcu_clock = 0.
|
||||
self.mcu_clock_avg = self.mcu_clock_variance = 0.
|
||||
self.chip_clock_avg = self.chip_clock_covariance = 0.
|
||||
def reset(self, mcu_clock, chip_clock):
|
||||
self.mcu_clock_avg = self.last_mcu_clock = mcu_clock
|
||||
self.chip_clock_avg = chip_clock
|
||||
self.mcu_clock_variance = self.chip_clock_covariance = 0.
|
||||
self.last_chip_clock = self.last_exp_mcu_clock = 0.
|
||||
def update(self, mcu_clock, chip_clock):
|
||||
# Update linear regression
|
||||
decay = self.decay
|
||||
diff_mcu_clock = mcu_clock - self.mcu_clock_avg
|
||||
self.mcu_clock_avg += decay * diff_mcu_clock
|
||||
self.mcu_clock_variance = (1. - decay) * (
|
||||
self.mcu_clock_variance + diff_mcu_clock**2 * decay)
|
||||
diff_chip_clock = chip_clock - self.chip_clock_avg
|
||||
self.chip_clock_avg += decay * diff_chip_clock
|
||||
self.chip_clock_covariance = (1. - decay) * (
|
||||
self.chip_clock_covariance + diff_mcu_clock*diff_chip_clock*decay)
|
||||
def set_last_chip_clock(self, chip_clock):
|
||||
base_mcu, base_chip, inv_cfreq = self.get_clock_translation()
|
||||
self.last_chip_clock = chip_clock
|
||||
self.last_exp_mcu_clock = base_mcu + (chip_clock-base_chip) * inv_cfreq
|
||||
def get_clock_translation(self):
|
||||
inv_chip_freq = self.mcu_clock_variance / self.chip_clock_covariance
|
||||
if not self.last_chip_clock:
|
||||
return self.mcu_clock_avg, self.chip_clock_avg, inv_chip_freq
|
||||
# Find mcu clock associated with future chip_clock
|
||||
s_chip_clock = self.last_chip_clock + self.chip_clock_smooth
|
||||
scdiff = s_chip_clock - self.chip_clock_avg
|
||||
s_mcu_clock = self.mcu_clock_avg + scdiff * inv_chip_freq
|
||||
# Calculate frequency to converge at future point
|
||||
mdiff = s_mcu_clock - self.last_exp_mcu_clock
|
||||
s_inv_chip_freq = mdiff / self.chip_clock_smooth
|
||||
return self.last_exp_mcu_clock, self.last_chip_clock, s_inv_chip_freq
|
||||
def get_time_translation(self):
|
||||
base_mcu, base_chip, inv_cfreq = self.get_clock_translation()
|
||||
clock_to_print_time = self.mcu.clock_to_print_time
|
||||
base_time = clock_to_print_time(base_mcu)
|
||||
inv_freq = clock_to_print_time(base_mcu + inv_cfreq) - base_time
|
||||
return base_time, base_chip, inv_freq
|
||||
|
||||
MIN_MSG_TIME = 0.100
|
||||
|
||||
BYTES_PER_SAMPLE = 5
|
||||
SAMPLES_PER_BLOCK = 10
|
||||
msg_func(err_msg + ", aborting self-calibration")
|
||||
return
|
||||
x_m = max([abs(s.accel_x - x_ofs) for s in samples])
|
||||
y_m = max([abs(s.accel_y - y_ofs) for s in samples])
|
||||
z_m = max([abs(s.accel_z - z_ofs) for s in samples])
|
||||
accel_noise = max(x_m, y_m, z_m)
|
||||
if accel_noise > self.tap_thresh:
|
||||
err_msg = ("Calibration error: ADXL345 noise level too high for "
|
||||
"the configured tap_thresh: %.0f (tap_thresh) vs "
|
||||
"%.0f (noise)" % (self.tap_thresh, accel_noise))
|
||||
if retries > 0:
|
||||
msg_func(err_msg + ", retrying (%d)" % (retries-1,))
|
||||
self.calibrate(gcmd, retries-1)
|
||||
else:
|
||||
msg_func(err_msg + ", aborting self-calibration")
|
||||
return
|
||||
for ofs, axis in zip((x_ofs, y_ofs, z_ofs), (0, 1, 2)):
|
||||
ofs_reg = self.ofs_regs[self.axes_map[axis][0]]
|
||||
ofs_val = 0xFF & int(round(
|
||||
-ofs / self.axes_map[axis][1] * (SCALE / OFS_SCALE)))
|
||||
self.adxl345.set_reg(ofs_reg, ofs_val)
|
||||
msg_func("Successfully calibrated ADXL345")
|
||||
self.calibrated = True
|
||||
def multi_probe_begin(self):
|
||||
pass
|
||||
def multi_probe_end(self):
|
||||
pass
|
||||
def _try_clear_tap(self):
|
||||
adxl345 = self.adxl345
|
||||
tries = 8
|
||||
while tries > 0:
|
||||
val = adxl345.read_reg(REG_INT_SOURCE)
|
||||
if not (val & 0x40):
|
||||
return True
|
||||
tries -= 1
|
||||
return False
|
||||
def probe_prepare(self, hmove):
|
||||
if not self.calibrated:
|
||||
raise self.printer.command_error(
|
||||
"ADXL345 probe failed calibration, "
|
||||
"retry with ACCEL_PROBE_CALIBRATE command")
|
||||
adxl345 = self.adxl345
|
||||
toolhead = self.printer.lookup_object('toolhead')
|
||||
toolhead.flush_step_generation()
|
||||
print_time = toolhead.get_last_move_time()
|
||||
clock = self.adxl345.get_mcu().print_time_to_clock(print_time +
|
||||
ADXL345_REST_TIME)
|
||||
if not adxl345.is_initialized():
|
||||
adxl345.initialize()
|
||||
adxl345.set_reg(REG_INT_ENABLE, 0x00, minclock=clock)
|
||||
adxl345.read_reg(REG_INT_SOURCE)
|
||||
adxl345.set_reg(REG_INT_ENABLE, 0x40, minclock=clock)
|
||||
if not adxl345.is_measuring():
|
||||
adxl345.set_reg(REG_POWER_CTL, 0x08, minclock=clock)
|
||||
if not self._try_clear_tap():
|
||||
raise self.printer.command_error(
|
||||
"ADXL345 tap triggered before move, too sensitive?")
|
||||
def probe_finish(self, hmove):
|
||||
adxl345 = self.adxl345
|
||||
toolhead = self.printer.lookup_object('toolhead')
|
||||
toolhead.dwell(ADXL345_REST_TIME)
|
||||
print_time = toolhead.get_last_move_time()
|
||||
clock = adxl345.get_mcu().print_time_to_clock(print_time)
|
||||
adxl345.set_reg(REG_INT_ENABLE, 0x00, minclock=clock)
|
||||
if not adxl345.is_measuring():
|
||||
adxl345.set_reg(REG_POWER_CTL, 0x00)
|
||||
if not self._try_clear_tap():
|
||||
raise self.printer.command_error(
|
||||
"ADXL345 tap triggered after move, too sensitive?")
|
||||
cmd_ACCEL_PROBE_CALIBRATE_help = "Force ADXL345 probe [re-]calibration"
|
||||
def cmd_ACCEL_PROBE_CALIBRATE(self, gcmd):
|
||||
self.calibrate(gcmd)
|
||||
cmd_SET_ACCEL_PROBE_help = "Configure ADXL345 parameters related to probing"
|
||||
def cmd_SET_ACCEL_PROBE(self, gcmd):
|
||||
self.tap_thresh = gcmd.get_float('TAP_THRESH', self.tap_thresh,
|
||||
minval=TAP_SCALE, maxval=100000.)
|
||||
self.tap_dur = config.getfloat('TAP_DUR', self.tap_dur,
|
||||
above=DUR_SCALE, maxval=0.1)
|
||||
adxl345.set_reg(REG_THRESH_TAP, int(self.tap_thresh / TAP_SCALE))
|
||||
adxl345.set_reg(REG_DUR, int(self.tap_dur / DUR_SCALE))
|
||||
|
||||
# Printer class that controls ADXL345 chip
|
||||
class ADXL345:
|
||||
def __init__(self, config):
|
||||
self.printer = config.get_printer()
|
||||
AccelCommandHelper(config, self)
|
||||
self.query_rate = 0
|
||||
self.last_tx_time = 0.
|
||||
self.config = config
|
||||
am = {'x': (0, SCALE), 'y': (1, SCALE), 'z': (2, SCALE),
|
||||
'-x': (0, -SCALE), '-y': (1, -SCALE), '-z': (2, -SCALE)}
|
||||
axes_map = config.getlist('axes_map', ('x','y','z'), count=3)
|
||||
if any([a not in am for a in axes_map]):
|
||||
axes_map = config.get('axes_map', 'x,y,z').split(',')
|
||||
if len(axes_map) != 3 or any([a.strip() not in am for a in axes_map]):
|
||||
raise config.error("Invalid adxl345 axes_map parameter")
|
||||
self.axes_map = [am[a.strip()] for a in axes_map]
|
||||
self.data_rate = config.getint('rate', 3200)
|
||||
if self.data_rate not in QUERY_RATES:
|
||||
raise config.error("Invalid rate parameter: %d" % (self.data_rate,))
|
||||
# Measurement storage (accessed from background thread)
|
||||
self.lock = threading.Lock()
|
||||
self.raw_samples = []
|
||||
self.last_sequence = 0
|
||||
self.samples_start1 = self.samples_start2 = 0.
|
||||
# Setup mcu sensor_adxl345 bulk query code
|
||||
self.spi = bus.MCU_SPI_from_config(config, 3, default_speed=5000000)
|
||||
self.mcu = mcu = self.spi.get_mcu()
|
||||
self.oid = oid = mcu.create_oid()
|
||||
self.query_adxl345_cmd = self.query_adxl345_end_cmd = None
|
||||
self.query_adxl345_status_cmd = None
|
||||
self.query_adxl345_cmd = self.query_adxl345_end_cmd =None
|
||||
mcu.add_config_cmd("config_adxl345 oid=%d spi_oid=%d"
|
||||
% (oid, self.spi.get_oid()))
|
||||
mcu.add_config_cmd("query_adxl345 oid=%d clock=0 rest_ticks=0"
|
||||
% (oid,), on_restart=True)
|
||||
mcu.register_config_callback(self._build_config)
|
||||
mcu.register_response(self._handle_adxl345_start, "adxl345_start", oid)
|
||||
mcu.register_response(self._handle_adxl345_data, "adxl345_data", oid)
|
||||
# Clock tracking
|
||||
self.last_sequence = self.max_query_duration = 0
|
||||
self.last_limit_count = self.last_error_count = 0
|
||||
self.clock_sync = ClockSyncRegression(self.mcu, 640)
|
||||
# API server endpoints
|
||||
self.api_dump = motion_report.APIDumpHelper(
|
||||
self.printer, self._api_update, self._api_startstop, 0.100)
|
||||
self.name = config.get_name().split()[-1]
|
||||
wh = self.printer.lookup_object('webhooks')
|
||||
wh.register_mux_endpoint("adxl345/dump_adxl345", "sensor", self.name,
|
||||
self._handle_dump_adxl345)
|
||||
# Register commands
|
||||
self.name = "default"
|
||||
if len(config.get_name().split()) > 1:
|
||||
self.name = config.get_name().split()[1]
|
||||
gcode = self.printer.lookup_object('gcode')
|
||||
gcode.register_mux_command("ACCELEROMETER_MEASURE", "CHIP", self.name,
|
||||
self.cmd_ACCELEROMETER_MEASURE,
|
||||
desc=self.cmd_ACCELEROMETER_MEASURE_help)
|
||||
gcode.register_mux_command("ACCELEROMETER_QUERY", "CHIP", self.name,
|
||||
self.cmd_ACCELEROMETER_QUERY,
|
||||
desc=self.cmd_ACCELEROMETER_QUERY_help)
|
||||
gcode.register_mux_command("ADXL345_DEBUG_READ", "CHIP", self.name,
|
||||
self.cmd_ADXL345_DEBUG_READ,
|
||||
desc=self.cmd_ADXL345_DEBUG_READ_help)
|
||||
gcode.register_mux_command("ADXL345_DEBUG_WRITE", "CHIP", self.name,
|
||||
self.cmd_ADXL345_DEBUG_WRITE,
|
||||
desc=self.cmd_ADXL345_DEBUG_WRITE_help)
|
||||
gcode.register_mux_command("TEST_MYCMD", "CHIP", self.name,
|
||||
self.cmd_TEST_MYCMD,
|
||||
desc=self.cmd_TEST_MYCMD_help)
|
||||
gcode.register_mux_command("MKS_PROBE", "CHIP", self.name,
|
||||
self.cmd_MKS_PROBE,
|
||||
desc=self.cmd_MKS_PROBE_help)
|
||||
if self.name == "default":
|
||||
gcode.register_mux_command("ACCELEROMETER_MEASURE", "CHIP", None,
|
||||
self.cmd_ACCELEROMETER_MEASURE)
|
||||
gcode.register_mux_command("ACCELEROMETER_QUERY", "CHIP", None,
|
||||
self.cmd_ACCELEROMETER_QUERY)
|
||||
gcode.register_mux_command("ADXL345_DEBUG_READ", "CHIP", None,
|
||||
self.cmd_ADXL345_DEBUG_READ,
|
||||
desc=self.cmd_ADXL345_DEBUG_READ_help)
|
||||
gcode.register_mux_command("ADXL345_DEBUG_WRITE", "CHIP", None,
|
||||
self.cmd_ADXL345_DEBUG_WRITE,
|
||||
desc=self.cmd_ADXL345_DEBUG_WRITE_help)
|
||||
gcode.register_mux_command("TEST_MYCMD", "CHIP", None,
|
||||
self.cmd_TEST_MYCMD,
|
||||
desc=self.cmd_TEST_MYCMD_help)
|
||||
gcode.register_mux_command("MKS_PROBE", "CHIP", None,
|
||||
self.cmd_MKS_PROBE,
|
||||
desc=self.cmd_MKS_PROBE_help)
|
||||
|
||||
self.adxl345_endstop = ADXL345EndstopWrapper(self.config, self, self.axes_map)
|
||||
cmd_MKS_PROBE_help = "test my cmd"
|
||||
def cmd_MKS_PROBE(self, gcmd):
|
||||
gcmd.respond_info("go to mks Probe success")
|
||||
self.printer.remove_object('probe')
|
||||
self.printer.lookup_object('gcode').remove_command('PROBE')
|
||||
self.printer.lookup_object('gcode').remove_command('QUERY_PROBE')
|
||||
self.printer.lookup_object('gcode').remove_command('PROBE_CALIBRATE')
|
||||
self.printer.lookup_object('gcode').remove_command('PROBE_ACCURACY')
|
||||
self.printer.lookup_object('gcode').remove_command('Z_OFFSET_APPLY_PROBE')
|
||||
self.printer.lookup_object('gcode').remove_command('MKS_SHOW_Z_OFFSET')
|
||||
self.printer.lookup_object('pins').remove_chip('probe')
|
||||
self.printer.add_object('probe', probe.load_config(self.probe_config))
|
||||
# self.printer.lookup_object('probe').multi_probe_end()
|
||||
cmd_TEST_MYCMD_help = "test my cmd"
|
||||
def cmd_TEST_MYCMD(self, gcmd):
|
||||
gcmd.respond_info("TEST MY CMD success")
|
||||
# if config.get('probe_pin', None) is not None:
|
||||
# adxl345_endstop = ADXL345EndstopWrapper(config, self, self.axes_map)
|
||||
self.probe_config = self.printer.lookup_object('probe').config
|
||||
# self.printer.add_object('probebak', None)
|
||||
# self.printer.copy_object('probe', 'probebak')
|
||||
self.printer.remove_object('probe')
|
||||
self.printer.lookup_object('gcode').remove_command('PROBE')
|
||||
self.printer.lookup_object('gcode').remove_command('QUERY_PROBE')
|
||||
self.printer.lookup_object('gcode').remove_command('PROBE_CALIBRATE')
|
||||
self.printer.lookup_object('gcode').remove_command('PROBE_ACCURACY')
|
||||
self.printer.lookup_object('gcode').remove_command('Z_OFFSET_APPLY_PROBE')
|
||||
self.printer.lookup_object('gcode').remove_command('MKS_SHOW_Z_OFFSET')
|
||||
self.printer.lookup_object('pins').remove_chip('probe')
|
||||
self.printer.add_object('probe', probe.PrinterProbe(self.config, self.adxl345_endstop))
|
||||
def is_initialized(self):
|
||||
# In case of miswiring, testing ADXL345 device ID prevents treating
|
||||
# noise or wrong signal as a correctly initialized device
|
||||
return (self.read_reg(REG_DEVID) == ADXL345_DEV_ID and
|
||||
(self.read_reg(REG_DATA_FORMAT) & 0xB) != 0)
|
||||
def initialize(self):
|
||||
# Setup ADXL345 parameters and verify chip connectivity
|
||||
self.set_reg(REG_POWER_CTL, 0x00)
|
||||
dev_id = self.read_reg(REG_DEVID)
|
||||
if dev_id != ADXL345_DEV_ID:
|
||||
raise self.printer.command_error("Invalid adxl345 id (got %x vs %x)"
|
||||
% (dev_id, ADXL345_DEV_ID))
|
||||
self.set_reg(REG_DATA_FORMAT, 0x0B)
|
||||
def get_mcu(self):
|
||||
return self.spi.get_mcu()
|
||||
def _build_config(self):
|
||||
cmdqueue = self.spi.get_command_queue()
|
||||
self.query_adxl345_cmd = self.mcu.lookup_command(
|
||||
"query_adxl345 oid=%c clock=%u rest_ticks=%u", cq=cmdqueue)
|
||||
"query_adxl345 oid=%c clock=%u rest_ticks=%u",
|
||||
cq=self.spi.get_command_queue())
|
||||
self.query_adxl345_end_cmd = self.mcu.lookup_query_command(
|
||||
"query_adxl345 oid=%c clock=%u rest_ticks=%u",
|
||||
"adxl345_status oid=%c clock=%u query_ticks=%u next_sequence=%hu"
|
||||
" buffered=%c fifo=%c limit_count=%hu", oid=self.oid, cq=cmdqueue)
|
||||
self.query_adxl345_status_cmd = self.mcu.lookup_query_command(
|
||||
"query_adxl345_status oid=%c",
|
||||
"adxl345_status oid=%c clock=%u query_ticks=%u next_sequence=%hu"
|
||||
" buffered=%c fifo=%c limit_count=%hu", oid=self.oid, cq=cmdqueue)
|
||||
"adxl345_end oid=%c end1_clock=%u end2_clock=%u"
|
||||
" limit_count=%hu sequence=%hu",
|
||||
oid=self.oid, cq=self.spi.get_command_queue())
|
||||
def _clock_to_print_time(self, clock):
|
||||
return self.mcu.clock_to_print_time(self.mcu.clock32_to_clock64(clock))
|
||||
def _handle_adxl345_start(self, params):
|
||||
self.samples_start1 = self._clock_to_print_time(params['start1_clock'])
|
||||
self.samples_start2 = self._clock_to_print_time(params['start2_clock'])
|
||||
def _handle_adxl345_data(self, params):
|
||||
last_sequence = self.last_sequence
|
||||
sequence = (last_sequence & ~0xffff) | params['sequence']
|
||||
if sequence < last_sequence:
|
||||
sequence += 0x10000
|
||||
self.last_sequence = sequence
|
||||
raw_samples = self.raw_samples
|
||||
if len(raw_samples) >= 300000:
|
||||
# Avoid filling up memory with too many samples
|
||||
return
|
||||
raw_samples.append((sequence, params['data']))
|
||||
def _convert_sequence(self, sequence):
|
||||
sequence = (self.last_sequence & ~0xffff) | sequence
|
||||
if sequence < self.last_sequence:
|
||||
sequence += 0x10000
|
||||
return sequence
|
||||
def read_reg(self, reg):
|
||||
params = self.spi.spi_transfer([reg | REG_MOD_READ, 0x00])
|
||||
response = bytearray(params['response'])
|
||||
@@ -291,151 +501,116 @@ class ADXL345:
|
||||
"This is generally indicative of connection problems "
|
||||
"(e.g. faulty wiring) or a faulty adxl345 chip." % (
|
||||
reg, val, stored_val))
|
||||
# Measurement collection
|
||||
def is_measuring(self):
|
||||
return self.query_rate > 0
|
||||
def _handle_adxl345_data(self, params):
|
||||
with self.lock:
|
||||
self.raw_samples.append(params)
|
||||
def _extract_samples(self, raw_samples):
|
||||
# Load variables to optimize inner loop below
|
||||
(x_pos, x_scale), (y_pos, y_scale), (z_pos, z_scale) = self.axes_map
|
||||
last_sequence = self.last_sequence
|
||||
time_base, chip_base, inv_freq = self.clock_sync.get_time_translation()
|
||||
# Process every message in raw_samples
|
||||
count = seq = 0
|
||||
samples = [None] * (len(raw_samples) * SAMPLES_PER_BLOCK)
|
||||
for params in raw_samples:
|
||||
seq_diff = (last_sequence - params['sequence']) & 0xffff
|
||||
seq_diff -= (seq_diff & 0x8000) << 1
|
||||
seq = last_sequence - seq_diff
|
||||
d = bytearray(params['data'])
|
||||
msg_cdiff = seq * SAMPLES_PER_BLOCK - chip_base
|
||||
for i in range(len(d) // BYTES_PER_SAMPLE):
|
||||
d_xyz = d[i*BYTES_PER_SAMPLE:(i+1)*BYTES_PER_SAMPLE]
|
||||
xlow, ylow, zlow, xzhigh, yzhigh = d_xyz
|
||||
if yzhigh & 0x80:
|
||||
self.last_error_count += 1
|
||||
continue
|
||||
rx = (xlow | ((xzhigh & 0x1f) << 8)) - ((xzhigh & 0x10) << 9)
|
||||
ry = (ylow | ((yzhigh & 0x1f) << 8)) - ((yzhigh & 0x10) << 9)
|
||||
rz = ((zlow | ((xzhigh & 0xe0) << 3) | ((yzhigh & 0xe0) << 6))
|
||||
- ((yzhigh & 0x40) << 7))
|
||||
raw_xyz = (rx, ry, rz)
|
||||
x = round(raw_xyz[x_pos] * x_scale, 6)
|
||||
y = round(raw_xyz[y_pos] * y_scale, 6)
|
||||
z = round(raw_xyz[z_pos] * z_scale, 6)
|
||||
ptime = round(time_base + (msg_cdiff + i) * inv_freq, 6)
|
||||
samples[count] = (ptime, x, y, z)
|
||||
count += 1
|
||||
self.clock_sync.set_last_chip_clock(seq * SAMPLES_PER_BLOCK + i)
|
||||
del samples[count:]
|
||||
return samples
|
||||
def _update_clock(self, minclock=0):
|
||||
# Query current state
|
||||
for retry in range(5):
|
||||
params = self.query_adxl345_status_cmd.send([self.oid],
|
||||
minclock=minclock)
|
||||
fifo = params['fifo'] & 0x7f
|
||||
if fifo <= 32:
|
||||
break
|
||||
else:
|
||||
raise self.printer.command_error("Unable to query adxl345 fifo")
|
||||
mcu_clock = self.mcu.clock32_to_clock64(params['clock'])
|
||||
sequence = (self.last_sequence & ~0xffff) | params['next_sequence']
|
||||
if sequence < self.last_sequence:
|
||||
sequence += 0x10000
|
||||
self.last_sequence = sequence
|
||||
buffered = params['buffered']
|
||||
limit_count = (self.last_limit_count & ~0xffff) | params['limit_count']
|
||||
if limit_count < self.last_limit_count:
|
||||
limit_count += 0x10000
|
||||
self.last_limit_count = limit_count
|
||||
duration = params['query_ticks']
|
||||
if duration > self.max_query_duration:
|
||||
# Skip measurement as a high query time could skew clock tracking
|
||||
self.max_query_duration = max(2 * self.max_query_duration,
|
||||
self.mcu.seconds_to_clock(.000005))
|
||||
return
|
||||
self.max_query_duration = 2 * duration
|
||||
msg_count = (sequence * SAMPLES_PER_BLOCK
|
||||
+ buffered // BYTES_PER_SAMPLE + fifo)
|
||||
# The "chip clock" is the message counter plus .5 for average
|
||||
# inaccuracy of query responses and plus .5 for assumed offset
|
||||
# of adxl345 hw processing time.
|
||||
chip_clock = msg_count + 1
|
||||
self.clock_sync.update(mcu_clock + duration // 2, chip_clock)
|
||||
def _start_measurements(self):
|
||||
def start_measurements(self, rate=None):
|
||||
if self.is_measuring():
|
||||
return
|
||||
# In case of miswiring, testing ADXL345 device ID prevents treating
|
||||
# noise or wrong signal as a correctly initialized device
|
||||
dev_id = self.read_reg(REG_DEVID)
|
||||
if dev_id != ADXL345_DEV_ID:
|
||||
raise self.printer.command_error(
|
||||
"Invalid adxl345 id (got %x vs %x).\n"
|
||||
"This is generally indicative of connection problems\n"
|
||||
"(e.g. faulty wiring) or a faulty adxl345 chip."
|
||||
% (dev_id, ADXL345_DEV_ID))
|
||||
rate = rate or self.data_rate
|
||||
if not self.is_initialized():
|
||||
self.initialize()
|
||||
# Setup chip in requested query rate
|
||||
self.set_reg(REG_POWER_CTL, 0x00)
|
||||
self.set_reg(REG_DATA_FORMAT, 0x0B)
|
||||
clock = 0
|
||||
if self.last_tx_time:
|
||||
clock = self.mcu.print_time_to_clock(self.last_tx_time)
|
||||
self.set_reg(REG_POWER_CTL, 0x00, minclock=clock)
|
||||
self.set_reg(REG_FIFO_CTL, 0x00)
|
||||
self.set_reg(REG_BW_RATE, QUERY_RATES[self.data_rate])
|
||||
self.set_reg(REG_FIFO_CTL, SET_FIFO_CTL)
|
||||
self.set_reg(REG_BW_RATE, QUERY_RATES[rate])
|
||||
self.set_reg(REG_FIFO_CTL, 0x80)
|
||||
# Setup samples
|
||||
with self.lock:
|
||||
print_time = self.printer.lookup_object('toolhead').get_last_move_time()
|
||||
self.raw_samples = []
|
||||
self.last_sequence = 0
|
||||
self.samples_start1 = self.samples_start2 = print_time
|
||||
# Start bulk reading
|
||||
systime = self.printer.get_reactor().monotonic()
|
||||
print_time = self.mcu.estimated_print_time(systime) + MIN_MSG_TIME
|
||||
reqclock = self.mcu.print_time_to_clock(print_time)
|
||||
rest_ticks = self.mcu.seconds_to_clock(4. / self.data_rate)
|
||||
self.query_rate = self.data_rate
|
||||
rest_ticks = self.mcu.seconds_to_clock(4. / rate)
|
||||
self.last_tx_time = print_time
|
||||
self.query_rate = rate
|
||||
self.query_adxl345_cmd.send([self.oid, reqclock, rest_ticks],
|
||||
reqclock=reqclock)
|
||||
logging.info("ADXL345 starting '%s' measurements", self.name)
|
||||
# Initialize clock tracking
|
||||
self.last_sequence = 0
|
||||
self.last_limit_count = self.last_error_count = 0
|
||||
self.clock_sync.reset(reqclock, 0)
|
||||
self.max_query_duration = 1 << 31
|
||||
self._update_clock(minclock=reqclock)
|
||||
self.max_query_duration = 1 << 31
|
||||
def _finish_measurements(self):
|
||||
def finish_measurements(self):
|
||||
if not self.is_measuring():
|
||||
return
|
||||
return ADXL345Results()
|
||||
# Halt bulk reading
|
||||
params = self.query_adxl345_end_cmd.send([self.oid, 0, 0])
|
||||
print_time = self.printer.lookup_object('toolhead').get_last_move_time()
|
||||
clock = self.mcu.print_time_to_clock(print_time)
|
||||
params = self.query_adxl345_end_cmd.send([self.oid, 0, 0],
|
||||
minclock=clock)
|
||||
self.last_tx_time = print_time
|
||||
self.query_rate = 0
|
||||
with self.lock:
|
||||
self.raw_samples = []
|
||||
logging.info("ADXL345 finished '%s' measurements", self.name)
|
||||
# API interface
|
||||
def _api_update(self, eventtime):
|
||||
self._update_clock()
|
||||
with self.lock:
|
||||
raw_samples = self.raw_samples
|
||||
self.raw_samples = []
|
||||
if not raw_samples:
|
||||
return {}
|
||||
samples = self._extract_samples(raw_samples)
|
||||
if not samples:
|
||||
return {}
|
||||
return {'data': samples, 'errors': self.last_error_count,
|
||||
'overflows': self.last_limit_count}
|
||||
def _api_startstop(self, is_start):
|
||||
if is_start:
|
||||
self._start_measurements()
|
||||
# Generate results
|
||||
end1_time = self._clock_to_print_time(params['end1_clock'])
|
||||
end2_time = self._clock_to_print_time(params['end2_clock'])
|
||||
end_sequence = self._convert_sequence(params['sequence'])
|
||||
overflows = params['limit_count']
|
||||
res = ADXL345Results()
|
||||
res.setup_data(self.axes_map, raw_samples, end_sequence, overflows,
|
||||
self.samples_start1, self.samples_start2,
|
||||
end1_time, end2_time)
|
||||
logging.info("ADXL345 finished %d measurements: %s",
|
||||
res.total_count, res.get_stats())
|
||||
return res
|
||||
def end_query(self, name, gcmd):
|
||||
if not self.is_measuring():
|
||||
return
|
||||
res = self.finish_measurements()
|
||||
# Write data to file
|
||||
if self.name == "default":
|
||||
filename = "/tmp/adxl345-%s.csv" % (name,)
|
||||
else:
|
||||
self._finish_measurements()
|
||||
def _handle_dump_adxl345(self, web_request):
|
||||
self.api_dump.add_client(web_request)
|
||||
hdr = ('time', 'x_acceleration', 'y_acceleration', 'z_acceleration')
|
||||
web_request.send({'header': hdr})
|
||||
def start_internal_client(self):
|
||||
cconn = self.api_dump.add_internal_client()
|
||||
return AccelQueryHelper(self.printer, cconn)
|
||||
filename = "/tmp/adxl345-%s-%s.csv" % (self.name, name,)
|
||||
res.write_to_file(filename)
|
||||
gcmd.respond_info(
|
||||
"Writing raw accelerometer data to %s file" % (filename,))
|
||||
cmd_ACCELEROMETER_MEASURE_help = "Start/stop accelerometer"
|
||||
def cmd_ACCELEROMETER_MEASURE(self, gcmd):
|
||||
if self.is_measuring():
|
||||
name = gcmd.get("NAME", time.strftime("%Y%m%d_%H%M%S"))
|
||||
if not name.replace('-', '').replace('_', '').isalnum():
|
||||
raise gcmd.error("Invalid adxl345 NAME parameter")
|
||||
self.end_query(name, gcmd)
|
||||
gcmd.respond_info("adxl345 measurements stopped")
|
||||
else:
|
||||
rate = gcmd.get_int("RATE", self.data_rate)
|
||||
if rate not in QUERY_RATES:
|
||||
raise gcmd.error("Not a valid adxl345 query rate: %d" % (rate,))
|
||||
self.start_measurements(rate)
|
||||
gcmd.respond_info("adxl345 measurements started")
|
||||
cmd_ACCELEROMETER_QUERY_help = "Query accelerometer for the current values"
|
||||
def cmd_ACCELEROMETER_QUERY(self, gcmd):
|
||||
if self.is_measuring():
|
||||
raise gcmd.error("adxl345 measurements in progress")
|
||||
self.start_measurements()
|
||||
reactor = self.printer.get_reactor()
|
||||
eventtime = starttime = reactor.monotonic()
|
||||
while not self.raw_samples:
|
||||
eventtime = reactor.pause(eventtime + .1)
|
||||
if eventtime > starttime + 3.:
|
||||
# Try to shutdown the measurements
|
||||
self.finish_measurements()
|
||||
raise gcmd.error("Timeout reading adxl345 data")
|
||||
result = self.finish_measurements()
|
||||
values = result.decode_samples()
|
||||
_, accel_x, accel_y, accel_z = values[-1]
|
||||
gcmd.respond_info("adxl345 values (x, y, z): %.6f, %.6f, %.6f" % (
|
||||
accel_x, accel_y, accel_z))
|
||||
cmd_ADXL345_DEBUG_READ_help = "Query accelerometer register (for debugging)"
|
||||
def cmd_ADXL345_DEBUG_READ(self, gcmd):
|
||||
if self.is_measuring():
|
||||
raise gcmd.error("adxl345 measurements in progress")
|
||||
reg = gcmd.get("REG", minval=29, maxval=57, parser=lambda x: int(x, 0))
|
||||
val = self.read_reg(reg)
|
||||
gcmd.respond_info("ADXL345 REG[0x%x] = 0x%x" % (reg, val))
|
||||
cmd_ADXL345_DEBUG_WRITE_help = "Set accelerometer register (for debugging)"
|
||||
def cmd_ADXL345_DEBUG_WRITE(self, gcmd):
|
||||
if self.is_measuring():
|
||||
raise gcmd.error("adxl345 measurements in progress")
|
||||
reg = gcmd.get("REG", minval=29, maxval=57, parser=lambda x: int(x, 0))
|
||||
val = gcmd.get("VAL", minval=0, maxval=255, parser=lambda x: int(x, 0))
|
||||
self.set_reg(reg, val)
|
||||
|
||||
def load_config(config):
|
||||
return ADXL345(config)
|
||||
|
||||
@@ -9,7 +9,7 @@ from . import bus, motion_report
|
||||
MIN_MSG_TIME = 0.100
|
||||
TCODE_ERROR = 0xff
|
||||
|
||||
TRINAMIC_DRIVERS = ["tmc2130", "tmc2208", "tmc2209", "tmc2660", "tmc5160"]
|
||||
TRINAMIC_DRIVERS = ["tmc2130", "tmc2208", "tmc2209", "tmc2240", "tmc2660", "tmc5160"]
|
||||
|
||||
CALIBRATION_BITS = 6 # 64 entries
|
||||
ANGLE_BITS = 16 # angles range from 0..65535
|
||||
|
||||
@@ -6,7 +6,7 @@
|
||||
import math, logging
|
||||
import stepper
|
||||
|
||||
TRINAMIC_DRIVERS = ["tmc2130", "tmc2208", "tmc2209", "tmc2660", "tmc5160"]
|
||||
TRINAMIC_DRIVERS = ["tmc2130", "tmc2208", "tmc2209", "tmc2240", "tmc2660", "tmc5160"]
|
||||
|
||||
# Calculate the trigger phase of a stepper motor
|
||||
class PhaseCalc:
|
||||
|
||||
@@ -15,6 +15,8 @@ class PrinterExtruderStepper:
|
||||
self.handle_connect)
|
||||
def handle_connect(self):
|
||||
self.extruder_stepper.sync_to_extruder(self.extruder_name)
|
||||
def get_status(self, eventtime):
|
||||
return self.extruder_stepper.get_status(eventtime)
|
||||
|
||||
def load_config_prefix(config):
|
||||
return PrinterExtruderStepper(config)
|
||||
|
||||
@@ -24,9 +24,19 @@ class ManualProbe:
|
||||
'Z_OFFSET_APPLY_ENDSTOP',
|
||||
self.cmd_Z_OFFSET_APPLY_ENDSTOP,
|
||||
desc=self.cmd_Z_OFFSET_APPLY_ENDSTOP_help)
|
||||
self.reset_status()
|
||||
def manual_probe_finalize(self, kin_pos):
|
||||
if kin_pos is not None:
|
||||
self.gcode.respond_info("Z position is %.3f" % (kin_pos[2],))
|
||||
def reset_status(self):
|
||||
self.status = {
|
||||
'is_active': False,
|
||||
'z_position': None,
|
||||
'z_position_lower': None,
|
||||
'z_position_upper': None
|
||||
}
|
||||
def get_status(self, eventtime):
|
||||
return self.status
|
||||
cmd_MANUAL_PROBE_help = "Start manual probe helper script"
|
||||
def cmd_MANUAL_PROBE(self, gcmd):
|
||||
ManualProbeHelper(self.printer, gcmd, self.manual_probe_finalize)
|
||||
@@ -78,6 +88,7 @@ class ManualProbeHelper:
|
||||
self.finalize_callback = finalize_callback
|
||||
self.gcode = self.printer.lookup_object('gcode')
|
||||
self.toolhead = self.printer.lookup_object('toolhead')
|
||||
self.manual_probe = self.printer.lookup_object('manual_probe')
|
||||
self.speed = gcmd.get_float("SPEED", 5.)
|
||||
self.past_positions = []
|
||||
self.last_toolhead_pos = self.last_kinematics_pos = None
|
||||
@@ -130,11 +141,20 @@ class ManualProbeHelper:
|
||||
prev_pos = next_pos - 1
|
||||
if next_pos < len(pp) and pp[next_pos] == z_pos:
|
||||
next_pos += 1
|
||||
prev_pos_val = next_pos_val = None
|
||||
prev_str = next_str = "??????"
|
||||
if prev_pos >= 0:
|
||||
prev_str = "%.3f" % (pp[prev_pos],)
|
||||
prev_pos_val = pp[prev_pos]
|
||||
prev_str = "%.3f" % (prev_pos_val,)
|
||||
if next_pos < len(pp):
|
||||
next_str = "%.3f" % (pp[next_pos],)
|
||||
next_pos_val = pp[next_pos]
|
||||
next_str = "%.3f" % (next_pos_val,)
|
||||
self.manual_probe.status = {
|
||||
'is_active': True,
|
||||
'z_position': z_pos,
|
||||
'z_position_lower': prev_pos_val,
|
||||
'z_position_upper': next_pos_val,
|
||||
}
|
||||
# Find recent positions
|
||||
self.gcode.respond_info("Z position: %s --> %.3f <-- %s"
|
||||
% (prev_str, z_pos, next_str))
|
||||
@@ -183,6 +203,7 @@ class ManualProbeHelper:
|
||||
self.move_z(next_z_pos)
|
||||
self.report_z_status(next_z_pos != z_pos, z_pos)
|
||||
def finalize(self, success):
|
||||
self.manual_probe.reset_status()
|
||||
self.gcode.register_command('ACCEPT', None)
|
||||
self.gcode.register_command('NEXT', None)
|
||||
self.gcode.register_command('ABORT', None)
|
||||
|
||||
@@ -6,6 +6,15 @@
|
||||
import logging, math, os, time
|
||||
from . import shaper_calibrate
|
||||
|
||||
def _parse_probe_points(config):
|
||||
points = config.get('probe_points').split('\n')
|
||||
try:
|
||||
points = [line.split(',', 2) for line in points if line.strip()]
|
||||
return [[float(coord.strip()) for coord in p] for p in points]
|
||||
except:
|
||||
raise config.error("Unable to parse probe_points in %s" % (
|
||||
config.get_name()))
|
||||
|
||||
class TestAxis:
|
||||
def __init__(self, axis=None, vib_dir=None):
|
||||
if axis is None:
|
||||
@@ -57,8 +66,7 @@ class VibrationPulseTest:
|
||||
self.hz_per_sec = config.getfloat('hz_per_sec', 1.,
|
||||
minval=0.1, maxval=2.)
|
||||
|
||||
self.probe_points = config.getlists('probe_points', seps=(',', '\n'),
|
||||
parser=float, count=3)
|
||||
self.probe_points = _parse_probe_points(config)
|
||||
def get_start_test_points(self):
|
||||
return self.probe_points
|
||||
def prepare_test(self, gcmd):
|
||||
@@ -147,21 +155,15 @@ class ResonanceTester:
|
||||
(chip_axis, self.printer.lookup_object(chip_name))
|
||||
for chip_axis, chip_name in self.accel_chip_names]
|
||||
|
||||
def _run_test(self, gcmd, axes, helper, raw_name_suffix=None,
|
||||
accel_chips=None, test_point=None):
|
||||
def _run_test(self, gcmd, axes, helper, raw_name_suffix=None):
|
||||
toolhead = self.printer.lookup_object('toolhead')
|
||||
calibration_data = {axis: None for axis in axes}
|
||||
|
||||
self.test.prepare_test(gcmd)
|
||||
|
||||
if test_point is not None:
|
||||
test_points = [test_point]
|
||||
else:
|
||||
test_points = self.test.get_start_test_points()
|
||||
|
||||
for point in test_points:
|
||||
toolhead.manual_move(point, self.move_speed)
|
||||
if len(test_points) > 1 or test_point is not None:
|
||||
if len(test_points) > 1:
|
||||
gcmd.respond_info(
|
||||
"Probing point (%.3f, %.3f, %.3f)" % tuple(point))
|
||||
for axis in axes:
|
||||
@@ -170,38 +172,34 @@ class ResonanceTester:
|
||||
if len(axes) > 1:
|
||||
gcmd.respond_info("Testing axis %s" % axis.get_name())
|
||||
|
||||
raw_values = []
|
||||
if accel_chips is None:
|
||||
for chip_axis, chip in self.accel_chips:
|
||||
if axis.matches(chip_axis):
|
||||
aclient = chip.start_internal_client()
|
||||
raw_values.append((chip_axis, aclient, chip.name))
|
||||
else:
|
||||
for chip in accel_chips:
|
||||
aclient = chip.start_internal_client()
|
||||
raw_values.append((axis, aclient, chip.name))
|
||||
|
||||
chip.start_measurements()
|
||||
# Generate moves
|
||||
self.test.run_test(axis, gcmd)
|
||||
for chip_axis, aclient, chip_name in raw_values:
|
||||
aclient.finish_measurements()
|
||||
raw_values = []
|
||||
for chip_axis, chip in self.accel_chips:
|
||||
if axis.matches(chip_axis):
|
||||
results = chip.finish_measurements()
|
||||
if raw_name_suffix is not None:
|
||||
raw_name = self.get_filename(
|
||||
'raw_data', raw_name_suffix, axis,
|
||||
point if len(test_points) > 1 else None,
|
||||
chip_name if accel_chips is not None else None,)
|
||||
aclient.write_to_file(raw_name)
|
||||
point if len(test_points) > 1 else None)
|
||||
results.write_to_file(raw_name)
|
||||
gcmd.respond_info(
|
||||
"Writing raw accelerometer data to "
|
||||
"%s file" % (raw_name,))
|
||||
raw_values.append((chip_axis, results))
|
||||
gcmd.respond_info("%s-axis accelerometer stats: %s" % (
|
||||
chip_axis, results.get_stats(),))
|
||||
if helper is None:
|
||||
continue
|
||||
for chip_axis, aclient, chip_name in raw_values:
|
||||
if not aclient.has_valid_samples():
|
||||
for chip_axis, chip_values in raw_values:
|
||||
if not chip_values:
|
||||
raise gcmd.error(
|
||||
"accelerometer '%s' measured no data" % (
|
||||
chip_name,))
|
||||
new_data = helper.process_accelerometer_data(aclient)
|
||||
"%s-axis accelerometer measured no data" % (
|
||||
chip_axis,))
|
||||
new_data = helper.process_accelerometer_data(chip_values)
|
||||
if calibration_data[axis] is None:
|
||||
calibration_data[axis] = new_data
|
||||
else:
|
||||
@@ -211,28 +209,6 @@ class ResonanceTester:
|
||||
def cmd_TEST_RESONANCES(self, gcmd):
|
||||
# Parse parameters
|
||||
axis = _parse_axis(gcmd, gcmd.get("AXIS").lower())
|
||||
accel_chips = gcmd.get("CHIPS", None)
|
||||
test_point = gcmd.get("POINT", None)
|
||||
|
||||
if test_point:
|
||||
test_coords = test_point.split(',')
|
||||
if len(test_coords) != 3:
|
||||
raise gcmd.error("Invalid POINT parameter, must be 'x,y,z'")
|
||||
try:
|
||||
test_point = [float(p.strip()) for p in test_coords]
|
||||
except ValueError:
|
||||
raise gcmd.error("Invalid POINT parameter, must be 'x,y,z'"
|
||||
" where x, y and z are valid floating point numbers")
|
||||
|
||||
if accel_chips:
|
||||
parsed_chips = []
|
||||
for chip_name in accel_chips.split(','):
|
||||
if "adxl345" in chip_name:
|
||||
chip_lookup_name = chip_name.strip()
|
||||
else:
|
||||
chip_lookup_name = "adxl345 " + chip_name.strip();
|
||||
chip = self.printer.lookup_object(chip_lookup_name)
|
||||
parsed_chips.append(chip)
|
||||
|
||||
outputs = gcmd.get("OUTPUT", "resonances").lower().split(',')
|
||||
for output in outputs:
|
||||
@@ -256,13 +232,10 @@ class ResonanceTester:
|
||||
|
||||
data = self._run_test(
|
||||
gcmd, [axis], helper,
|
||||
raw_name_suffix=name_suffix if raw_output else None,
|
||||
accel_chips=parsed_chips if accel_chips else None,
|
||||
test_point=test_point)[axis]
|
||||
raw_name_suffix=name_suffix if raw_output else None)[axis]
|
||||
if csv_output:
|
||||
csv_name = self.save_calibration_data('resonances', name_suffix,
|
||||
helper, axis, data,
|
||||
point=test_point)
|
||||
helper, axis, data)
|
||||
gcmd.respond_info(
|
||||
"Resonances data written to %s file" % (csv_name,))
|
||||
cmd_SHAPER_CALIBRATE_help = (
|
||||
@@ -316,18 +289,14 @@ class ResonanceTester:
|
||||
"Measures noise of all enabled accelerometer chips")
|
||||
def cmd_MEASURE_AXES_NOISE(self, gcmd):
|
||||
meas_time = gcmd.get_float("MEAS_TIME", 2.)
|
||||
raw_values = [(chip_axis, chip.start_internal_client())
|
||||
for chip_axis, chip in self.accel_chips]
|
||||
for _, chip in self.accel_chips:
|
||||
chip.start_measurements()
|
||||
self.printer.lookup_object('toolhead').dwell(meas_time)
|
||||
for chip_axis, aclient in raw_values:
|
||||
aclient.finish_measurements()
|
||||
raw_values = [(chip_axis, chip.finish_measurements())
|
||||
for chip_axis, chip in self.accel_chips]
|
||||
helper = shaper_calibrate.ShaperCalibrate(self.printer)
|
||||
for chip_axis, aclient in raw_values:
|
||||
if not aclient.has_valid_samples():
|
||||
raise gcmd.error(
|
||||
"%s-axis accelerometer measured no data" % (
|
||||
chip_axis,))
|
||||
data = helper.process_accelerometer_data(aclient)
|
||||
for chip_axis, raw_data in raw_values:
|
||||
data = helper.process_accelerometer_data(raw_data)
|
||||
vx = data.psd_x.mean()
|
||||
vy = data.psd_y.mean()
|
||||
vz = data.psd_z.mean()
|
||||
@@ -338,22 +307,18 @@ class ResonanceTester:
|
||||
def is_valid_name_suffix(self, name_suffix):
|
||||
return name_suffix.replace('-', '').replace('_', '').isalnum()
|
||||
|
||||
def get_filename(self, base, name_suffix, axis=None,
|
||||
point=None, chip_name=None):
|
||||
def get_filename(self, base, name_suffix, axis=None, point=None):
|
||||
name = base
|
||||
if axis:
|
||||
name += '_' + axis.get_name()
|
||||
if chip_name:
|
||||
name += '_' + chip_name.replace(" ", "_")
|
||||
if point:
|
||||
name += "_%.3f_%.3f_%.3f" % (point[0], point[1], point[2])
|
||||
name += '_' + name_suffix
|
||||
return os.path.join("/tmp", name + ".csv")
|
||||
|
||||
def save_calibration_data(self, base_name, name_suffix, shaper_calibrate,
|
||||
axis, calibration_data,
|
||||
all_shapers=None, point=None):
|
||||
output = self.get_filename(base_name, name_suffix, axis, point)
|
||||
axis, calibration_data, all_shapers=None):
|
||||
output = self.get_filename(base_name, name_suffix, axis)
|
||||
shaper_calibrate.save_calibration_data(output, calibration_data,
|
||||
all_shapers)
|
||||
return output
|
||||
|
||||
@@ -18,6 +18,29 @@ class SaveVariables:
|
||||
gcode = self.printer.lookup_object('gcode')
|
||||
gcode.register_command('SAVE_VARIABLE', self.cmd_SAVE_VARIABLE,
|
||||
desc=self.cmd_SAVE_VARIABLE_help)
|
||||
|
||||
def load_variable(self, section, option):
|
||||
varfile = configparser.ConfigParser()
|
||||
try:
|
||||
varfile.read(self.filename)
|
||||
return varfile.get(section, option)
|
||||
except:
|
||||
msg = "Unable to parse existing variable file"
|
||||
logging.exception(msg)
|
||||
raise self.printer.command_error(msg)
|
||||
def save_variable(self, section, option, value):
|
||||
varfile = configparser.ConfigParser()
|
||||
try:
|
||||
varfile.read(self.filename)
|
||||
if not varfile.has_section(section):
|
||||
varfile.add_section(section)
|
||||
varfile.set(section, option, value)
|
||||
with open(self.filename, 'w') as configfile:
|
||||
varfile.write(configfile)
|
||||
except Exception as e:
|
||||
msg = "Unable to save variable"
|
||||
logging.exception(msg)
|
||||
raise self.printer.command_error(msg)
|
||||
def loadVariables(self):
|
||||
allvars = {}
|
||||
varfile = configparser.ConfigParser()
|
||||
|
||||
@@ -3,17 +3,129 @@
|
||||
# Copyright (C) 2020 Dmitry Butyugin <dmbutyugin@google.com>
|
||||
#
|
||||
# This file may be distributed under the terms of the GNU GPLv3 license.
|
||||
import collections, importlib, logging, math, multiprocessing, traceback
|
||||
shaper_defs = importlib.import_module('.shaper_defs', 'extras')
|
||||
import collections, importlib, logging, math, multiprocessing
|
||||
|
||||
MIN_FREQ = 5.
|
||||
MAX_FREQ = 200.
|
||||
WINDOW_T_SEC = 0.5
|
||||
MAX_SHAPER_FREQ = 150.
|
||||
|
||||
SHAPER_VIBRATION_REDUCTION=20.
|
||||
TEST_DAMPING_RATIOS=[0.075, 0.1, 0.15]
|
||||
SHAPER_DAMPING_RATIO = 0.1
|
||||
|
||||
AUTOTUNE_SHAPERS = ['zv', 'mzv', 'ei', '2hump_ei', '3hump_ei']
|
||||
######################################################################
|
||||
# Input shapers
|
||||
######################################################################
|
||||
|
||||
InputShaperCfg = collections.namedtuple(
|
||||
'InputShaperCfg', ('name', 'init_func', 'min_freq'))
|
||||
|
||||
def get_zv_shaper(shaper_freq, damping_ratio):
|
||||
df = math.sqrt(1. - damping_ratio**2)
|
||||
K = math.exp(-damping_ratio * math.pi / df)
|
||||
t_d = 1. / (shaper_freq * df)
|
||||
A = [1., K]
|
||||
T = [0., .5*t_d]
|
||||
return (A, T)
|
||||
|
||||
def get_zvd_shaper(shaper_freq, damping_ratio):
|
||||
df = math.sqrt(1. - damping_ratio**2)
|
||||
K = math.exp(-damping_ratio * math.pi / df)
|
||||
t_d = 1. / (shaper_freq * df)
|
||||
A = [1., 2.*K, K**2]
|
||||
T = [0., .5*t_d, t_d]
|
||||
return (A, T)
|
||||
|
||||
def get_mzv_shaper(shaper_freq, damping_ratio):
|
||||
df = math.sqrt(1. - damping_ratio**2)
|
||||
K = math.exp(-.75 * damping_ratio * math.pi / df)
|
||||
t_d = 1. / (shaper_freq * df)
|
||||
|
||||
a1 = 1. - 1. / math.sqrt(2.)
|
||||
a2 = (math.sqrt(2.) - 1.) * K
|
||||
a3 = a1 * K * K
|
||||
|
||||
A = [a1, a2, a3]
|
||||
T = [0., .375*t_d, .75*t_d]
|
||||
return (A, T)
|
||||
|
||||
def get_ei_shaper(shaper_freq, damping_ratio):
|
||||
v_tol = 1. / SHAPER_VIBRATION_REDUCTION # vibration tolerance
|
||||
df = math.sqrt(1. - damping_ratio**2)
|
||||
K = math.exp(-damping_ratio * math.pi / df)
|
||||
t_d = 1. / (shaper_freq * df)
|
||||
|
||||
a1 = .25 * (1. + v_tol)
|
||||
a2 = .5 * (1. - v_tol) * K
|
||||
a3 = a1 * K * K
|
||||
|
||||
A = [a1, a2, a3]
|
||||
T = [0., .5*t_d, t_d]
|
||||
return (A, T)
|
||||
|
||||
def get_2hump_ei_shaper(shaper_freq, damping_ratio):
|
||||
v_tol = 1. / SHAPER_VIBRATION_REDUCTION # vibration tolerance
|
||||
df = math.sqrt(1. - damping_ratio**2)
|
||||
K = math.exp(-damping_ratio * math.pi / df)
|
||||
t_d = 1. / (shaper_freq * df)
|
||||
|
||||
V2 = v_tol**2
|
||||
X = pow(V2 * (math.sqrt(1. - V2) + 1.), 1./3.)
|
||||
a1 = (3.*X*X + 2.*X + 3.*V2) / (16.*X)
|
||||
a2 = (.5 - a1) * K
|
||||
a3 = a2 * K
|
||||
a4 = a1 * K * K * K
|
||||
|
||||
A = [a1, a2, a3, a4]
|
||||
T = [0., .5*t_d, t_d, 1.5*t_d]
|
||||
return (A, T)
|
||||
|
||||
def get_3hump_ei_shaper(shaper_freq, damping_ratio):
|
||||
v_tol = 1. / SHAPER_VIBRATION_REDUCTION # vibration tolerance
|
||||
df = math.sqrt(1. - damping_ratio**2)
|
||||
K = math.exp(-damping_ratio * math.pi / df)
|
||||
t_d = 1. / (shaper_freq * df)
|
||||
|
||||
K2 = K*K
|
||||
a1 = 0.0625 * (1. + 3. * v_tol + 2. * math.sqrt(2. * (v_tol + 1.) * v_tol))
|
||||
a2 = 0.25 * (1. - v_tol) * K
|
||||
a3 = (0.5 * (1. + v_tol) - 2. * a1) * K2
|
||||
a4 = a2 * K2
|
||||
a5 = a1 * K2 * K2
|
||||
|
||||
A = [a1, a2, a3, a4, a5]
|
||||
T = [0., .5*t_d, t_d, 1.5*t_d, 2.*t_d]
|
||||
return (A, T)
|
||||
|
||||
def get_shaper_smoothing(shaper, accel=5000, scv=5.):
|
||||
half_accel = accel * .5
|
||||
|
||||
A, T = shaper
|
||||
inv_D = 1. / sum(A)
|
||||
n = len(T)
|
||||
# Calculate input shaper shift
|
||||
ts = sum([A[i] * T[i] for i in range(n)]) * inv_D
|
||||
|
||||
# Calculate offset for 90 and 180 degrees turn
|
||||
offset_90 = offset_180 = 0.
|
||||
for i in range(n):
|
||||
if T[i] >= ts:
|
||||
# Calculate offset for one of the axes
|
||||
offset_90 += A[i] * (scv + half_accel * (T[i]-ts)) * (T[i]-ts)
|
||||
offset_180 += A[i] * half_accel * (T[i]-ts)**2
|
||||
offset_90 *= inv_D * math.sqrt(2.)
|
||||
offset_180 *= inv_D
|
||||
return max(offset_90, offset_180)
|
||||
|
||||
# min_freq for each shaper is chosen to have projected max_accel ~= 1500
|
||||
INPUT_SHAPERS = [
|
||||
InputShaperCfg('zv', get_zv_shaper, min_freq=21.),
|
||||
InputShaperCfg('mzv', get_mzv_shaper, min_freq=23.),
|
||||
InputShaperCfg('ei', get_ei_shaper, min_freq=29.),
|
||||
InputShaperCfg('2hump_ei', get_2hump_ei_shaper, min_freq=39.),
|
||||
InputShaperCfg('3hump_ei', get_3hump_ei_shaper, min_freq=48.),
|
||||
]
|
||||
|
||||
######################################################################
|
||||
# Frequency response calculation and shaper auto-tuning
|
||||
@@ -152,10 +264,7 @@ class ShaperCalibrate:
|
||||
if isinstance(raw_values, np.ndarray):
|
||||
data = raw_values
|
||||
else:
|
||||
samples = raw_values.get_samples()
|
||||
if not samples:
|
||||
return None
|
||||
data = np.array(samples)
|
||||
data = np.array(raw_values.decode_samples())
|
||||
|
||||
N = data.shape[0]
|
||||
T = data[-1,0] - data[0,0]
|
||||
@@ -201,32 +310,12 @@ class ShaperCalibrate:
|
||||
# The input shaper can only reduce the amplitude of vibrations by
|
||||
# SHAPER_VIBRATION_REDUCTION times, so all vibrations below that
|
||||
# threshold can be igonred
|
||||
vibr_threshold = psd.max() / shaper_defs.SHAPER_VIBRATION_REDUCTION
|
||||
vibrations_threshold = psd.max() / SHAPER_VIBRATION_REDUCTION
|
||||
remaining_vibrations = self.numpy.maximum(
|
||||
vals * psd - vibr_threshold, 0).sum()
|
||||
all_vibrations = self.numpy.maximum(psd - vibr_threshold, 0).sum()
|
||||
vals * psd - vibrations_threshold, 0).sum()
|
||||
all_vibrations = self.numpy.maximum(psd - vibrations_threshold, 0).sum()
|
||||
return (remaining_vibrations / all_vibrations, vals)
|
||||
|
||||
def _get_shaper_smoothing(self, shaper, accel=5000, scv=5.):
|
||||
half_accel = accel * .5
|
||||
|
||||
A, T = shaper
|
||||
inv_D = 1. / sum(A)
|
||||
n = len(T)
|
||||
# Calculate input shaper shift
|
||||
ts = sum([A[i] * T[i] for i in range(n)]) * inv_D
|
||||
|
||||
# Calculate offset for 90 and 180 degrees turn
|
||||
offset_90 = offset_180 = 0.
|
||||
for i in range(n):
|
||||
if T[i] >= ts:
|
||||
# Calculate offset for one of the axes
|
||||
offset_90 += A[i] * (scv + half_accel * (T[i]-ts)) * (T[i]-ts)
|
||||
offset_180 += A[i] * half_accel * (T[i]-ts)**2
|
||||
offset_90 *= inv_D * math.sqrt(2.)
|
||||
offset_180 *= inv_D
|
||||
return max(offset_90, offset_180)
|
||||
|
||||
def fit_shaper(self, shaper_cfg, calibration_data, max_smoothing):
|
||||
np = self.numpy
|
||||
|
||||
@@ -241,9 +330,8 @@ class ShaperCalibrate:
|
||||
for test_freq in test_freqs[::-1]:
|
||||
shaper_vibrations = 0.
|
||||
shaper_vals = np.zeros(shape=freq_bins.shape)
|
||||
shaper = shaper_cfg.init_func(
|
||||
test_freq, shaper_defs.DEFAULT_DAMPING_RATIO)
|
||||
shaper_smoothing = self._get_shaper_smoothing(shaper)
|
||||
shaper = shaper_cfg.init_func(test_freq, SHAPER_DAMPING_RATIO)
|
||||
shaper_smoothing = get_shaper_smoothing(shaper)
|
||||
if max_smoothing and shaper_smoothing > max_smoothing and best_res:
|
||||
return best_res
|
||||
# Exact damping ratio of the printer is unknown, pessimizing
|
||||
@@ -296,16 +384,14 @@ class ShaperCalibrate:
|
||||
# Just some empirically chosen value which produces good projections
|
||||
# for max_accel without much smoothing
|
||||
TARGET_SMOOTHING = 0.12
|
||||
max_accel = self._bisect(lambda test_accel: self._get_shaper_smoothing(
|
||||
max_accel = self._bisect(lambda test_accel: get_shaper_smoothing(
|
||||
shaper, test_accel) <= TARGET_SMOOTHING)
|
||||
return max_accel
|
||||
|
||||
def find_best_shaper(self, calibration_data, max_smoothing, logger=None):
|
||||
best_shaper = None
|
||||
all_shapers = []
|
||||
for shaper_cfg in shaper_defs.INPUT_SHAPERS:
|
||||
if shaper_cfg.name not in AUTOTUNE_SHAPERS:
|
||||
continue
|
||||
for shaper_cfg in INPUT_SHAPERS:
|
||||
shaper = self.background_process_exec(self.fit_shaper, (
|
||||
shaper_cfg, calibration_data, max_smoothing))
|
||||
if logger is not None:
|
||||
|
||||
@@ -129,6 +129,11 @@ class PrinterPins:
|
||||
raise error("Duplicate chip name '%s'" % (chip_name,))
|
||||
self.chips[chip_name] = chip
|
||||
self.pin_resolvers[chip_name] = PinResolver()
|
||||
def remove_chip(self, chip_name):
|
||||
if chip_name not in self.chips:
|
||||
raise error("Chip '%s' not found" % (chip_name,))
|
||||
del self.chips[chip_name]
|
||||
del self.pin_resolvers[chip_name]
|
||||
def allow_multi_use_pin(self, pin_desc):
|
||||
pin_params = self.parse_pin(pin_desc)
|
||||
share_name = "%s:%s" % (pin_params['chip_name'], pin_params['pin'])
|
||||
|
||||
Reference in New Issue
Block a user