Files
klipper/klippy/extras/adxl345.py
2024-08-23 10:45:24 +08:00

620 lines
30 KiB
Python

# Support for reading acceleration data from an adxl345 chip
#
# Copyright (C) 2020 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging, math, time, collections, multiprocessing, os
from . import bus, manual_probe, probe
# ADXL345 registers
REG_DEVID = 0x00
REG_BW_RATE = 0x2C
REG_POWER_CTL = 0x2D
REG_DATA_FORMAT = 0x31
REG_FIFO_CTL = 0x38
REG_MOD_READ = 0x80
REG_MOD_MULTI = 0x40
REG_THRESH_TAP = 0x1D
REG_DUR = 0x21
REG_INT_MAP = 0x2F
REG_TAP_AXES = 0x2A
REG_OFSX = 0x1E
REG_OFSY = 0x1F
REG_OFSZ = 0x20
REG_INT_ENABLE = 0x2E
REG_INT_SOURCE = 0x30
QUERY_RATES = {
25: 0x8, 50: 0x9, 100: 0xa, 200: 0xb, 400: 0xc,
800: 0xd, 1600: 0xe, 3200: 0xf,
}
ADXL345_DEV_ID = 0xe5
FREEFALL_ACCEL = 9.80665 * 1000.
SCALE = 0.0039 * FREEFALL_ACCEL # 3.9mg/LSB * Earth gravity in mm/s**2
DUR_SCALE = 0.000625 # 0.625 msec / LSB
TAP_SCALE = 0.0625 * FREEFALL_ACCEL # 62.5mg/LSB * Earth gravity in mm/s**2
OFS_SCALE = 0.0156 * FREEFALL_ACCEL # 15.6mg/LSB * Earth gravity in mm/s**2
PROBE_CALIBRATION_TIME = 1.
ADXL345_REST_TIME = .01
Accel_Measurement = collections.namedtuple(
'Accel_Measurement', ('time', 'accel_x', 'accel_y', 'accel_z'))
# Sample results
class ADXL345Results:
def __init__(self):
self.raw_samples = None
self.samples = []
self.drops = self.overflows = 0
self.time_per_sample = self.start_range = self.end_range = 0.
def get_stats(self):
return ("drops=%d,overflows=%d"
",time_per_sample=%.9f,start_range=%.6f,end_range=%.6f"
% (self.drops, self.overflows,
self.time_per_sample, self.start_range, self.end_range))
def setup_data(self, axes_map, raw_samples, end_sequence, overflows,
start1_time, start2_time, end1_time, end2_time):
if not raw_samples or not end_sequence:
return
self.axes_map = axes_map
self.raw_samples = raw_samples
self.overflows = overflows
self.start2_time = start2_time
self.start_range = start2_time - start1_time
self.end_range = end2_time - end1_time
self.total_count = (end_sequence - 1) * 8 + len(raw_samples[-1][1]) // 6
total_time = end2_time - start2_time
self.time_per_sample = time_per_sample = total_time / self.total_count
self.seq_to_time = time_per_sample * 8.
actual_count = sum([len(data)//6 for _, data in raw_samples])
self.drops = self.total_count - actual_count
def decode_samples(self):
if not self.raw_samples:
return self.samples
(x_pos, x_scale), (y_pos, y_scale), (z_pos, z_scale) = self.axes_map
actual_count = 0
self.samples = samples = [None] * self.total_count
for seq, data in self.raw_samples:
d = bytearray(data)
count = len(data)
sdata = [(d[i] | (d[i+1] << 8)) - ((d[i+1] & 0x80) << 9)
for i in range(0, count-1, 2)]
seq_time = self.start2_time + seq * self.seq_to_time
for i in range(count//6):
samp_time = seq_time + i * self.time_per_sample
x = sdata[i*3 + x_pos] * x_scale
y = sdata[i*3 + y_pos] * y_scale
z = sdata[i*3 + z_pos] * z_scale
samples[actual_count] = Accel_Measurement(samp_time, x, y, z)
actual_count += 1
del samples[actual_count:]
return self.samples
def write_to_file(self, filename):
def write_impl():
try:
# Try to re-nice writing process
os.nice(20)
except:
pass
f = open(filename, "w")
f.write("##%s\n#time,accel_x,accel_y,accel_z\n" % (
self.get_stats(),))
samples = self.samples or self.decode_samples()
for t, accel_x, accel_y, accel_z in samples:
f.write("%.6f,%.6f,%.6f,%.6f\n" % (
t, accel_x, accel_y, accel_z))
f.close()
write_proc = multiprocessing.Process(target=write_impl)
write_proc.daemon = True
write_proc.start()
class BedOffsetHelper:
def __init__(self, config):
self.printer = config.get_printer()
# Register BED_OFFSET_CALIBRATE command
zconfig = config.getsection('stepper_z')
self.z_position_endstop = zconfig.getfloat('position_endstop', None,
note_valid=False)
if self.z_position_endstop is None:
return
self.bed_probe_point = None
if config.get('bed_probe_point', None) is not None:
try:
self.bed_probe_point = [
float(coord.strip()) for coord in
config.get('bed_probe_point').split(',', 1)]
except:
raise config.error(
"Unable to parse bed_probe_point '%s'" % (
config.get('bed_probe_point')))
self.horizontal_move_z = config.getfloat(
'horizontal_move_z', 5.)
self.horizontal_move_speed = config.getfloat(
'horizontal_move_speed', 50., above=0.)
gcode = self.printer.lookup_object('gcode')
gcode.register_command(
'BED_OFFSET_CALIBRATE', self.cmd_BED_OFFSET_CALIBRATE,
desc=self.cmd_BED_OFFSET_CALIBRATE_help)
def bed_offset_finalize(self, pos, gcmd):
if pos is None:
return
z_pos = self.z_position_endstop - pos[2]
gcmd.respond_info(
"stepper_z: position_endstop: %.3f\n"
"The SAVE_CONFIG command will update the printer config file\n"
"with the above and restart the printer." % (z_pos,))
configfile = self.printer.lookup_object('configfile')
configfile.set('stepper_z', 'position_endstop', "%.3f" % (z_pos,))
cmd_BED_OFFSET_CALIBRATE_help = "Calibrate a bed offset using ADXL345 probe"
def cmd_BED_OFFSET_CALIBRATE(self, gcmd):
manual_probe.verify_no_manual_probe(self.printer)
probe = self.printer.lookup_object('probe')
lift_speed = probe.get_lift_speed(gcmd)
toolhead = self.printer.lookup_object('toolhead')
oldpos = toolhead.get_position()
if self.bed_probe_point is not None:
toolhead.manual_move([None, None, self.horizontal_move_z],
lift_speed)
toolhead.manual_move(self.bed_probe_point + [None],
self.horizontal_move_speed)
curpos = probe.run_probe(gcmd)
offset_pos = [0., 0., curpos[2] - probe.get_offsets()[2]]
if self.bed_probe_point is not None:
curpos[2] = self.horizontal_move_z
else:
curpos[2] = oldpos[2]
toolhead.manual_move(curpos, lift_speed)
self.bed_offset_finalize(offset_pos, gcmd)
# ADXL345 virtual endstop wrapper for probing
class ADXL345EndstopWrapper:
def __init__(self, config, adxl345, axes_map):
self.printer = config.get_printer()
self.printer.register_event_handler("klippy:connect", self.calibrate)
self.calibrated = False
self.adxl345 = adxl345
self.axes_map = axes_map
self.ofs_regs = (REG_OFSX, REG_OFSY, REG_OFSZ)
int_pin = config.get('int_pin').strip()
self.inverted = False
if int_pin.startswith('!'):
self.inverted = True
int_pin = int_pin[1:].strip()
if int_pin != 'int1' and int_pin != 'int2':
raise config.error('int_pin must specify one of int1 or int2 pins')
self.int_map = 0x40 if int_pin == 'int2' else 0x0
probe_pin = config.get('probe_pin')
self.position_endstop = config.getfloat('z_offset')
self.tap_thresh = config.getfloat('tap_thresh', 5000,
minval=TAP_SCALE, maxval=100000.)
self.tap_dur = config.getfloat('tap_dur', 0.01,
above=DUR_SCALE, maxval=0.1)
self.next_cmd_time = self.action_end_time = 0.
# Create an "endstop" object to handle the sensor pin
ppins = self.printer.lookup_object('pins')
pin_params = ppins.lookup_pin(probe_pin, can_invert=True,
can_pullup=True)
mcu = pin_params['chip']
mcu.register_config_callback(self._build_config)
self.mcu_endstop = mcu.setup_pin('endstop', pin_params)
# Wrappers
self.get_mcu = self.mcu_endstop.get_mcu
self.add_stepper = self.mcu_endstop.add_stepper
self.get_steppers = self.mcu_endstop.get_steppers
self.home_start = self.mcu_endstop.home_start
self.home_wait = self.mcu_endstop.home_wait
self.query_endstop = self.mcu_endstop.query_endstop
# Register commands
gcode = self.printer.lookup_object('gcode')
gcode.register_mux_command(
"ACCEL_PROBE_CALIBRATE", "CHIP", None,
self.cmd_ACCEL_PROBE_CALIBRATE,
desc=self.cmd_ACCEL_PROBE_CALIBRATE_help)
gcode.register_mux_command(
"SET_ACCEL_PROBE", "CHIP", None, self.cmd_SET_ACCEL_PROBE,
desc=self.cmd_SET_ACCEL_PROBE_help)
# Register bed offset calibration helper
BedOffsetHelper(config)
def _build_config(self):
kin = self.printer.lookup_object('toolhead').get_kinematics()
for stepper in kin.get_steppers():
if stepper.is_active_axis('z'):
self.add_stepper(stepper)
def calibrate(self, gcmd=None, retries=3):
adxl345 = self.adxl345
if not adxl345.is_initialized():
# ADXL345 that works as a probe must be initialized from the start
adxl345.initialize()
adxl345.set_reg(REG_POWER_CTL, 0x00)
if self.inverted:
adxl345.set_reg(REG_DATA_FORMAT, 0x2B)
adxl345.set_reg(REG_INT_MAP, self.int_map)
adxl345.set_reg(REG_TAP_AXES, 0x7)
adxl345.set_reg(REG_THRESH_TAP, int(self.tap_thresh / TAP_SCALE))
adxl345.set_reg(REG_DUR, int(self.tap_dur / DUR_SCALE))
# Offset freefall accleration on the true Z axis
for reg in self.ofs_regs:
adxl345.set_reg(reg, 0x00)
adxl345.start_measurements()
reactor = self.printer.get_reactor()
reactor.register_callback(lambda ev: self._offset_axes(gcmd, retries),
reactor.monotonic() + PROBE_CALIBRATION_TIME)
def _offset_axes(self, gcmd, retries):
res = self.adxl345.finish_measurements()
msg_func = gcmd.respond_info if gcmd is not None else logging.info
samples = res.decode_samples()
x_ofs = sum([s.accel_x for s in samples]) / len(samples)
y_ofs = sum([s.accel_y for s in samples]) / len(samples)
z_ofs = sum([s.accel_z for s in samples]) / len(samples)
meas_freefall_accel = math.sqrt(x_ofs**2 + y_ofs**2 + z_ofs**2)
if abs(meas_freefall_accel - FREEFALL_ACCEL) > FREEFALL_ACCEL * 0.5:
err_msg = ("Calibration error: ADXL345 incorrectly measures "
"freefall accleration: %.0f (measured) vs %.0f "
"(expected)" % (meas_freefall_accel, FREEFALL_ACCEL))
if retries > 0:
msg_func(err_msg + ", retrying (%d)" % (retries-1,))
self.calibrate(gcmd, retries-1)
else:
msg_func(err_msg + ", aborting self-calibration")
return
x_m = max([abs(s.accel_x - x_ofs) for s in samples])
y_m = max([abs(s.accel_y - y_ofs) for s in samples])
z_m = max([abs(s.accel_z - z_ofs) for s in samples])
accel_noise = max(x_m, y_m, z_m)
if accel_noise > self.tap_thresh:
err_msg = ("Calibration error: ADXL345 noise level too high for "
"the configured tap_thresh: %.0f (tap_thresh) vs "
"%.0f (noise)" % (self.tap_thresh, accel_noise))
if retries > 0:
msg_func(err_msg + ", retrying (%d)" % (retries-1,))
self.calibrate(gcmd, retries-1)
else:
msg_func(err_msg + ", aborting self-calibration")
return
for ofs, axis in zip((x_ofs, y_ofs, z_ofs), (0, 1, 2)):
ofs_reg = self.ofs_regs[self.axes_map[axis][0]]
ofs_val = 0xFF & int(round(
-ofs / self.axes_map[axis][1] * (SCALE / OFS_SCALE)))
self.adxl345.set_reg(ofs_reg, ofs_val)
msg_func("Successfully calibrated ADXL345")
self.calibrated = True
def multi_probe_begin(self):
pass
def multi_probe_end(self):
pass
def _try_clear_tap(self):
adxl345 = self.adxl345
tries = 8
while tries > 0:
val = adxl345.read_reg(REG_INT_SOURCE)
if not (val & 0x40):
return True
tries -= 1
return False
def probe_prepare(self, hmove):
if not self.calibrated:
raise self.printer.command_error(
"ADXL345 probe failed calibration, "
"retry with ACCEL_PROBE_CALIBRATE command")
adxl345 = self.adxl345
toolhead = self.printer.lookup_object('toolhead')
toolhead.flush_step_generation()
print_time = toolhead.get_last_move_time()
clock = self.adxl345.get_mcu().print_time_to_clock(print_time +
ADXL345_REST_TIME)
if not adxl345.is_initialized():
adxl345.initialize()
adxl345.set_reg(REG_INT_ENABLE, 0x00, minclock=clock)
adxl345.read_reg(REG_INT_SOURCE)
adxl345.set_reg(REG_INT_ENABLE, 0x40, minclock=clock)
if not adxl345.is_measuring():
adxl345.set_reg(REG_POWER_CTL, 0x08, minclock=clock)
if not self._try_clear_tap():
raise self.printer.command_error(
"ADXL345 tap triggered before move, too sensitive?")
def probe_finish(self, hmove):
adxl345 = self.adxl345
toolhead = self.printer.lookup_object('toolhead')
toolhead.dwell(ADXL345_REST_TIME)
print_time = toolhead.get_last_move_time()
clock = adxl345.get_mcu().print_time_to_clock(print_time)
adxl345.set_reg(REG_INT_ENABLE, 0x00, minclock=clock)
if not adxl345.is_measuring():
adxl345.set_reg(REG_POWER_CTL, 0x00)
if not self._try_clear_tap():
raise self.printer.command_error(
"ADXL345 tap triggered after move, too sensitive?")
cmd_ACCEL_PROBE_CALIBRATE_help = "Force ADXL345 probe [re-]calibration"
def cmd_ACCEL_PROBE_CALIBRATE(self, gcmd):
self.calibrate(gcmd)
cmd_SET_ACCEL_PROBE_help = "Configure ADXL345 parameters related to probing"
def cmd_SET_ACCEL_PROBE(self, gcmd):
self.tap_thresh = gcmd.get_float('TAP_THRESH', self.tap_thresh,
minval=TAP_SCALE, maxval=100000.)
self.tap_dur = config.getfloat('TAP_DUR', self.tap_dur,
above=DUR_SCALE, maxval=0.1)
adxl345.set_reg(REG_THRESH_TAP, int(self.tap_thresh / TAP_SCALE))
adxl345.set_reg(REG_DUR, int(self.tap_dur / DUR_SCALE))
# Printer class that controls ADXL345 chip
class ADXL345:
def __init__(self, config):
self.printer = config.get_printer()
self.query_rate = 0
self.last_tx_time = 0.
self.config = config
am = {'x': (0, SCALE), 'y': (1, SCALE), 'z': (2, SCALE),
'-x': (0, -SCALE), '-y': (1, -SCALE), '-z': (2, -SCALE)}
axes_map = config.get('axes_map', 'x,y,z').split(',')
if len(axes_map) != 3 or any([a.strip() not in am for a in axes_map]):
raise config.error("Invalid adxl345 axes_map parameter")
self.axes_map = [am[a.strip()] for a in axes_map]
self.data_rate = config.getint('rate', 3200)
if self.data_rate not in QUERY_RATES:
raise config.error("Invalid rate parameter: %d" % (self.data_rate,))
# Measurement storage (accessed from background thread)
self.raw_samples = []
self.last_sequence = 0
self.samples_start1 = self.samples_start2 = 0.
# Setup mcu sensor_adxl345 bulk query code
self.spi = bus.MCU_SPI_from_config(config, 3, default_speed=5000000)
self.mcu = mcu = self.spi.get_mcu()
self.oid = oid = mcu.create_oid()
self.query_adxl345_cmd = self.query_adxl345_end_cmd =None
mcu.add_config_cmd("config_adxl345 oid=%d spi_oid=%d"
% (oid, self.spi.get_oid()))
mcu.add_config_cmd("query_adxl345 oid=%d clock=0 rest_ticks=0"
% (oid,), on_restart=True)
mcu.register_config_callback(self._build_config)
mcu.register_response(self._handle_adxl345_start, "adxl345_start", oid)
mcu.register_response(self._handle_adxl345_data, "adxl345_data", oid)
# Register commands
self.name = "default"
if len(config.get_name().split()) > 1:
self.name = config.get_name().split()[1]
gcode = self.printer.lookup_object('gcode')
gcode.register_mux_command("ACCELEROMETER_MEASURE", "CHIP", self.name,
self.cmd_ACCELEROMETER_MEASURE,
desc=self.cmd_ACCELEROMETER_MEASURE_help)
gcode.register_mux_command("ACCELEROMETER_QUERY", "CHIP", self.name,
self.cmd_ACCELEROMETER_QUERY,
desc=self.cmd_ACCELEROMETER_QUERY_help)
gcode.register_mux_command("ADXL345_DEBUG_READ", "CHIP", self.name,
self.cmd_ADXL345_DEBUG_READ,
desc=self.cmd_ADXL345_DEBUG_READ_help)
gcode.register_mux_command("ADXL345_DEBUG_WRITE", "CHIP", self.name,
self.cmd_ADXL345_DEBUG_WRITE,
desc=self.cmd_ADXL345_DEBUG_WRITE_help)
gcode.register_mux_command("TEST_MYCMD", "CHIP", self.name,
self.cmd_TEST_MYCMD,
desc=self.cmd_TEST_MYCMD_help)
gcode.register_mux_command("MKS_PROBE", "CHIP", self.name,
self.cmd_MKS_PROBE,
desc=self.cmd_MKS_PROBE_help)
if self.name == "default":
gcode.register_mux_command("ACCELEROMETER_MEASURE", "CHIP", None,
self.cmd_ACCELEROMETER_MEASURE)
gcode.register_mux_command("ACCELEROMETER_QUERY", "CHIP", None,
self.cmd_ACCELEROMETER_QUERY)
gcode.register_mux_command("ADXL345_DEBUG_READ", "CHIP", None,
self.cmd_ADXL345_DEBUG_READ,
desc=self.cmd_ADXL345_DEBUG_READ_help)
gcode.register_mux_command("ADXL345_DEBUG_WRITE", "CHIP", None,
self.cmd_ADXL345_DEBUG_WRITE,
desc=self.cmd_ADXL345_DEBUG_WRITE_help)
gcode.register_mux_command("TEST_MYCMD", "CHIP", None,
self.cmd_TEST_MYCMD,
desc=self.cmd_TEST_MYCMD_help)
gcode.register_mux_command("MKS_PROBE", "CHIP", None,
self.cmd_MKS_PROBE,
desc=self.cmd_MKS_PROBE_help)
self.adxl345_endstop = ADXL345EndstopWrapper(self.config, self, self.axes_map)
cmd_MKS_PROBE_help = "test my cmd"
def cmd_MKS_PROBE(self, gcmd):
gcmd.respond_info("go to mks Probe success")
self.printer.remove_object('probe')
self.printer.lookup_object('gcode').remove_command('PROBE')
self.printer.lookup_object('gcode').remove_command('QUERY_PROBE')
self.printer.lookup_object('gcode').remove_command('PROBE_CALIBRATE')
self.printer.lookup_object('gcode').remove_command('PROBE_ACCURACY')
self.printer.lookup_object('gcode').remove_command('Z_OFFSET_APPLY_PROBE')
self.printer.lookup_object('gcode').remove_command('MKS_SHOW_Z_OFFSET')
self.printer.lookup_object('pins').remove_chip('probe')
self.printer.add_object('probe', probe.load_config(self.probe_config))
# self.printer.lookup_object('probe').multi_probe_end()
cmd_TEST_MYCMD_help = "test my cmd"
def cmd_TEST_MYCMD(self, gcmd):
gcmd.respond_info("TEST MY CMD success")
# if config.get('probe_pin', None) is not None:
# adxl345_endstop = ADXL345EndstopWrapper(config, self, self.axes_map)
self.probe_config = self.printer.lookup_object('probe').config
# self.printer.add_object('probebak', None)
# self.printer.copy_object('probe', 'probebak')
self.printer.remove_object('probe')
self.printer.lookup_object('gcode').remove_command('PROBE')
self.printer.lookup_object('gcode').remove_command('QUERY_PROBE')
self.printer.lookup_object('gcode').remove_command('PROBE_CALIBRATE')
self.printer.lookup_object('gcode').remove_command('PROBE_ACCURACY')
self.printer.lookup_object('gcode').remove_command('Z_OFFSET_APPLY_PROBE')
self.printer.lookup_object('gcode').remove_command('MKS_SHOW_Z_OFFSET')
self.printer.lookup_object('pins').remove_chip('probe')
self.printer.add_object('probe', probe.PrinterProbe(self.config, self.adxl345_endstop))
def is_initialized(self):
# In case of miswiring, testing ADXL345 device ID prevents treating
# noise or wrong signal as a correctly initialized device
return (self.read_reg(REG_DEVID) == ADXL345_DEV_ID and
(self.read_reg(REG_DATA_FORMAT) & 0xB) != 0)
def initialize(self):
# Setup ADXL345 parameters and verify chip connectivity
self.set_reg(REG_POWER_CTL, 0x00)
dev_id = self.read_reg(REG_DEVID)
if dev_id != ADXL345_DEV_ID:
raise self.printer.command_error("Invalid adxl345 id (got %x vs %x)"
% (dev_id, ADXL345_DEV_ID))
self.set_reg(REG_DATA_FORMAT, 0x0B)
def get_mcu(self):
return self.spi.get_mcu()
def _build_config(self):
self.query_adxl345_cmd = self.mcu.lookup_command(
"query_adxl345 oid=%c clock=%u rest_ticks=%u",
cq=self.spi.get_command_queue())
self.query_adxl345_end_cmd = self.mcu.lookup_query_command(
"query_adxl345 oid=%c clock=%u rest_ticks=%u",
"adxl345_end oid=%c end1_clock=%u end2_clock=%u"
" limit_count=%hu sequence=%hu",
oid=self.oid, cq=self.spi.get_command_queue())
def _clock_to_print_time(self, clock):
return self.mcu.clock_to_print_time(self.mcu.clock32_to_clock64(clock))
def _handle_adxl345_start(self, params):
self.samples_start1 = self._clock_to_print_time(params['start1_clock'])
self.samples_start2 = self._clock_to_print_time(params['start2_clock'])
def _handle_adxl345_data(self, params):
last_sequence = self.last_sequence
sequence = (last_sequence & ~0xffff) | params['sequence']
if sequence < last_sequence:
sequence += 0x10000
self.last_sequence = sequence
raw_samples = self.raw_samples
if len(raw_samples) >= 300000:
# Avoid filling up memory with too many samples
return
raw_samples.append((sequence, params['data']))
def _convert_sequence(self, sequence):
sequence = (self.last_sequence & ~0xffff) | sequence
if sequence < self.last_sequence:
sequence += 0x10000
return sequence
def read_reg(self, reg):
params = self.spi.spi_transfer([reg | REG_MOD_READ, 0x00])
response = bytearray(params['response'])
return response[1]
def set_reg(self, reg, val, minclock=0):
self.spi.spi_send([reg, val & 0xFF], minclock=minclock)
stored_val = self.read_reg(reg)
if stored_val != val:
raise self.printer.command_error(
"Failed to set ADXL345 register [0x%x] to 0x%x: got 0x%x. "
"This is generally indicative of connection problems "
"(e.g. faulty wiring) or a faulty adxl345 chip." % (
reg, val, stored_val))
def is_measuring(self):
return self.query_rate > 0
def start_measurements(self, rate=None):
if self.is_measuring():
return
rate = rate or self.data_rate
if not self.is_initialized():
self.initialize()
# Setup chip in requested query rate
clock = 0
if self.last_tx_time:
clock = self.mcu.print_time_to_clock(self.last_tx_time)
self.set_reg(REG_POWER_CTL, 0x00, minclock=clock)
self.set_reg(REG_FIFO_CTL, 0x00)
self.set_reg(REG_BW_RATE, QUERY_RATES[rate])
self.set_reg(REG_FIFO_CTL, 0x80)
# Setup samples
print_time = self.printer.lookup_object('toolhead').get_last_move_time()
self.raw_samples = []
self.last_sequence = 0
self.samples_start1 = self.samples_start2 = print_time
# Start bulk reading
reqclock = self.mcu.print_time_to_clock(print_time)
rest_ticks = self.mcu.seconds_to_clock(4. / rate)
self.last_tx_time = print_time
self.query_rate = rate
self.query_adxl345_cmd.send([self.oid, reqclock, rest_ticks],
reqclock=reqclock)
def finish_measurements(self):
if not self.is_measuring():
return ADXL345Results()
# Halt bulk reading
print_time = self.printer.lookup_object('toolhead').get_last_move_time()
clock = self.mcu.print_time_to_clock(print_time)
params = self.query_adxl345_end_cmd.send([self.oid, 0, 0],
minclock=clock)
self.last_tx_time = print_time
self.query_rate = 0
raw_samples = self.raw_samples
self.raw_samples = []
# Generate results
end1_time = self._clock_to_print_time(params['end1_clock'])
end2_time = self._clock_to_print_time(params['end2_clock'])
end_sequence = self._convert_sequence(params['sequence'])
overflows = params['limit_count']
res = ADXL345Results()
res.setup_data(self.axes_map, raw_samples, end_sequence, overflows,
self.samples_start1, self.samples_start2,
end1_time, end2_time)
logging.info("ADXL345 finished %d measurements: %s",
res.total_count, res.get_stats())
return res
def end_query(self, name, gcmd):
if not self.is_measuring():
return
res = self.finish_measurements()
# Write data to file
if self.name == "default":
filename = "/tmp/adxl345-%s.csv" % (name,)
else:
filename = "/tmp/adxl345-%s-%s.csv" % (self.name, name,)
res.write_to_file(filename)
gcmd.respond_info(
"Writing raw accelerometer data to %s file" % (filename,))
cmd_ACCELEROMETER_MEASURE_help = "Start/stop accelerometer"
def cmd_ACCELEROMETER_MEASURE(self, gcmd):
if self.is_measuring():
name = gcmd.get("NAME", time.strftime("%Y%m%d_%H%M%S"))
if not name.replace('-', '').replace('_', '').isalnum():
raise gcmd.error("Invalid adxl345 NAME parameter")
self.end_query(name, gcmd)
gcmd.respond_info("adxl345 measurements stopped")
else:
rate = gcmd.get_int("RATE", self.data_rate)
if rate not in QUERY_RATES:
raise gcmd.error("Not a valid adxl345 query rate: %d" % (rate,))
self.start_measurements(rate)
gcmd.respond_info("adxl345 measurements started")
cmd_ACCELEROMETER_QUERY_help = "Query accelerometer for the current values"
def cmd_ACCELEROMETER_QUERY(self, gcmd):
if self.is_measuring():
raise gcmd.error("adxl345 measurements in progress")
self.start_measurements()
reactor = self.printer.get_reactor()
eventtime = starttime = reactor.monotonic()
while not self.raw_samples:
eventtime = reactor.pause(eventtime + .1)
if eventtime > starttime + 3.:
# Try to shutdown the measurements
self.finish_measurements()
raise gcmd.error("Timeout reading adxl345 data")
result = self.finish_measurements()
values = result.decode_samples()
_, accel_x, accel_y, accel_z = values[-1]
gcmd.respond_info("adxl345 values (x, y, z): %.6f, %.6f, %.6f" % (
accel_x, accel_y, accel_z))
cmd_ADXL345_DEBUG_READ_help = "Query accelerometer register (for debugging)"
def cmd_ADXL345_DEBUG_READ(self, gcmd):
if self.is_measuring():
raise gcmd.error("adxl345 measurements in progress")
reg = gcmd.get("REG", minval=29, maxval=57, parser=lambda x: int(x, 0))
val = self.read_reg(reg)
gcmd.respond_info("ADXL345 REG[0x%x] = 0x%x" % (reg, val))
cmd_ADXL345_DEBUG_WRITE_help = "Set accelerometer register (for debugging)"
def cmd_ADXL345_DEBUG_WRITE(self, gcmd):
if self.is_measuring():
raise gcmd.error("adxl345 measurements in progress")
reg = gcmd.get("REG", minval=29, maxval=57, parser=lambda x: int(x, 0))
val = gcmd.get("VAL", minval=0, maxval=255, parser=lambda x: int(x, 0))
self.set_reg(reg, val)
def load_config(config):
return ADXL345(config)
def load_config_prefix(config):
return ADXL345(config)