repair missing update

This commit is contained in:
CChen616
2024-08-23 10:45:24 +08:00
parent 3402ca3ef6
commit 25ee651226
9 changed files with 1560 additions and 1283 deletions

View File

@@ -1,10 +1,10 @@
# Support for reading acceleration data from an adxl345 chip # Support for reading acceleration data from an adxl345 chip
# #
# Copyright (C) 2020-2021 Kevin O'Connor <kevin@koconnor.net> # Copyright (C) 2020 Kevin O'Connor <kevin@koconnor.net>
# #
# This file may be distributed under the terms of the GNU GPLv3 license. # This file may be distributed under the terms of the GNU GPLv3 license.
import logging, time, collections, threading, multiprocessing, os import logging, math, time, collections, multiprocessing, os
from . import bus, motion_report from . import bus, manual_probe, probe
# ADXL345 registers # ADXL345 registers
REG_DEVID = 0x00 REG_DEVID = 0x00
@@ -14,6 +14,15 @@ REG_DATA_FORMAT = 0x31
REG_FIFO_CTL = 0x38 REG_FIFO_CTL = 0x38
REG_MOD_READ = 0x80 REG_MOD_READ = 0x80
REG_MOD_MULTI = 0x40 REG_MOD_MULTI = 0x40
REG_THRESH_TAP = 0x1D
REG_DUR = 0x21
REG_INT_MAP = 0x2F
REG_TAP_AXES = 0x2A
REG_OFSX = 0x1E
REG_OFSY = 0x1F
REG_OFSZ = 0x20
REG_INT_ENABLE = 0x2E
REG_INT_SOURCE = 0x30
QUERY_RATES = { QUERY_RATES = {
25: 0x8, 50: 0x9, 100: 0xa, 200: 0xb, 400: 0xc, 25: 0x8, 50: 0x9, 100: 0xa, 200: 0xb, 400: 0xc,
@@ -21,66 +30,67 @@ QUERY_RATES = {
} }
ADXL345_DEV_ID = 0xe5 ADXL345_DEV_ID = 0xe5
SET_FIFO_CTL = 0x90
FREEFALL_ACCEL = 9.80665 * 1000. FREEFALL_ACCEL = 9.80665 * 1000.
SCALE = 0.0039 * FREEFALL_ACCEL # 3.9mg/LSB * Earth gravity in mm/s**2 SCALE = 0.0039 * FREEFALL_ACCEL # 3.9mg/LSB * Earth gravity in mm/s**2
DUR_SCALE = 0.000625 # 0.625 msec / LSB
TAP_SCALE = 0.0625 * FREEFALL_ACCEL # 62.5mg/LSB * Earth gravity in mm/s**2
OFS_SCALE = 0.0156 * FREEFALL_ACCEL # 15.6mg/LSB * Earth gravity in mm/s**2
PROBE_CALIBRATION_TIME = 1.
ADXL345_REST_TIME = .01
Accel_Measurement = collections.namedtuple( Accel_Measurement = collections.namedtuple(
'Accel_Measurement', ('time', 'accel_x', 'accel_y', 'accel_z')) 'Accel_Measurement', ('time', 'accel_x', 'accel_y', 'accel_z'))
# Helper class to obtain measurements # Sample results
class AccelQueryHelper: class ADXL345Results:
def __init__(self, printer, cconn): def __init__(self):
self.printer = printer self.raw_samples = None
self.cconn = cconn self.samples = []
print_time = printer.lookup_object('toolhead').get_last_move_time() self.drops = self.overflows = 0
self.request_start_time = self.request_end_time = print_time self.time_per_sample = self.start_range = self.end_range = 0.
self.samples = self.raw_samples = [] def get_stats(self):
def finish_measurements(self): return ("drops=%d,overflows=%d"
toolhead = self.printer.lookup_object('toolhead') ",time_per_sample=%.9f,start_range=%.6f,end_range=%.6f"
self.request_end_time = toolhead.get_last_move_time() % (self.drops, self.overflows,
toolhead.wait_moves() self.time_per_sample, self.start_range, self.end_range))
self.cconn.finalize() def setup_data(self, axes_map, raw_samples, end_sequence, overflows,
def _get_raw_samples(self): start1_time, start2_time, end1_time, end2_time):
raw_samples = self.cconn.get_messages() if not raw_samples or not end_sequence:
if raw_samples: return
self.axes_map = axes_map
self.raw_samples = raw_samples self.raw_samples = raw_samples
return self.raw_samples self.overflows = overflows
def has_valid_samples(self): self.start2_time = start2_time
raw_samples = self._get_raw_samples() self.start_range = start2_time - start1_time
for msg in raw_samples: self.end_range = end2_time - end1_time
data = msg['params']['data'] self.total_count = (end_sequence - 1) * 8 + len(raw_samples[-1][1]) // 6
first_sample_time = data[0][0] total_time = end2_time - start2_time
last_sample_time = data[-1][0] self.time_per_sample = time_per_sample = total_time / self.total_count
if (first_sample_time > self.request_end_time self.seq_to_time = time_per_sample * 8.
or last_sample_time < self.request_start_time): actual_count = sum([len(data)//6 for _, data in raw_samples])
continue self.drops = self.total_count - actual_count
# The time intervals [first_sample_time, last_sample_time] def decode_samples(self):
# and [request_start_time, request_end_time] have non-zero if not self.raw_samples:
# intersection. It is still theoretically possible that none
# of the samples from raw_samples fall into the time interval
# [request_start_time, request_end_time] if it is too narrow
# or on very heavy data losses. In practice, that interval
# is at least 1 second, so this possibility is negligible.
return True
return False
def get_samples(self):
raw_samples = self._get_raw_samples()
if not raw_samples:
return self.samples return self.samples
total = sum([len(m['params']['data']) for m in raw_samples]) (x_pos, x_scale), (y_pos, y_scale), (z_pos, z_scale) = self.axes_map
count = 0 actual_count = 0
self.samples = samples = [None] * total self.samples = samples = [None] * self.total_count
for msg in raw_samples: for seq, data in self.raw_samples:
for samp_time, x, y, z in msg['params']['data']: d = bytearray(data)
if samp_time < self.request_start_time: count = len(data)
continue sdata = [(d[i] | (d[i+1] << 8)) - ((d[i+1] & 0x80) << 9)
if samp_time > self.request_end_time: for i in range(0, count-1, 2)]
break seq_time = self.start2_time + seq * self.seq_to_time
samples[count] = Accel_Measurement(samp_time, x, y, z) for i in range(count//6):
count += 1 samp_time = seq_time + i * self.time_per_sample
del samples[count:] x = sdata[i*3 + x_pos] * x_scale
y = sdata[i*3 + y_pos] * y_scale
z = sdata[i*3 + z_pos] * z_scale
samples[actual_count] = Accel_Measurement(samp_time, x, y, z)
actual_count += 1
del samples[actual_count:]
return self.samples return self.samples
def write_to_file(self, filename): def write_to_file(self, filename):
def write_impl(): def write_impl():
@@ -90,8 +100,9 @@ class AccelQueryHelper:
except: except:
pass pass
f = open(filename, "w") f = open(filename, "w")
f.write("#time,accel_x,accel_y,accel_z\n") f.write("##%s\n#time,accel_x,accel_y,accel_z\n" % (
samples = self.samples or self.get_samples() self.get_stats(),))
samples = self.samples or self.decode_samples()
for t, accel_x, accel_y, accel_z in samples: for t, accel_x, accel_y, accel_z in samples:
f.write("%.6f,%.6f,%.6f,%.6f\n" % ( f.write("%.6f,%.6f,%.6f,%.6f\n" % (
t, accel_x, accel_y, accel_z)) t, accel_x, accel_y, accel_z))
@@ -100,184 +111,383 @@ class AccelQueryHelper:
write_proc.daemon = True write_proc.daemon = True
write_proc.start() write_proc.start()
# Helper class for G-Code commands class BedOffsetHelper:
class AccelCommandHelper: def __init__(self, config):
def __init__(self, config, chip):
self.printer = config.get_printer() self.printer = config.get_printer()
self.chip = chip # Register BED_OFFSET_CALIBRATE command
self.bg_client = None zconfig = config.getsection('stepper_z')
name_parts = config.get_name().split() self.z_position_endstop = zconfig.getfloat('position_endstop', None,
self.base_name = name_parts[0] note_valid=False)
self.name = name_parts[-1] if self.z_position_endstop is None:
self.register_commands(self.name) return
if len(name_parts) == 1: self.bed_probe_point = None
if self.name == "adxl345" or not config.has_section("adxl345"): if config.get('bed_probe_point', None) is not None:
self.register_commands(None) try:
def register_commands(self, name): self.bed_probe_point = [
float(coord.strip()) for coord in
config.get('bed_probe_point').split(',', 1)]
except:
raise config.error(
"Unable to parse bed_probe_point '%s'" % (
config.get('bed_probe_point')))
self.horizontal_move_z = config.getfloat(
'horizontal_move_z', 5.)
self.horizontal_move_speed = config.getfloat(
'horizontal_move_speed', 50., above=0.)
gcode = self.printer.lookup_object('gcode')
gcode.register_command(
'BED_OFFSET_CALIBRATE', self.cmd_BED_OFFSET_CALIBRATE,
desc=self.cmd_BED_OFFSET_CALIBRATE_help)
def bed_offset_finalize(self, pos, gcmd):
if pos is None:
return
z_pos = self.z_position_endstop - pos[2]
gcmd.respond_info(
"stepper_z: position_endstop: %.3f\n"
"The SAVE_CONFIG command will update the printer config file\n"
"with the above and restart the printer." % (z_pos,))
configfile = self.printer.lookup_object('configfile')
configfile.set('stepper_z', 'position_endstop', "%.3f" % (z_pos,))
cmd_BED_OFFSET_CALIBRATE_help = "Calibrate a bed offset using ADXL345 probe"
def cmd_BED_OFFSET_CALIBRATE(self, gcmd):
manual_probe.verify_no_manual_probe(self.printer)
probe = self.printer.lookup_object('probe')
lift_speed = probe.get_lift_speed(gcmd)
toolhead = self.printer.lookup_object('toolhead')
oldpos = toolhead.get_position()
if self.bed_probe_point is not None:
toolhead.manual_move([None, None, self.horizontal_move_z],
lift_speed)
toolhead.manual_move(self.bed_probe_point + [None],
self.horizontal_move_speed)
curpos = probe.run_probe(gcmd)
offset_pos = [0., 0., curpos[2] - probe.get_offsets()[2]]
if self.bed_probe_point is not None:
curpos[2] = self.horizontal_move_z
else:
curpos[2] = oldpos[2]
toolhead.manual_move(curpos, lift_speed)
self.bed_offset_finalize(offset_pos, gcmd)
# ADXL345 virtual endstop wrapper for probing
class ADXL345EndstopWrapper:
def __init__(self, config, adxl345, axes_map):
self.printer = config.get_printer()
self.printer.register_event_handler("klippy:connect", self.calibrate)
self.calibrated = False
self.adxl345 = adxl345
self.axes_map = axes_map
self.ofs_regs = (REG_OFSX, REG_OFSY, REG_OFSZ)
int_pin = config.get('int_pin').strip()
self.inverted = False
if int_pin.startswith('!'):
self.inverted = True
int_pin = int_pin[1:].strip()
if int_pin != 'int1' and int_pin != 'int2':
raise config.error('int_pin must specify one of int1 or int2 pins')
self.int_map = 0x40 if int_pin == 'int2' else 0x0
probe_pin = config.get('probe_pin')
self.position_endstop = config.getfloat('z_offset')
self.tap_thresh = config.getfloat('tap_thresh', 5000,
minval=TAP_SCALE, maxval=100000.)
self.tap_dur = config.getfloat('tap_dur', 0.01,
above=DUR_SCALE, maxval=0.1)
self.next_cmd_time = self.action_end_time = 0.
# Create an "endstop" object to handle the sensor pin
ppins = self.printer.lookup_object('pins')
pin_params = ppins.lookup_pin(probe_pin, can_invert=True,
can_pullup=True)
mcu = pin_params['chip']
mcu.register_config_callback(self._build_config)
self.mcu_endstop = mcu.setup_pin('endstop', pin_params)
# Wrappers
self.get_mcu = self.mcu_endstop.get_mcu
self.add_stepper = self.mcu_endstop.add_stepper
self.get_steppers = self.mcu_endstop.get_steppers
self.home_start = self.mcu_endstop.home_start
self.home_wait = self.mcu_endstop.home_wait
self.query_endstop = self.mcu_endstop.query_endstop
# Register commands # Register commands
gcode = self.printer.lookup_object('gcode') gcode = self.printer.lookup_object('gcode')
gcode.register_mux_command("ACCELEROMETER_MEASURE", "CHIP", name, gcode.register_mux_command(
self.cmd_ACCELEROMETER_MEASURE, "ACCEL_PROBE_CALIBRATE", "CHIP", None,
desc=self.cmd_ACCELEROMETER_MEASURE_help) self.cmd_ACCEL_PROBE_CALIBRATE,
gcode.register_mux_command("ACCELEROMETER_QUERY", "CHIP", name, desc=self.cmd_ACCEL_PROBE_CALIBRATE_help)
self.cmd_ACCELEROMETER_QUERY, gcode.register_mux_command(
desc=self.cmd_ACCELEROMETER_QUERY_help) "SET_ACCEL_PROBE", "CHIP", None, self.cmd_SET_ACCEL_PROBE,
gcode.register_mux_command("ACCELEROMETER_DEBUG_READ", "CHIP", name, desc=self.cmd_SET_ACCEL_PROBE_help)
self.cmd_ACCELEROMETER_DEBUG_READ, # Register bed offset calibration helper
desc=self.cmd_ACCELEROMETER_DEBUG_READ_help) BedOffsetHelper(config)
gcode.register_mux_command("ACCELEROMETER_DEBUG_WRITE", "CHIP", name, def _build_config(self):
self.cmd_ACCELEROMETER_DEBUG_WRITE, kin = self.printer.lookup_object('toolhead').get_kinematics()
desc=self.cmd_ACCELEROMETER_DEBUG_WRITE_help) for stepper in kin.get_steppers():
cmd_ACCELEROMETER_MEASURE_help = "Start/stop accelerometer" if stepper.is_active_axis('z'):
def cmd_ACCELEROMETER_MEASURE(self, gcmd): self.add_stepper(stepper)
if self.bg_client is None: def calibrate(self, gcmd=None, retries=3):
# Start measurements adxl345 = self.adxl345
self.bg_client = self.chip.start_internal_client() if not adxl345.is_initialized():
gcmd.respond_info("accelerometer measurements started") # ADXL345 that works as a probe must be initialized from the start
return adxl345.initialize()
# End measurements adxl345.set_reg(REG_POWER_CTL, 0x00)
name = gcmd.get("NAME", time.strftime("%Y%m%d_%H%M%S")) if self.inverted:
if not name.replace('-', '').replace('_', '').isalnum(): adxl345.set_reg(REG_DATA_FORMAT, 0x2B)
raise gcmd.error("Invalid NAME parameter") adxl345.set_reg(REG_INT_MAP, self.int_map)
bg_client = self.bg_client adxl345.set_reg(REG_TAP_AXES, 0x7)
self.bg_client = None adxl345.set_reg(REG_THRESH_TAP, int(self.tap_thresh / TAP_SCALE))
bg_client.finish_measurements() adxl345.set_reg(REG_DUR, int(self.tap_dur / DUR_SCALE))
# Write data to file # Offset freefall accleration on the true Z axis
if self.base_name == self.name: for reg in self.ofs_regs:
filename = "/tmp/%s-%s.csv" % (self.base_name, name) adxl345.set_reg(reg, 0x00)
adxl345.start_measurements()
reactor = self.printer.get_reactor()
reactor.register_callback(lambda ev: self._offset_axes(gcmd, retries),
reactor.monotonic() + PROBE_CALIBRATION_TIME)
def _offset_axes(self, gcmd, retries):
res = self.adxl345.finish_measurements()
msg_func = gcmd.respond_info if gcmd is not None else logging.info
samples = res.decode_samples()
x_ofs = sum([s.accel_x for s in samples]) / len(samples)
y_ofs = sum([s.accel_y for s in samples]) / len(samples)
z_ofs = sum([s.accel_z for s in samples]) / len(samples)
meas_freefall_accel = math.sqrt(x_ofs**2 + y_ofs**2 + z_ofs**2)
if abs(meas_freefall_accel - FREEFALL_ACCEL) > FREEFALL_ACCEL * 0.5:
err_msg = ("Calibration error: ADXL345 incorrectly measures "
"freefall accleration: %.0f (measured) vs %.0f "
"(expected)" % (meas_freefall_accel, FREEFALL_ACCEL))
if retries > 0:
msg_func(err_msg + ", retrying (%d)" % (retries-1,))
self.calibrate(gcmd, retries-1)
else: else:
filename = "/tmp/%s-%s-%s.csv" % (self.base_name, self.name, name) msg_func(err_msg + ", aborting self-calibration")
bg_client.write_to_file(filename) return
gcmd.respond_info("Writing raw accelerometer data to %s file" x_m = max([abs(s.accel_x - x_ofs) for s in samples])
% (filename,)) y_m = max([abs(s.accel_y - y_ofs) for s in samples])
cmd_ACCELEROMETER_QUERY_help = "Query accelerometer for the current values" z_m = max([abs(s.accel_z - z_ofs) for s in samples])
def cmd_ACCELEROMETER_QUERY(self, gcmd): accel_noise = max(x_m, y_m, z_m)
aclient = self.chip.start_internal_client() if accel_noise > self.tap_thresh:
self.printer.lookup_object('toolhead').dwell(1.) err_msg = ("Calibration error: ADXL345 noise level too high for "
aclient.finish_measurements() "the configured tap_thresh: %.0f (tap_thresh) vs "
values = aclient.get_samples() "%.0f (noise)" % (self.tap_thresh, accel_noise))
if not values: if retries > 0:
raise gcmd.error("No accelerometer measurements found") msg_func(err_msg + ", retrying (%d)" % (retries-1,))
_, accel_x, accel_y, accel_z = values[-1] self.calibrate(gcmd, retries-1)
gcmd.respond_info("accelerometer values (x, y, z): %.6f, %.6f, %.6f" else:
% (accel_x, accel_y, accel_z)) msg_func(err_msg + ", aborting self-calibration")
cmd_ACCELEROMETER_DEBUG_READ_help = "Query register (for debugging)" return
def cmd_ACCELEROMETER_DEBUG_READ(self, gcmd): for ofs, axis in zip((x_ofs, y_ofs, z_ofs), (0, 1, 2)):
reg = gcmd.get("REG", minval=0, maxval=126, parser=lambda x: int(x, 0)) ofs_reg = self.ofs_regs[self.axes_map[axis][0]]
val = self.chip.read_reg(reg) ofs_val = 0xFF & int(round(
gcmd.respond_info("Accelerometer REG[0x%x] = 0x%x" % (reg, val)) -ofs / self.axes_map[axis][1] * (SCALE / OFS_SCALE)))
cmd_ACCELEROMETER_DEBUG_WRITE_help = "Set register (for debugging)" self.adxl345.set_reg(ofs_reg, ofs_val)
def cmd_ACCELEROMETER_DEBUG_WRITE(self, gcmd): msg_func("Successfully calibrated ADXL345")
reg = gcmd.get("REG", minval=0, maxval=126, parser=lambda x: int(x, 0)) self.calibrated = True
val = gcmd.get("VAL", minval=0, maxval=255, parser=lambda x: int(x, 0)) def multi_probe_begin(self):
self.chip.set_reg(reg, val) pass
def multi_probe_end(self):
# Helper class for chip clock synchronization via linear regression pass
class ClockSyncRegression: def _try_clear_tap(self):
def __init__(self, mcu, chip_clock_smooth, decay = 1. / 20.): adxl345 = self.adxl345
self.mcu = mcu tries = 8
self.chip_clock_smooth = chip_clock_smooth while tries > 0:
self.decay = decay val = adxl345.read_reg(REG_INT_SOURCE)
self.last_chip_clock = self.last_exp_mcu_clock = 0. if not (val & 0x40):
self.mcu_clock_avg = self.mcu_clock_variance = 0. return True
self.chip_clock_avg = self.chip_clock_covariance = 0. tries -= 1
def reset(self, mcu_clock, chip_clock): return False
self.mcu_clock_avg = self.last_mcu_clock = mcu_clock def probe_prepare(self, hmove):
self.chip_clock_avg = chip_clock if not self.calibrated:
self.mcu_clock_variance = self.chip_clock_covariance = 0. raise self.printer.command_error(
self.last_chip_clock = self.last_exp_mcu_clock = 0. "ADXL345 probe failed calibration, "
def update(self, mcu_clock, chip_clock): "retry with ACCEL_PROBE_CALIBRATE command")
# Update linear regression adxl345 = self.adxl345
decay = self.decay toolhead = self.printer.lookup_object('toolhead')
diff_mcu_clock = mcu_clock - self.mcu_clock_avg toolhead.flush_step_generation()
self.mcu_clock_avg += decay * diff_mcu_clock print_time = toolhead.get_last_move_time()
self.mcu_clock_variance = (1. - decay) * ( clock = self.adxl345.get_mcu().print_time_to_clock(print_time +
self.mcu_clock_variance + diff_mcu_clock**2 * decay) ADXL345_REST_TIME)
diff_chip_clock = chip_clock - self.chip_clock_avg if not adxl345.is_initialized():
self.chip_clock_avg += decay * diff_chip_clock adxl345.initialize()
self.chip_clock_covariance = (1. - decay) * ( adxl345.set_reg(REG_INT_ENABLE, 0x00, minclock=clock)
self.chip_clock_covariance + diff_mcu_clock*diff_chip_clock*decay) adxl345.read_reg(REG_INT_SOURCE)
def set_last_chip_clock(self, chip_clock): adxl345.set_reg(REG_INT_ENABLE, 0x40, minclock=clock)
base_mcu, base_chip, inv_cfreq = self.get_clock_translation() if not adxl345.is_measuring():
self.last_chip_clock = chip_clock adxl345.set_reg(REG_POWER_CTL, 0x08, minclock=clock)
self.last_exp_mcu_clock = base_mcu + (chip_clock-base_chip) * inv_cfreq if not self._try_clear_tap():
def get_clock_translation(self): raise self.printer.command_error(
inv_chip_freq = self.mcu_clock_variance / self.chip_clock_covariance "ADXL345 tap triggered before move, too sensitive?")
if not self.last_chip_clock: def probe_finish(self, hmove):
return self.mcu_clock_avg, self.chip_clock_avg, inv_chip_freq adxl345 = self.adxl345
# Find mcu clock associated with future chip_clock toolhead = self.printer.lookup_object('toolhead')
s_chip_clock = self.last_chip_clock + self.chip_clock_smooth toolhead.dwell(ADXL345_REST_TIME)
scdiff = s_chip_clock - self.chip_clock_avg print_time = toolhead.get_last_move_time()
s_mcu_clock = self.mcu_clock_avg + scdiff * inv_chip_freq clock = adxl345.get_mcu().print_time_to_clock(print_time)
# Calculate frequency to converge at future point adxl345.set_reg(REG_INT_ENABLE, 0x00, minclock=clock)
mdiff = s_mcu_clock - self.last_exp_mcu_clock if not adxl345.is_measuring():
s_inv_chip_freq = mdiff / self.chip_clock_smooth adxl345.set_reg(REG_POWER_CTL, 0x00)
return self.last_exp_mcu_clock, self.last_chip_clock, s_inv_chip_freq if not self._try_clear_tap():
def get_time_translation(self): raise self.printer.command_error(
base_mcu, base_chip, inv_cfreq = self.get_clock_translation() "ADXL345 tap triggered after move, too sensitive?")
clock_to_print_time = self.mcu.clock_to_print_time cmd_ACCEL_PROBE_CALIBRATE_help = "Force ADXL345 probe [re-]calibration"
base_time = clock_to_print_time(base_mcu) def cmd_ACCEL_PROBE_CALIBRATE(self, gcmd):
inv_freq = clock_to_print_time(base_mcu + inv_cfreq) - base_time self.calibrate(gcmd)
return base_time, base_chip, inv_freq cmd_SET_ACCEL_PROBE_help = "Configure ADXL345 parameters related to probing"
def cmd_SET_ACCEL_PROBE(self, gcmd):
MIN_MSG_TIME = 0.100 self.tap_thresh = gcmd.get_float('TAP_THRESH', self.tap_thresh,
minval=TAP_SCALE, maxval=100000.)
BYTES_PER_SAMPLE = 5 self.tap_dur = config.getfloat('TAP_DUR', self.tap_dur,
SAMPLES_PER_BLOCK = 10 above=DUR_SCALE, maxval=0.1)
adxl345.set_reg(REG_THRESH_TAP, int(self.tap_thresh / TAP_SCALE))
adxl345.set_reg(REG_DUR, int(self.tap_dur / DUR_SCALE))
# Printer class that controls ADXL345 chip # Printer class that controls ADXL345 chip
class ADXL345: class ADXL345:
def __init__(self, config): def __init__(self, config):
self.printer = config.get_printer() self.printer = config.get_printer()
AccelCommandHelper(config, self)
self.query_rate = 0 self.query_rate = 0
self.last_tx_time = 0.
self.config = config
am = {'x': (0, SCALE), 'y': (1, SCALE), 'z': (2, SCALE), am = {'x': (0, SCALE), 'y': (1, SCALE), 'z': (2, SCALE),
'-x': (0, -SCALE), '-y': (1, -SCALE), '-z': (2, -SCALE)} '-x': (0, -SCALE), '-y': (1, -SCALE), '-z': (2, -SCALE)}
axes_map = config.getlist('axes_map', ('x','y','z'), count=3) axes_map = config.get('axes_map', 'x,y,z').split(',')
if any([a not in am for a in axes_map]): if len(axes_map) != 3 or any([a.strip() not in am for a in axes_map]):
raise config.error("Invalid adxl345 axes_map parameter") raise config.error("Invalid adxl345 axes_map parameter")
self.axes_map = [am[a.strip()] for a in axes_map] self.axes_map = [am[a.strip()] for a in axes_map]
self.data_rate = config.getint('rate', 3200) self.data_rate = config.getint('rate', 3200)
if self.data_rate not in QUERY_RATES: if self.data_rate not in QUERY_RATES:
raise config.error("Invalid rate parameter: %d" % (self.data_rate,)) raise config.error("Invalid rate parameter: %d" % (self.data_rate,))
# Measurement storage (accessed from background thread) # Measurement storage (accessed from background thread)
self.lock = threading.Lock()
self.raw_samples = [] self.raw_samples = []
self.last_sequence = 0
self.samples_start1 = self.samples_start2 = 0.
# Setup mcu sensor_adxl345 bulk query code # Setup mcu sensor_adxl345 bulk query code
self.spi = bus.MCU_SPI_from_config(config, 3, default_speed=5000000) self.spi = bus.MCU_SPI_from_config(config, 3, default_speed=5000000)
self.mcu = mcu = self.spi.get_mcu() self.mcu = mcu = self.spi.get_mcu()
self.oid = oid = mcu.create_oid() self.oid = oid = mcu.create_oid()
self.query_adxl345_cmd = self.query_adxl345_end_cmd =None self.query_adxl345_cmd = self.query_adxl345_end_cmd =None
self.query_adxl345_status_cmd = None
mcu.add_config_cmd("config_adxl345 oid=%d spi_oid=%d" mcu.add_config_cmd("config_adxl345 oid=%d spi_oid=%d"
% (oid, self.spi.get_oid())) % (oid, self.spi.get_oid()))
mcu.add_config_cmd("query_adxl345 oid=%d clock=0 rest_ticks=0" mcu.add_config_cmd("query_adxl345 oid=%d clock=0 rest_ticks=0"
% (oid,), on_restart=True) % (oid,), on_restart=True)
mcu.register_config_callback(self._build_config) mcu.register_config_callback(self._build_config)
mcu.register_response(self._handle_adxl345_start, "adxl345_start", oid)
mcu.register_response(self._handle_adxl345_data, "adxl345_data", oid) mcu.register_response(self._handle_adxl345_data, "adxl345_data", oid)
# Clock tracking # Register commands
self.last_sequence = self.max_query_duration = 0 self.name = "default"
self.last_limit_count = self.last_error_count = 0 if len(config.get_name().split()) > 1:
self.clock_sync = ClockSyncRegression(self.mcu, 640) self.name = config.get_name().split()[1]
# API server endpoints gcode = self.printer.lookup_object('gcode')
self.api_dump = motion_report.APIDumpHelper( gcode.register_mux_command("ACCELEROMETER_MEASURE", "CHIP", self.name,
self.printer, self._api_update, self._api_startstop, 0.100) self.cmd_ACCELEROMETER_MEASURE,
self.name = config.get_name().split()[-1] desc=self.cmd_ACCELEROMETER_MEASURE_help)
wh = self.printer.lookup_object('webhooks') gcode.register_mux_command("ACCELEROMETER_QUERY", "CHIP", self.name,
wh.register_mux_endpoint("adxl345/dump_adxl345", "sensor", self.name, self.cmd_ACCELEROMETER_QUERY,
self._handle_dump_adxl345) desc=self.cmd_ACCELEROMETER_QUERY_help)
gcode.register_mux_command("ADXL345_DEBUG_READ", "CHIP", self.name,
self.cmd_ADXL345_DEBUG_READ,
desc=self.cmd_ADXL345_DEBUG_READ_help)
gcode.register_mux_command("ADXL345_DEBUG_WRITE", "CHIP", self.name,
self.cmd_ADXL345_DEBUG_WRITE,
desc=self.cmd_ADXL345_DEBUG_WRITE_help)
gcode.register_mux_command("TEST_MYCMD", "CHIP", self.name,
self.cmd_TEST_MYCMD,
desc=self.cmd_TEST_MYCMD_help)
gcode.register_mux_command("MKS_PROBE", "CHIP", self.name,
self.cmd_MKS_PROBE,
desc=self.cmd_MKS_PROBE_help)
if self.name == "default":
gcode.register_mux_command("ACCELEROMETER_MEASURE", "CHIP", None,
self.cmd_ACCELEROMETER_MEASURE)
gcode.register_mux_command("ACCELEROMETER_QUERY", "CHIP", None,
self.cmd_ACCELEROMETER_QUERY)
gcode.register_mux_command("ADXL345_DEBUG_READ", "CHIP", None,
self.cmd_ADXL345_DEBUG_READ,
desc=self.cmd_ADXL345_DEBUG_READ_help)
gcode.register_mux_command("ADXL345_DEBUG_WRITE", "CHIP", None,
self.cmd_ADXL345_DEBUG_WRITE,
desc=self.cmd_ADXL345_DEBUG_WRITE_help)
gcode.register_mux_command("TEST_MYCMD", "CHIP", None,
self.cmd_TEST_MYCMD,
desc=self.cmd_TEST_MYCMD_help)
gcode.register_mux_command("MKS_PROBE", "CHIP", None,
self.cmd_MKS_PROBE,
desc=self.cmd_MKS_PROBE_help)
self.adxl345_endstop = ADXL345EndstopWrapper(self.config, self, self.axes_map)
cmd_MKS_PROBE_help = "test my cmd"
def cmd_MKS_PROBE(self, gcmd):
gcmd.respond_info("go to mks Probe success")
self.printer.remove_object('probe')
self.printer.lookup_object('gcode').remove_command('PROBE')
self.printer.lookup_object('gcode').remove_command('QUERY_PROBE')
self.printer.lookup_object('gcode').remove_command('PROBE_CALIBRATE')
self.printer.lookup_object('gcode').remove_command('PROBE_ACCURACY')
self.printer.lookup_object('gcode').remove_command('Z_OFFSET_APPLY_PROBE')
self.printer.lookup_object('gcode').remove_command('MKS_SHOW_Z_OFFSET')
self.printer.lookup_object('pins').remove_chip('probe')
self.printer.add_object('probe', probe.load_config(self.probe_config))
# self.printer.lookup_object('probe').multi_probe_end()
cmd_TEST_MYCMD_help = "test my cmd"
def cmd_TEST_MYCMD(self, gcmd):
gcmd.respond_info("TEST MY CMD success")
# if config.get('probe_pin', None) is not None:
# adxl345_endstop = ADXL345EndstopWrapper(config, self, self.axes_map)
self.probe_config = self.printer.lookup_object('probe').config
# self.printer.add_object('probebak', None)
# self.printer.copy_object('probe', 'probebak')
self.printer.remove_object('probe')
self.printer.lookup_object('gcode').remove_command('PROBE')
self.printer.lookup_object('gcode').remove_command('QUERY_PROBE')
self.printer.lookup_object('gcode').remove_command('PROBE_CALIBRATE')
self.printer.lookup_object('gcode').remove_command('PROBE_ACCURACY')
self.printer.lookup_object('gcode').remove_command('Z_OFFSET_APPLY_PROBE')
self.printer.lookup_object('gcode').remove_command('MKS_SHOW_Z_OFFSET')
self.printer.lookup_object('pins').remove_chip('probe')
self.printer.add_object('probe', probe.PrinterProbe(self.config, self.adxl345_endstop))
def is_initialized(self):
# In case of miswiring, testing ADXL345 device ID prevents treating
# noise or wrong signal as a correctly initialized device
return (self.read_reg(REG_DEVID) == ADXL345_DEV_ID and
(self.read_reg(REG_DATA_FORMAT) & 0xB) != 0)
def initialize(self):
# Setup ADXL345 parameters and verify chip connectivity
self.set_reg(REG_POWER_CTL, 0x00)
dev_id = self.read_reg(REG_DEVID)
if dev_id != ADXL345_DEV_ID:
raise self.printer.command_error("Invalid adxl345 id (got %x vs %x)"
% (dev_id, ADXL345_DEV_ID))
self.set_reg(REG_DATA_FORMAT, 0x0B)
def get_mcu(self):
return self.spi.get_mcu()
def _build_config(self): def _build_config(self):
cmdqueue = self.spi.get_command_queue()
self.query_adxl345_cmd = self.mcu.lookup_command( self.query_adxl345_cmd = self.mcu.lookup_command(
"query_adxl345 oid=%c clock=%u rest_ticks=%u", cq=cmdqueue) "query_adxl345 oid=%c clock=%u rest_ticks=%u",
cq=self.spi.get_command_queue())
self.query_adxl345_end_cmd = self.mcu.lookup_query_command( self.query_adxl345_end_cmd = self.mcu.lookup_query_command(
"query_adxl345 oid=%c clock=%u rest_ticks=%u", "query_adxl345 oid=%c clock=%u rest_ticks=%u",
"adxl345_status oid=%c clock=%u query_ticks=%u next_sequence=%hu" "adxl345_end oid=%c end1_clock=%u end2_clock=%u"
" buffered=%c fifo=%c limit_count=%hu", oid=self.oid, cq=cmdqueue) " limit_count=%hu sequence=%hu",
self.query_adxl345_status_cmd = self.mcu.lookup_query_command( oid=self.oid, cq=self.spi.get_command_queue())
"query_adxl345_status oid=%c", def _clock_to_print_time(self, clock):
"adxl345_status oid=%c clock=%u query_ticks=%u next_sequence=%hu" return self.mcu.clock_to_print_time(self.mcu.clock32_to_clock64(clock))
" buffered=%c fifo=%c limit_count=%hu", oid=self.oid, cq=cmdqueue) def _handle_adxl345_start(self, params):
self.samples_start1 = self._clock_to_print_time(params['start1_clock'])
self.samples_start2 = self._clock_to_print_time(params['start2_clock'])
def _handle_adxl345_data(self, params):
last_sequence = self.last_sequence
sequence = (last_sequence & ~0xffff) | params['sequence']
if sequence < last_sequence:
sequence += 0x10000
self.last_sequence = sequence
raw_samples = self.raw_samples
if len(raw_samples) >= 300000:
# Avoid filling up memory with too many samples
return
raw_samples.append((sequence, params['data']))
def _convert_sequence(self, sequence):
sequence = (self.last_sequence & ~0xffff) | sequence
if sequence < self.last_sequence:
sequence += 0x10000
return sequence
def read_reg(self, reg): def read_reg(self, reg):
params = self.spi.spi_transfer([reg | REG_MOD_READ, 0x00]) params = self.spi.spi_transfer([reg | REG_MOD_READ, 0x00])
response = bytearray(params['response']) response = bytearray(params['response'])
@@ -291,151 +501,116 @@ class ADXL345:
"This is generally indicative of connection problems " "This is generally indicative of connection problems "
"(e.g. faulty wiring) or a faulty adxl345 chip." % ( "(e.g. faulty wiring) or a faulty adxl345 chip." % (
reg, val, stored_val)) reg, val, stored_val))
# Measurement collection
def is_measuring(self): def is_measuring(self):
return self.query_rate > 0 return self.query_rate > 0
def _handle_adxl345_data(self, params): def start_measurements(self, rate=None):
with self.lock:
self.raw_samples.append(params)
def _extract_samples(self, raw_samples):
# Load variables to optimize inner loop below
(x_pos, x_scale), (y_pos, y_scale), (z_pos, z_scale) = self.axes_map
last_sequence = self.last_sequence
time_base, chip_base, inv_freq = self.clock_sync.get_time_translation()
# Process every message in raw_samples
count = seq = 0
samples = [None] * (len(raw_samples) * SAMPLES_PER_BLOCK)
for params in raw_samples:
seq_diff = (last_sequence - params['sequence']) & 0xffff
seq_diff -= (seq_diff & 0x8000) << 1
seq = last_sequence - seq_diff
d = bytearray(params['data'])
msg_cdiff = seq * SAMPLES_PER_BLOCK - chip_base
for i in range(len(d) // BYTES_PER_SAMPLE):
d_xyz = d[i*BYTES_PER_SAMPLE:(i+1)*BYTES_PER_SAMPLE]
xlow, ylow, zlow, xzhigh, yzhigh = d_xyz
if yzhigh & 0x80:
self.last_error_count += 1
continue
rx = (xlow | ((xzhigh & 0x1f) << 8)) - ((xzhigh & 0x10) << 9)
ry = (ylow | ((yzhigh & 0x1f) << 8)) - ((yzhigh & 0x10) << 9)
rz = ((zlow | ((xzhigh & 0xe0) << 3) | ((yzhigh & 0xe0) << 6))
- ((yzhigh & 0x40) << 7))
raw_xyz = (rx, ry, rz)
x = round(raw_xyz[x_pos] * x_scale, 6)
y = round(raw_xyz[y_pos] * y_scale, 6)
z = round(raw_xyz[z_pos] * z_scale, 6)
ptime = round(time_base + (msg_cdiff + i) * inv_freq, 6)
samples[count] = (ptime, x, y, z)
count += 1
self.clock_sync.set_last_chip_clock(seq * SAMPLES_PER_BLOCK + i)
del samples[count:]
return samples
def _update_clock(self, minclock=0):
# Query current state
for retry in range(5):
params = self.query_adxl345_status_cmd.send([self.oid],
minclock=minclock)
fifo = params['fifo'] & 0x7f
if fifo <= 32:
break
else:
raise self.printer.command_error("Unable to query adxl345 fifo")
mcu_clock = self.mcu.clock32_to_clock64(params['clock'])
sequence = (self.last_sequence & ~0xffff) | params['next_sequence']
if sequence < self.last_sequence:
sequence += 0x10000
self.last_sequence = sequence
buffered = params['buffered']
limit_count = (self.last_limit_count & ~0xffff) | params['limit_count']
if limit_count < self.last_limit_count:
limit_count += 0x10000
self.last_limit_count = limit_count
duration = params['query_ticks']
if duration > self.max_query_duration:
# Skip measurement as a high query time could skew clock tracking
self.max_query_duration = max(2 * self.max_query_duration,
self.mcu.seconds_to_clock(.000005))
return
self.max_query_duration = 2 * duration
msg_count = (sequence * SAMPLES_PER_BLOCK
+ buffered // BYTES_PER_SAMPLE + fifo)
# The "chip clock" is the message counter plus .5 for average
# inaccuracy of query responses and plus .5 for assumed offset
# of adxl345 hw processing time.
chip_clock = msg_count + 1
self.clock_sync.update(mcu_clock + duration // 2, chip_clock)
def _start_measurements(self):
if self.is_measuring(): if self.is_measuring():
return return
# In case of miswiring, testing ADXL345 device ID prevents treating rate = rate or self.data_rate
# noise or wrong signal as a correctly initialized device if not self.is_initialized():
dev_id = self.read_reg(REG_DEVID) self.initialize()
if dev_id != ADXL345_DEV_ID:
raise self.printer.command_error(
"Invalid adxl345 id (got %x vs %x).\n"
"This is generally indicative of connection problems\n"
"(e.g. faulty wiring) or a faulty adxl345 chip."
% (dev_id, ADXL345_DEV_ID))
# Setup chip in requested query rate # Setup chip in requested query rate
self.set_reg(REG_POWER_CTL, 0x00) clock = 0
self.set_reg(REG_DATA_FORMAT, 0x0B) if self.last_tx_time:
clock = self.mcu.print_time_to_clock(self.last_tx_time)
self.set_reg(REG_POWER_CTL, 0x00, minclock=clock)
self.set_reg(REG_FIFO_CTL, 0x00) self.set_reg(REG_FIFO_CTL, 0x00)
self.set_reg(REG_BW_RATE, QUERY_RATES[self.data_rate]) self.set_reg(REG_BW_RATE, QUERY_RATES[rate])
self.set_reg(REG_FIFO_CTL, SET_FIFO_CTL) self.set_reg(REG_FIFO_CTL, 0x80)
# Setup samples # Setup samples
with self.lock: print_time = self.printer.lookup_object('toolhead').get_last_move_time()
self.raw_samples = [] self.raw_samples = []
self.last_sequence = 0
self.samples_start1 = self.samples_start2 = print_time
# Start bulk reading # Start bulk reading
systime = self.printer.get_reactor().monotonic()
print_time = self.mcu.estimated_print_time(systime) + MIN_MSG_TIME
reqclock = self.mcu.print_time_to_clock(print_time) reqclock = self.mcu.print_time_to_clock(print_time)
rest_ticks = self.mcu.seconds_to_clock(4. / self.data_rate) rest_ticks = self.mcu.seconds_to_clock(4. / rate)
self.query_rate = self.data_rate self.last_tx_time = print_time
self.query_rate = rate
self.query_adxl345_cmd.send([self.oid, reqclock, rest_ticks], self.query_adxl345_cmd.send([self.oid, reqclock, rest_ticks],
reqclock=reqclock) reqclock=reqclock)
logging.info("ADXL345 starting '%s' measurements", self.name) def finish_measurements(self):
# Initialize clock tracking
self.last_sequence = 0
self.last_limit_count = self.last_error_count = 0
self.clock_sync.reset(reqclock, 0)
self.max_query_duration = 1 << 31
self._update_clock(minclock=reqclock)
self.max_query_duration = 1 << 31
def _finish_measurements(self):
if not self.is_measuring(): if not self.is_measuring():
return return ADXL345Results()
# Halt bulk reading # Halt bulk reading
params = self.query_adxl345_end_cmd.send([self.oid, 0, 0]) print_time = self.printer.lookup_object('toolhead').get_last_move_time()
clock = self.mcu.print_time_to_clock(print_time)
params = self.query_adxl345_end_cmd.send([self.oid, 0, 0],
minclock=clock)
self.last_tx_time = print_time
self.query_rate = 0 self.query_rate = 0
with self.lock:
self.raw_samples = []
logging.info("ADXL345 finished '%s' measurements", self.name)
# API interface
def _api_update(self, eventtime):
self._update_clock()
with self.lock:
raw_samples = self.raw_samples raw_samples = self.raw_samples
self.raw_samples = [] self.raw_samples = []
if not raw_samples: # Generate results
return {} end1_time = self._clock_to_print_time(params['end1_clock'])
samples = self._extract_samples(raw_samples) end2_time = self._clock_to_print_time(params['end2_clock'])
if not samples: end_sequence = self._convert_sequence(params['sequence'])
return {} overflows = params['limit_count']
return {'data': samples, 'errors': self.last_error_count, res = ADXL345Results()
'overflows': self.last_limit_count} res.setup_data(self.axes_map, raw_samples, end_sequence, overflows,
def _api_startstop(self, is_start): self.samples_start1, self.samples_start2,
if is_start: end1_time, end2_time)
self._start_measurements() logging.info("ADXL345 finished %d measurements: %s",
res.total_count, res.get_stats())
return res
def end_query(self, name, gcmd):
if not self.is_measuring():
return
res = self.finish_measurements()
# Write data to file
if self.name == "default":
filename = "/tmp/adxl345-%s.csv" % (name,)
else: else:
self._finish_measurements() filename = "/tmp/adxl345-%s-%s.csv" % (self.name, name,)
def _handle_dump_adxl345(self, web_request): res.write_to_file(filename)
self.api_dump.add_client(web_request) gcmd.respond_info(
hdr = ('time', 'x_acceleration', 'y_acceleration', 'z_acceleration') "Writing raw accelerometer data to %s file" % (filename,))
web_request.send({'header': hdr}) cmd_ACCELEROMETER_MEASURE_help = "Start/stop accelerometer"
def start_internal_client(self): def cmd_ACCELEROMETER_MEASURE(self, gcmd):
cconn = self.api_dump.add_internal_client() if self.is_measuring():
return AccelQueryHelper(self.printer, cconn) name = gcmd.get("NAME", time.strftime("%Y%m%d_%H%M%S"))
if not name.replace('-', '').replace('_', '').isalnum():
raise gcmd.error("Invalid adxl345 NAME parameter")
self.end_query(name, gcmd)
gcmd.respond_info("adxl345 measurements stopped")
else:
rate = gcmd.get_int("RATE", self.data_rate)
if rate not in QUERY_RATES:
raise gcmd.error("Not a valid adxl345 query rate: %d" % (rate,))
self.start_measurements(rate)
gcmd.respond_info("adxl345 measurements started")
cmd_ACCELEROMETER_QUERY_help = "Query accelerometer for the current values"
def cmd_ACCELEROMETER_QUERY(self, gcmd):
if self.is_measuring():
raise gcmd.error("adxl345 measurements in progress")
self.start_measurements()
reactor = self.printer.get_reactor()
eventtime = starttime = reactor.monotonic()
while not self.raw_samples:
eventtime = reactor.pause(eventtime + .1)
if eventtime > starttime + 3.:
# Try to shutdown the measurements
self.finish_measurements()
raise gcmd.error("Timeout reading adxl345 data")
result = self.finish_measurements()
values = result.decode_samples()
_, accel_x, accel_y, accel_z = values[-1]
gcmd.respond_info("adxl345 values (x, y, z): %.6f, %.6f, %.6f" % (
accel_x, accel_y, accel_z))
cmd_ADXL345_DEBUG_READ_help = "Query accelerometer register (for debugging)"
def cmd_ADXL345_DEBUG_READ(self, gcmd):
if self.is_measuring():
raise gcmd.error("adxl345 measurements in progress")
reg = gcmd.get("REG", minval=29, maxval=57, parser=lambda x: int(x, 0))
val = self.read_reg(reg)
gcmd.respond_info("ADXL345 REG[0x%x] = 0x%x" % (reg, val))
cmd_ADXL345_DEBUG_WRITE_help = "Set accelerometer register (for debugging)"
def cmd_ADXL345_DEBUG_WRITE(self, gcmd):
if self.is_measuring():
raise gcmd.error("adxl345 measurements in progress")
reg = gcmd.get("REG", minval=29, maxval=57, parser=lambda x: int(x, 0))
val = gcmd.get("VAL", minval=0, maxval=255, parser=lambda x: int(x, 0))
self.set_reg(reg, val)
def load_config(config): def load_config(config):
return ADXL345(config) return ADXL345(config)

View File

@@ -9,7 +9,7 @@ from . import bus, motion_report
MIN_MSG_TIME = 0.100 MIN_MSG_TIME = 0.100
TCODE_ERROR = 0xff TCODE_ERROR = 0xff
TRINAMIC_DRIVERS = ["tmc2130", "tmc2208", "tmc2209", "tmc2660", "tmc5160"] TRINAMIC_DRIVERS = ["tmc2130", "tmc2208", "tmc2209", "tmc2240", "tmc2660", "tmc5160"]
CALIBRATION_BITS = 6 # 64 entries CALIBRATION_BITS = 6 # 64 entries
ANGLE_BITS = 16 # angles range from 0..65535 ANGLE_BITS = 16 # angles range from 0..65535

View File

@@ -6,7 +6,7 @@
import math, logging import math, logging
import stepper import stepper
TRINAMIC_DRIVERS = ["tmc2130", "tmc2208", "tmc2209", "tmc2660", "tmc5160"] TRINAMIC_DRIVERS = ["tmc2130", "tmc2208", "tmc2209", "tmc2240", "tmc2660", "tmc5160"]
# Calculate the trigger phase of a stepper motor # Calculate the trigger phase of a stepper motor
class PhaseCalc: class PhaseCalc:

View File

@@ -15,6 +15,8 @@ class PrinterExtruderStepper:
self.handle_connect) self.handle_connect)
def handle_connect(self): def handle_connect(self):
self.extruder_stepper.sync_to_extruder(self.extruder_name) self.extruder_stepper.sync_to_extruder(self.extruder_name)
def get_status(self, eventtime):
return self.extruder_stepper.get_status(eventtime)
def load_config_prefix(config): def load_config_prefix(config):
return PrinterExtruderStepper(config) return PrinterExtruderStepper(config)

View File

@@ -24,9 +24,19 @@ class ManualProbe:
'Z_OFFSET_APPLY_ENDSTOP', 'Z_OFFSET_APPLY_ENDSTOP',
self.cmd_Z_OFFSET_APPLY_ENDSTOP, self.cmd_Z_OFFSET_APPLY_ENDSTOP,
desc=self.cmd_Z_OFFSET_APPLY_ENDSTOP_help) desc=self.cmd_Z_OFFSET_APPLY_ENDSTOP_help)
self.reset_status()
def manual_probe_finalize(self, kin_pos): def manual_probe_finalize(self, kin_pos):
if kin_pos is not None: if kin_pos is not None:
self.gcode.respond_info("Z position is %.3f" % (kin_pos[2],)) self.gcode.respond_info("Z position is %.3f" % (kin_pos[2],))
def reset_status(self):
self.status = {
'is_active': False,
'z_position': None,
'z_position_lower': None,
'z_position_upper': None
}
def get_status(self, eventtime):
return self.status
cmd_MANUAL_PROBE_help = "Start manual probe helper script" cmd_MANUAL_PROBE_help = "Start manual probe helper script"
def cmd_MANUAL_PROBE(self, gcmd): def cmd_MANUAL_PROBE(self, gcmd):
ManualProbeHelper(self.printer, gcmd, self.manual_probe_finalize) ManualProbeHelper(self.printer, gcmd, self.manual_probe_finalize)
@@ -78,6 +88,7 @@ class ManualProbeHelper:
self.finalize_callback = finalize_callback self.finalize_callback = finalize_callback
self.gcode = self.printer.lookup_object('gcode') self.gcode = self.printer.lookup_object('gcode')
self.toolhead = self.printer.lookup_object('toolhead') self.toolhead = self.printer.lookup_object('toolhead')
self.manual_probe = self.printer.lookup_object('manual_probe')
self.speed = gcmd.get_float("SPEED", 5.) self.speed = gcmd.get_float("SPEED", 5.)
self.past_positions = [] self.past_positions = []
self.last_toolhead_pos = self.last_kinematics_pos = None self.last_toolhead_pos = self.last_kinematics_pos = None
@@ -130,11 +141,20 @@ class ManualProbeHelper:
prev_pos = next_pos - 1 prev_pos = next_pos - 1
if next_pos < len(pp) and pp[next_pos] == z_pos: if next_pos < len(pp) and pp[next_pos] == z_pos:
next_pos += 1 next_pos += 1
prev_pos_val = next_pos_val = None
prev_str = next_str = "??????" prev_str = next_str = "??????"
if prev_pos >= 0: if prev_pos >= 0:
prev_str = "%.3f" % (pp[prev_pos],) prev_pos_val = pp[prev_pos]
prev_str = "%.3f" % (prev_pos_val,)
if next_pos < len(pp): if next_pos < len(pp):
next_str = "%.3f" % (pp[next_pos],) next_pos_val = pp[next_pos]
next_str = "%.3f" % (next_pos_val,)
self.manual_probe.status = {
'is_active': True,
'z_position': z_pos,
'z_position_lower': prev_pos_val,
'z_position_upper': next_pos_val,
}
# Find recent positions # Find recent positions
self.gcode.respond_info("Z position: %s --> %.3f <-- %s" self.gcode.respond_info("Z position: %s --> %.3f <-- %s"
% (prev_str, z_pos, next_str)) % (prev_str, z_pos, next_str))
@@ -183,6 +203,7 @@ class ManualProbeHelper:
self.move_z(next_z_pos) self.move_z(next_z_pos)
self.report_z_status(next_z_pos != z_pos, z_pos) self.report_z_status(next_z_pos != z_pos, z_pos)
def finalize(self, success): def finalize(self, success):
self.manual_probe.reset_status()
self.gcode.register_command('ACCEPT', None) self.gcode.register_command('ACCEPT', None)
self.gcode.register_command('NEXT', None) self.gcode.register_command('NEXT', None)
self.gcode.register_command('ABORT', None) self.gcode.register_command('ABORT', None)

View File

@@ -6,6 +6,15 @@
import logging, math, os, time import logging, math, os, time
from . import shaper_calibrate from . import shaper_calibrate
def _parse_probe_points(config):
points = config.get('probe_points').split('\n')
try:
points = [line.split(',', 2) for line in points if line.strip()]
return [[float(coord.strip()) for coord in p] for p in points]
except:
raise config.error("Unable to parse probe_points in %s" % (
config.get_name()))
class TestAxis: class TestAxis:
def __init__(self, axis=None, vib_dir=None): def __init__(self, axis=None, vib_dir=None):
if axis is None: if axis is None:
@@ -57,8 +66,7 @@ class VibrationPulseTest:
self.hz_per_sec = config.getfloat('hz_per_sec', 1., self.hz_per_sec = config.getfloat('hz_per_sec', 1.,
minval=0.1, maxval=2.) minval=0.1, maxval=2.)
self.probe_points = config.getlists('probe_points', seps=(',', '\n'), self.probe_points = _parse_probe_points(config)
parser=float, count=3)
def get_start_test_points(self): def get_start_test_points(self):
return self.probe_points return self.probe_points
def prepare_test(self, gcmd): def prepare_test(self, gcmd):
@@ -147,21 +155,15 @@ class ResonanceTester:
(chip_axis, self.printer.lookup_object(chip_name)) (chip_axis, self.printer.lookup_object(chip_name))
for chip_axis, chip_name in self.accel_chip_names] for chip_axis, chip_name in self.accel_chip_names]
def _run_test(self, gcmd, axes, helper, raw_name_suffix=None, def _run_test(self, gcmd, axes, helper, raw_name_suffix=None):
accel_chips=None, test_point=None):
toolhead = self.printer.lookup_object('toolhead') toolhead = self.printer.lookup_object('toolhead')
calibration_data = {axis: None for axis in axes} calibration_data = {axis: None for axis in axes}
self.test.prepare_test(gcmd) self.test.prepare_test(gcmd)
if test_point is not None:
test_points = [test_point]
else:
test_points = self.test.get_start_test_points() test_points = self.test.get_start_test_points()
for point in test_points: for point in test_points:
toolhead.manual_move(point, self.move_speed) toolhead.manual_move(point, self.move_speed)
if len(test_points) > 1 or test_point is not None: if len(test_points) > 1:
gcmd.respond_info( gcmd.respond_info(
"Probing point (%.3f, %.3f, %.3f)" % tuple(point)) "Probing point (%.3f, %.3f, %.3f)" % tuple(point))
for axis in axes: for axis in axes:
@@ -170,38 +172,34 @@ class ResonanceTester:
if len(axes) > 1: if len(axes) > 1:
gcmd.respond_info("Testing axis %s" % axis.get_name()) gcmd.respond_info("Testing axis %s" % axis.get_name())
raw_values = []
if accel_chips is None:
for chip_axis, chip in self.accel_chips: for chip_axis, chip in self.accel_chips:
if axis.matches(chip_axis): if axis.matches(chip_axis):
aclient = chip.start_internal_client() chip.start_measurements()
raw_values.append((chip_axis, aclient, chip.name))
else:
for chip in accel_chips:
aclient = chip.start_internal_client()
raw_values.append((axis, aclient, chip.name))
# Generate moves # Generate moves
self.test.run_test(axis, gcmd) self.test.run_test(axis, gcmd)
for chip_axis, aclient, chip_name in raw_values: raw_values = []
aclient.finish_measurements() for chip_axis, chip in self.accel_chips:
if axis.matches(chip_axis):
results = chip.finish_measurements()
if raw_name_suffix is not None: if raw_name_suffix is not None:
raw_name = self.get_filename( raw_name = self.get_filename(
'raw_data', raw_name_suffix, axis, 'raw_data', raw_name_suffix, axis,
point if len(test_points) > 1 else None, point if len(test_points) > 1 else None)
chip_name if accel_chips is not None else None,) results.write_to_file(raw_name)
aclient.write_to_file(raw_name)
gcmd.respond_info( gcmd.respond_info(
"Writing raw accelerometer data to " "Writing raw accelerometer data to "
"%s file" % (raw_name,)) "%s file" % (raw_name,))
raw_values.append((chip_axis, results))
gcmd.respond_info("%s-axis accelerometer stats: %s" % (
chip_axis, results.get_stats(),))
if helper is None: if helper is None:
continue continue
for chip_axis, aclient, chip_name in raw_values: for chip_axis, chip_values in raw_values:
if not aclient.has_valid_samples(): if not chip_values:
raise gcmd.error( raise gcmd.error(
"accelerometer '%s' measured no data" % ( "%s-axis accelerometer measured no data" % (
chip_name,)) chip_axis,))
new_data = helper.process_accelerometer_data(aclient) new_data = helper.process_accelerometer_data(chip_values)
if calibration_data[axis] is None: if calibration_data[axis] is None:
calibration_data[axis] = new_data calibration_data[axis] = new_data
else: else:
@@ -211,28 +209,6 @@ class ResonanceTester:
def cmd_TEST_RESONANCES(self, gcmd): def cmd_TEST_RESONANCES(self, gcmd):
# Parse parameters # Parse parameters
axis = _parse_axis(gcmd, gcmd.get("AXIS").lower()) axis = _parse_axis(gcmd, gcmd.get("AXIS").lower())
accel_chips = gcmd.get("CHIPS", None)
test_point = gcmd.get("POINT", None)
if test_point:
test_coords = test_point.split(',')
if len(test_coords) != 3:
raise gcmd.error("Invalid POINT parameter, must be 'x,y,z'")
try:
test_point = [float(p.strip()) for p in test_coords]
except ValueError:
raise gcmd.error("Invalid POINT parameter, must be 'x,y,z'"
" where x, y and z are valid floating point numbers")
if accel_chips:
parsed_chips = []
for chip_name in accel_chips.split(','):
if "adxl345" in chip_name:
chip_lookup_name = chip_name.strip()
else:
chip_lookup_name = "adxl345 " + chip_name.strip();
chip = self.printer.lookup_object(chip_lookup_name)
parsed_chips.append(chip)
outputs = gcmd.get("OUTPUT", "resonances").lower().split(',') outputs = gcmd.get("OUTPUT", "resonances").lower().split(',')
for output in outputs: for output in outputs:
@@ -256,13 +232,10 @@ class ResonanceTester:
data = self._run_test( data = self._run_test(
gcmd, [axis], helper, gcmd, [axis], helper,
raw_name_suffix=name_suffix if raw_output else None, raw_name_suffix=name_suffix if raw_output else None)[axis]
accel_chips=parsed_chips if accel_chips else None,
test_point=test_point)[axis]
if csv_output: if csv_output:
csv_name = self.save_calibration_data('resonances', name_suffix, csv_name = self.save_calibration_data('resonances', name_suffix,
helper, axis, data, helper, axis, data)
point=test_point)
gcmd.respond_info( gcmd.respond_info(
"Resonances data written to %s file" % (csv_name,)) "Resonances data written to %s file" % (csv_name,))
cmd_SHAPER_CALIBRATE_help = ( cmd_SHAPER_CALIBRATE_help = (
@@ -316,18 +289,14 @@ class ResonanceTester:
"Measures noise of all enabled accelerometer chips") "Measures noise of all enabled accelerometer chips")
def cmd_MEASURE_AXES_NOISE(self, gcmd): def cmd_MEASURE_AXES_NOISE(self, gcmd):
meas_time = gcmd.get_float("MEAS_TIME", 2.) meas_time = gcmd.get_float("MEAS_TIME", 2.)
raw_values = [(chip_axis, chip.start_internal_client()) for _, chip in self.accel_chips:
for chip_axis, chip in self.accel_chips] chip.start_measurements()
self.printer.lookup_object('toolhead').dwell(meas_time) self.printer.lookup_object('toolhead').dwell(meas_time)
for chip_axis, aclient in raw_values: raw_values = [(chip_axis, chip.finish_measurements())
aclient.finish_measurements() for chip_axis, chip in self.accel_chips]
helper = shaper_calibrate.ShaperCalibrate(self.printer) helper = shaper_calibrate.ShaperCalibrate(self.printer)
for chip_axis, aclient in raw_values: for chip_axis, raw_data in raw_values:
if not aclient.has_valid_samples(): data = helper.process_accelerometer_data(raw_data)
raise gcmd.error(
"%s-axis accelerometer measured no data" % (
chip_axis,))
data = helper.process_accelerometer_data(aclient)
vx = data.psd_x.mean() vx = data.psd_x.mean()
vy = data.psd_y.mean() vy = data.psd_y.mean()
vz = data.psd_z.mean() vz = data.psd_z.mean()
@@ -338,22 +307,18 @@ class ResonanceTester:
def is_valid_name_suffix(self, name_suffix): def is_valid_name_suffix(self, name_suffix):
return name_suffix.replace('-', '').replace('_', '').isalnum() return name_suffix.replace('-', '').replace('_', '').isalnum()
def get_filename(self, base, name_suffix, axis=None, def get_filename(self, base, name_suffix, axis=None, point=None):
point=None, chip_name=None):
name = base name = base
if axis: if axis:
name += '_' + axis.get_name() name += '_' + axis.get_name()
if chip_name:
name += '_' + chip_name.replace(" ", "_")
if point: if point:
name += "_%.3f_%.3f_%.3f" % (point[0], point[1], point[2]) name += "_%.3f_%.3f_%.3f" % (point[0], point[1], point[2])
name += '_' + name_suffix name += '_' + name_suffix
return os.path.join("/tmp", name + ".csv") return os.path.join("/tmp", name + ".csv")
def save_calibration_data(self, base_name, name_suffix, shaper_calibrate, def save_calibration_data(self, base_name, name_suffix, shaper_calibrate,
axis, calibration_data, axis, calibration_data, all_shapers=None):
all_shapers=None, point=None): output = self.get_filename(base_name, name_suffix, axis)
output = self.get_filename(base_name, name_suffix, axis, point)
shaper_calibrate.save_calibration_data(output, calibration_data, shaper_calibrate.save_calibration_data(output, calibration_data,
all_shapers) all_shapers)
return output return output

View File

@@ -18,6 +18,29 @@ class SaveVariables:
gcode = self.printer.lookup_object('gcode') gcode = self.printer.lookup_object('gcode')
gcode.register_command('SAVE_VARIABLE', self.cmd_SAVE_VARIABLE, gcode.register_command('SAVE_VARIABLE', self.cmd_SAVE_VARIABLE,
desc=self.cmd_SAVE_VARIABLE_help) desc=self.cmd_SAVE_VARIABLE_help)
def load_variable(self, section, option):
varfile = configparser.ConfigParser()
try:
varfile.read(self.filename)
return varfile.get(section, option)
except:
msg = "Unable to parse existing variable file"
logging.exception(msg)
raise self.printer.command_error(msg)
def save_variable(self, section, option, value):
varfile = configparser.ConfigParser()
try:
varfile.read(self.filename)
if not varfile.has_section(section):
varfile.add_section(section)
varfile.set(section, option, value)
with open(self.filename, 'w') as configfile:
varfile.write(configfile)
except Exception as e:
msg = "Unable to save variable"
logging.exception(msg)
raise self.printer.command_error(msg)
def loadVariables(self): def loadVariables(self):
allvars = {} allvars = {}
varfile = configparser.ConfigParser() varfile = configparser.ConfigParser()

View File

@@ -3,17 +3,129 @@
# Copyright (C) 2020 Dmitry Butyugin <dmbutyugin@google.com> # Copyright (C) 2020 Dmitry Butyugin <dmbutyugin@google.com>
# #
# This file may be distributed under the terms of the GNU GPLv3 license. # This file may be distributed under the terms of the GNU GPLv3 license.
import collections, importlib, logging, math, multiprocessing, traceback import collections, importlib, logging, math, multiprocessing
shaper_defs = importlib.import_module('.shaper_defs', 'extras')
MIN_FREQ = 5. MIN_FREQ = 5.
MAX_FREQ = 200. MAX_FREQ = 200.
WINDOW_T_SEC = 0.5 WINDOW_T_SEC = 0.5
MAX_SHAPER_FREQ = 150. MAX_SHAPER_FREQ = 150.
SHAPER_VIBRATION_REDUCTION=20.
TEST_DAMPING_RATIOS=[0.075, 0.1, 0.15] TEST_DAMPING_RATIOS=[0.075, 0.1, 0.15]
SHAPER_DAMPING_RATIO = 0.1
AUTOTUNE_SHAPERS = ['zv', 'mzv', 'ei', '2hump_ei', '3hump_ei'] ######################################################################
# Input shapers
######################################################################
InputShaperCfg = collections.namedtuple(
'InputShaperCfg', ('name', 'init_func', 'min_freq'))
def get_zv_shaper(shaper_freq, damping_ratio):
df = math.sqrt(1. - damping_ratio**2)
K = math.exp(-damping_ratio * math.pi / df)
t_d = 1. / (shaper_freq * df)
A = [1., K]
T = [0., .5*t_d]
return (A, T)
def get_zvd_shaper(shaper_freq, damping_ratio):
df = math.sqrt(1. - damping_ratio**2)
K = math.exp(-damping_ratio * math.pi / df)
t_d = 1. / (shaper_freq * df)
A = [1., 2.*K, K**2]
T = [0., .5*t_d, t_d]
return (A, T)
def get_mzv_shaper(shaper_freq, damping_ratio):
df = math.sqrt(1. - damping_ratio**2)
K = math.exp(-.75 * damping_ratio * math.pi / df)
t_d = 1. / (shaper_freq * df)
a1 = 1. - 1. / math.sqrt(2.)
a2 = (math.sqrt(2.) - 1.) * K
a3 = a1 * K * K
A = [a1, a2, a3]
T = [0., .375*t_d, .75*t_d]
return (A, T)
def get_ei_shaper(shaper_freq, damping_ratio):
v_tol = 1. / SHAPER_VIBRATION_REDUCTION # vibration tolerance
df = math.sqrt(1. - damping_ratio**2)
K = math.exp(-damping_ratio * math.pi / df)
t_d = 1. / (shaper_freq * df)
a1 = .25 * (1. + v_tol)
a2 = .5 * (1. - v_tol) * K
a3 = a1 * K * K
A = [a1, a2, a3]
T = [0., .5*t_d, t_d]
return (A, T)
def get_2hump_ei_shaper(shaper_freq, damping_ratio):
v_tol = 1. / SHAPER_VIBRATION_REDUCTION # vibration tolerance
df = math.sqrt(1. - damping_ratio**2)
K = math.exp(-damping_ratio * math.pi / df)
t_d = 1. / (shaper_freq * df)
V2 = v_tol**2
X = pow(V2 * (math.sqrt(1. - V2) + 1.), 1./3.)
a1 = (3.*X*X + 2.*X + 3.*V2) / (16.*X)
a2 = (.5 - a1) * K
a3 = a2 * K
a4 = a1 * K * K * K
A = [a1, a2, a3, a4]
T = [0., .5*t_d, t_d, 1.5*t_d]
return (A, T)
def get_3hump_ei_shaper(shaper_freq, damping_ratio):
v_tol = 1. / SHAPER_VIBRATION_REDUCTION # vibration tolerance
df = math.sqrt(1. - damping_ratio**2)
K = math.exp(-damping_ratio * math.pi / df)
t_d = 1. / (shaper_freq * df)
K2 = K*K
a1 = 0.0625 * (1. + 3. * v_tol + 2. * math.sqrt(2. * (v_tol + 1.) * v_tol))
a2 = 0.25 * (1. - v_tol) * K
a3 = (0.5 * (1. + v_tol) - 2. * a1) * K2
a4 = a2 * K2
a5 = a1 * K2 * K2
A = [a1, a2, a3, a4, a5]
T = [0., .5*t_d, t_d, 1.5*t_d, 2.*t_d]
return (A, T)
def get_shaper_smoothing(shaper, accel=5000, scv=5.):
half_accel = accel * .5
A, T = shaper
inv_D = 1. / sum(A)
n = len(T)
# Calculate input shaper shift
ts = sum([A[i] * T[i] for i in range(n)]) * inv_D
# Calculate offset for 90 and 180 degrees turn
offset_90 = offset_180 = 0.
for i in range(n):
if T[i] >= ts:
# Calculate offset for one of the axes
offset_90 += A[i] * (scv + half_accel * (T[i]-ts)) * (T[i]-ts)
offset_180 += A[i] * half_accel * (T[i]-ts)**2
offset_90 *= inv_D * math.sqrt(2.)
offset_180 *= inv_D
return max(offset_90, offset_180)
# min_freq for each shaper is chosen to have projected max_accel ~= 1500
INPUT_SHAPERS = [
InputShaperCfg('zv', get_zv_shaper, min_freq=21.),
InputShaperCfg('mzv', get_mzv_shaper, min_freq=23.),
InputShaperCfg('ei', get_ei_shaper, min_freq=29.),
InputShaperCfg('2hump_ei', get_2hump_ei_shaper, min_freq=39.),
InputShaperCfg('3hump_ei', get_3hump_ei_shaper, min_freq=48.),
]
###################################################################### ######################################################################
# Frequency response calculation and shaper auto-tuning # Frequency response calculation and shaper auto-tuning
@@ -152,10 +264,7 @@ class ShaperCalibrate:
if isinstance(raw_values, np.ndarray): if isinstance(raw_values, np.ndarray):
data = raw_values data = raw_values
else: else:
samples = raw_values.get_samples() data = np.array(raw_values.decode_samples())
if not samples:
return None
data = np.array(samples)
N = data.shape[0] N = data.shape[0]
T = data[-1,0] - data[0,0] T = data[-1,0] - data[0,0]
@@ -201,32 +310,12 @@ class ShaperCalibrate:
# The input shaper can only reduce the amplitude of vibrations by # The input shaper can only reduce the amplitude of vibrations by
# SHAPER_VIBRATION_REDUCTION times, so all vibrations below that # SHAPER_VIBRATION_REDUCTION times, so all vibrations below that
# threshold can be igonred # threshold can be igonred
vibr_threshold = psd.max() / shaper_defs.SHAPER_VIBRATION_REDUCTION vibrations_threshold = psd.max() / SHAPER_VIBRATION_REDUCTION
remaining_vibrations = self.numpy.maximum( remaining_vibrations = self.numpy.maximum(
vals * psd - vibr_threshold, 0).sum() vals * psd - vibrations_threshold, 0).sum()
all_vibrations = self.numpy.maximum(psd - vibr_threshold, 0).sum() all_vibrations = self.numpy.maximum(psd - vibrations_threshold, 0).sum()
return (remaining_vibrations / all_vibrations, vals) return (remaining_vibrations / all_vibrations, vals)
def _get_shaper_smoothing(self, shaper, accel=5000, scv=5.):
half_accel = accel * .5
A, T = shaper
inv_D = 1. / sum(A)
n = len(T)
# Calculate input shaper shift
ts = sum([A[i] * T[i] for i in range(n)]) * inv_D
# Calculate offset for 90 and 180 degrees turn
offset_90 = offset_180 = 0.
for i in range(n):
if T[i] >= ts:
# Calculate offset for one of the axes
offset_90 += A[i] * (scv + half_accel * (T[i]-ts)) * (T[i]-ts)
offset_180 += A[i] * half_accel * (T[i]-ts)**2
offset_90 *= inv_D * math.sqrt(2.)
offset_180 *= inv_D
return max(offset_90, offset_180)
def fit_shaper(self, shaper_cfg, calibration_data, max_smoothing): def fit_shaper(self, shaper_cfg, calibration_data, max_smoothing):
np = self.numpy np = self.numpy
@@ -241,9 +330,8 @@ class ShaperCalibrate:
for test_freq in test_freqs[::-1]: for test_freq in test_freqs[::-1]:
shaper_vibrations = 0. shaper_vibrations = 0.
shaper_vals = np.zeros(shape=freq_bins.shape) shaper_vals = np.zeros(shape=freq_bins.shape)
shaper = shaper_cfg.init_func( shaper = shaper_cfg.init_func(test_freq, SHAPER_DAMPING_RATIO)
test_freq, shaper_defs.DEFAULT_DAMPING_RATIO) shaper_smoothing = get_shaper_smoothing(shaper)
shaper_smoothing = self._get_shaper_smoothing(shaper)
if max_smoothing and shaper_smoothing > max_smoothing and best_res: if max_smoothing and shaper_smoothing > max_smoothing and best_res:
return best_res return best_res
# Exact damping ratio of the printer is unknown, pessimizing # Exact damping ratio of the printer is unknown, pessimizing
@@ -296,16 +384,14 @@ class ShaperCalibrate:
# Just some empirically chosen value which produces good projections # Just some empirically chosen value which produces good projections
# for max_accel without much smoothing # for max_accel without much smoothing
TARGET_SMOOTHING = 0.12 TARGET_SMOOTHING = 0.12
max_accel = self._bisect(lambda test_accel: self._get_shaper_smoothing( max_accel = self._bisect(lambda test_accel: get_shaper_smoothing(
shaper, test_accel) <= TARGET_SMOOTHING) shaper, test_accel) <= TARGET_SMOOTHING)
return max_accel return max_accel
def find_best_shaper(self, calibration_data, max_smoothing, logger=None): def find_best_shaper(self, calibration_data, max_smoothing, logger=None):
best_shaper = None best_shaper = None
all_shapers = [] all_shapers = []
for shaper_cfg in shaper_defs.INPUT_SHAPERS: for shaper_cfg in INPUT_SHAPERS:
if shaper_cfg.name not in AUTOTUNE_SHAPERS:
continue
shaper = self.background_process_exec(self.fit_shaper, ( shaper = self.background_process_exec(self.fit_shaper, (
shaper_cfg, calibration_data, max_smoothing)) shaper_cfg, calibration_data, max_smoothing))
if logger is not None: if logger is not None:

View File

@@ -129,6 +129,11 @@ class PrinterPins:
raise error("Duplicate chip name '%s'" % (chip_name,)) raise error("Duplicate chip name '%s'" % (chip_name,))
self.chips[chip_name] = chip self.chips[chip_name] = chip
self.pin_resolvers[chip_name] = PinResolver() self.pin_resolvers[chip_name] = PinResolver()
def remove_chip(self, chip_name):
if chip_name not in self.chips:
raise error("Chip '%s' not found" % (chip_name,))
del self.chips[chip_name]
del self.pin_resolvers[chip_name]
def allow_multi_use_pin(self, pin_desc): def allow_multi_use_pin(self, pin_desc):
pin_params = self.parse_pin(pin_desc) pin_params = self.parse_pin(pin_desc)
share_name = "%s:%s" % (pin_params['chip_name'], pin_params['pin']) share_name = "%s:%s" % (pin_params['chip_name'], pin_params['pin'])