repair missing update

This commit is contained in:
CChen616
2024-08-23 10:45:24 +08:00
parent 3402ca3ef6
commit 25ee651226
9 changed files with 1560 additions and 1283 deletions

View File

@@ -1,10 +1,10 @@
# Support for reading acceleration data from an adxl345 chip
#
# Copyright (C) 2020-2021 Kevin O'Connor <kevin@koconnor.net>
# Copyright (C) 2020 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging, time, collections, threading, multiprocessing, os
from . import bus, motion_report
import logging, math, time, collections, multiprocessing, os
from . import bus, manual_probe, probe
# ADXL345 registers
REG_DEVID = 0x00
@@ -14,6 +14,15 @@ REG_DATA_FORMAT = 0x31
REG_FIFO_CTL = 0x38
REG_MOD_READ = 0x80
REG_MOD_MULTI = 0x40
REG_THRESH_TAP = 0x1D
REG_DUR = 0x21
REG_INT_MAP = 0x2F
REG_TAP_AXES = 0x2A
REG_OFSX = 0x1E
REG_OFSY = 0x1F
REG_OFSZ = 0x20
REG_INT_ENABLE = 0x2E
REG_INT_SOURCE = 0x30
QUERY_RATES = {
25: 0x8, 50: 0x9, 100: 0xa, 200: 0xb, 400: 0xc,
@@ -21,66 +30,67 @@ QUERY_RATES = {
}
ADXL345_DEV_ID = 0xe5
SET_FIFO_CTL = 0x90
FREEFALL_ACCEL = 9.80665 * 1000.
SCALE = 0.0039 * FREEFALL_ACCEL # 3.9mg/LSB * Earth gravity in mm/s**2
DUR_SCALE = 0.000625 # 0.625 msec / LSB
TAP_SCALE = 0.0625 * FREEFALL_ACCEL # 62.5mg/LSB * Earth gravity in mm/s**2
OFS_SCALE = 0.0156 * FREEFALL_ACCEL # 15.6mg/LSB * Earth gravity in mm/s**2
PROBE_CALIBRATION_TIME = 1.
ADXL345_REST_TIME = .01
Accel_Measurement = collections.namedtuple(
'Accel_Measurement', ('time', 'accel_x', 'accel_y', 'accel_z'))
# Helper class to obtain measurements
class AccelQueryHelper:
def __init__(self, printer, cconn):
self.printer = printer
self.cconn = cconn
print_time = printer.lookup_object('toolhead').get_last_move_time()
self.request_start_time = self.request_end_time = print_time
self.samples = self.raw_samples = []
def finish_measurements(self):
toolhead = self.printer.lookup_object('toolhead')
self.request_end_time = toolhead.get_last_move_time()
toolhead.wait_moves()
self.cconn.finalize()
def _get_raw_samples(self):
raw_samples = self.cconn.get_messages()
if raw_samples:
self.raw_samples = raw_samples
return self.raw_samples
def has_valid_samples(self):
raw_samples = self._get_raw_samples()
for msg in raw_samples:
data = msg['params']['data']
first_sample_time = data[0][0]
last_sample_time = data[-1][0]
if (first_sample_time > self.request_end_time
or last_sample_time < self.request_start_time):
continue
# The time intervals [first_sample_time, last_sample_time]
# and [request_start_time, request_end_time] have non-zero
# intersection. It is still theoretically possible that none
# of the samples from raw_samples fall into the time interval
# [request_start_time, request_end_time] if it is too narrow
# or on very heavy data losses. In practice, that interval
# is at least 1 second, so this possibility is negligible.
return True
return False
def get_samples(self):
raw_samples = self._get_raw_samples()
if not raw_samples:
# Sample results
class ADXL345Results:
def __init__(self):
self.raw_samples = None
self.samples = []
self.drops = self.overflows = 0
self.time_per_sample = self.start_range = self.end_range = 0.
def get_stats(self):
return ("drops=%d,overflows=%d"
",time_per_sample=%.9f,start_range=%.6f,end_range=%.6f"
% (self.drops, self.overflows,
self.time_per_sample, self.start_range, self.end_range))
def setup_data(self, axes_map, raw_samples, end_sequence, overflows,
start1_time, start2_time, end1_time, end2_time):
if not raw_samples or not end_sequence:
return
self.axes_map = axes_map
self.raw_samples = raw_samples
self.overflows = overflows
self.start2_time = start2_time
self.start_range = start2_time - start1_time
self.end_range = end2_time - end1_time
self.total_count = (end_sequence - 1) * 8 + len(raw_samples[-1][1]) // 6
total_time = end2_time - start2_time
self.time_per_sample = time_per_sample = total_time / self.total_count
self.seq_to_time = time_per_sample * 8.
actual_count = sum([len(data)//6 for _, data in raw_samples])
self.drops = self.total_count - actual_count
def decode_samples(self):
if not self.raw_samples:
return self.samples
total = sum([len(m['params']['data']) for m in raw_samples])
count = 0
self.samples = samples = [None] * total
for msg in raw_samples:
for samp_time, x, y, z in msg['params']['data']:
if samp_time < self.request_start_time:
continue
if samp_time > self.request_end_time:
break
samples[count] = Accel_Measurement(samp_time, x, y, z)
count += 1
del samples[count:]
(x_pos, x_scale), (y_pos, y_scale), (z_pos, z_scale) = self.axes_map
actual_count = 0
self.samples = samples = [None] * self.total_count
for seq, data in self.raw_samples:
d = bytearray(data)
count = len(data)
sdata = [(d[i] | (d[i+1] << 8)) - ((d[i+1] & 0x80) << 9)
for i in range(0, count-1, 2)]
seq_time = self.start2_time + seq * self.seq_to_time
for i in range(count//6):
samp_time = seq_time + i * self.time_per_sample
x = sdata[i*3 + x_pos] * x_scale
y = sdata[i*3 + y_pos] * y_scale
z = sdata[i*3 + z_pos] * z_scale
samples[actual_count] = Accel_Measurement(samp_time, x, y, z)
actual_count += 1
del samples[actual_count:]
return self.samples
def write_to_file(self, filename):
def write_impl():
@@ -90,8 +100,9 @@ class AccelQueryHelper:
except:
pass
f = open(filename, "w")
f.write("#time,accel_x,accel_y,accel_z\n")
samples = self.samples or self.get_samples()
f.write("##%s\n#time,accel_x,accel_y,accel_z\n" % (
self.get_stats(),))
samples = self.samples or self.decode_samples()
for t, accel_x, accel_y, accel_z in samples:
f.write("%.6f,%.6f,%.6f,%.6f\n" % (
t, accel_x, accel_y, accel_z))
@@ -100,184 +111,383 @@ class AccelQueryHelper:
write_proc.daemon = True
write_proc.start()
# Helper class for G-Code commands
class AccelCommandHelper:
def __init__(self, config, chip):
class BedOffsetHelper:
def __init__(self, config):
self.printer = config.get_printer()
self.chip = chip
self.bg_client = None
name_parts = config.get_name().split()
self.base_name = name_parts[0]
self.name = name_parts[-1]
self.register_commands(self.name)
if len(name_parts) == 1:
if self.name == "adxl345" or not config.has_section("adxl345"):
self.register_commands(None)
def register_commands(self, name):
# Register BED_OFFSET_CALIBRATE command
zconfig = config.getsection('stepper_z')
self.z_position_endstop = zconfig.getfloat('position_endstop', None,
note_valid=False)
if self.z_position_endstop is None:
return
self.bed_probe_point = None
if config.get('bed_probe_point', None) is not None:
try:
self.bed_probe_point = [
float(coord.strip()) for coord in
config.get('bed_probe_point').split(',', 1)]
except:
raise config.error(
"Unable to parse bed_probe_point '%s'" % (
config.get('bed_probe_point')))
self.horizontal_move_z = config.getfloat(
'horizontal_move_z', 5.)
self.horizontal_move_speed = config.getfloat(
'horizontal_move_speed', 50., above=0.)
gcode = self.printer.lookup_object('gcode')
gcode.register_command(
'BED_OFFSET_CALIBRATE', self.cmd_BED_OFFSET_CALIBRATE,
desc=self.cmd_BED_OFFSET_CALIBRATE_help)
def bed_offset_finalize(self, pos, gcmd):
if pos is None:
return
z_pos = self.z_position_endstop - pos[2]
gcmd.respond_info(
"stepper_z: position_endstop: %.3f\n"
"The SAVE_CONFIG command will update the printer config file\n"
"with the above and restart the printer." % (z_pos,))
configfile = self.printer.lookup_object('configfile')
configfile.set('stepper_z', 'position_endstop', "%.3f" % (z_pos,))
cmd_BED_OFFSET_CALIBRATE_help = "Calibrate a bed offset using ADXL345 probe"
def cmd_BED_OFFSET_CALIBRATE(self, gcmd):
manual_probe.verify_no_manual_probe(self.printer)
probe = self.printer.lookup_object('probe')
lift_speed = probe.get_lift_speed(gcmd)
toolhead = self.printer.lookup_object('toolhead')
oldpos = toolhead.get_position()
if self.bed_probe_point is not None:
toolhead.manual_move([None, None, self.horizontal_move_z],
lift_speed)
toolhead.manual_move(self.bed_probe_point + [None],
self.horizontal_move_speed)
curpos = probe.run_probe(gcmd)
offset_pos = [0., 0., curpos[2] - probe.get_offsets()[2]]
if self.bed_probe_point is not None:
curpos[2] = self.horizontal_move_z
else:
curpos[2] = oldpos[2]
toolhead.manual_move(curpos, lift_speed)
self.bed_offset_finalize(offset_pos, gcmd)
# ADXL345 virtual endstop wrapper for probing
class ADXL345EndstopWrapper:
def __init__(self, config, adxl345, axes_map):
self.printer = config.get_printer()
self.printer.register_event_handler("klippy:connect", self.calibrate)
self.calibrated = False
self.adxl345 = adxl345
self.axes_map = axes_map
self.ofs_regs = (REG_OFSX, REG_OFSY, REG_OFSZ)
int_pin = config.get('int_pin').strip()
self.inverted = False
if int_pin.startswith('!'):
self.inverted = True
int_pin = int_pin[1:].strip()
if int_pin != 'int1' and int_pin != 'int2':
raise config.error('int_pin must specify one of int1 or int2 pins')
self.int_map = 0x40 if int_pin == 'int2' else 0x0
probe_pin = config.get('probe_pin')
self.position_endstop = config.getfloat('z_offset')
self.tap_thresh = config.getfloat('tap_thresh', 5000,
minval=TAP_SCALE, maxval=100000.)
self.tap_dur = config.getfloat('tap_dur', 0.01,
above=DUR_SCALE, maxval=0.1)
self.next_cmd_time = self.action_end_time = 0.
# Create an "endstop" object to handle the sensor pin
ppins = self.printer.lookup_object('pins')
pin_params = ppins.lookup_pin(probe_pin, can_invert=True,
can_pullup=True)
mcu = pin_params['chip']
mcu.register_config_callback(self._build_config)
self.mcu_endstop = mcu.setup_pin('endstop', pin_params)
# Wrappers
self.get_mcu = self.mcu_endstop.get_mcu
self.add_stepper = self.mcu_endstop.add_stepper
self.get_steppers = self.mcu_endstop.get_steppers
self.home_start = self.mcu_endstop.home_start
self.home_wait = self.mcu_endstop.home_wait
self.query_endstop = self.mcu_endstop.query_endstop
# Register commands
gcode = self.printer.lookup_object('gcode')
gcode.register_mux_command("ACCELEROMETER_MEASURE", "CHIP", name,
self.cmd_ACCELEROMETER_MEASURE,
desc=self.cmd_ACCELEROMETER_MEASURE_help)
gcode.register_mux_command("ACCELEROMETER_QUERY", "CHIP", name,
self.cmd_ACCELEROMETER_QUERY,
desc=self.cmd_ACCELEROMETER_QUERY_help)
gcode.register_mux_command("ACCELEROMETER_DEBUG_READ", "CHIP", name,
self.cmd_ACCELEROMETER_DEBUG_READ,
desc=self.cmd_ACCELEROMETER_DEBUG_READ_help)
gcode.register_mux_command("ACCELEROMETER_DEBUG_WRITE", "CHIP", name,
self.cmd_ACCELEROMETER_DEBUG_WRITE,
desc=self.cmd_ACCELEROMETER_DEBUG_WRITE_help)
cmd_ACCELEROMETER_MEASURE_help = "Start/stop accelerometer"
def cmd_ACCELEROMETER_MEASURE(self, gcmd):
if self.bg_client is None:
# Start measurements
self.bg_client = self.chip.start_internal_client()
gcmd.respond_info("accelerometer measurements started")
gcode.register_mux_command(
"ACCEL_PROBE_CALIBRATE", "CHIP", None,
self.cmd_ACCEL_PROBE_CALIBRATE,
desc=self.cmd_ACCEL_PROBE_CALIBRATE_help)
gcode.register_mux_command(
"SET_ACCEL_PROBE", "CHIP", None, self.cmd_SET_ACCEL_PROBE,
desc=self.cmd_SET_ACCEL_PROBE_help)
# Register bed offset calibration helper
BedOffsetHelper(config)
def _build_config(self):
kin = self.printer.lookup_object('toolhead').get_kinematics()
for stepper in kin.get_steppers():
if stepper.is_active_axis('z'):
self.add_stepper(stepper)
def calibrate(self, gcmd=None, retries=3):
adxl345 = self.adxl345
if not adxl345.is_initialized():
# ADXL345 that works as a probe must be initialized from the start
adxl345.initialize()
adxl345.set_reg(REG_POWER_CTL, 0x00)
if self.inverted:
adxl345.set_reg(REG_DATA_FORMAT, 0x2B)
adxl345.set_reg(REG_INT_MAP, self.int_map)
adxl345.set_reg(REG_TAP_AXES, 0x7)
adxl345.set_reg(REG_THRESH_TAP, int(self.tap_thresh / TAP_SCALE))
adxl345.set_reg(REG_DUR, int(self.tap_dur / DUR_SCALE))
# Offset freefall accleration on the true Z axis
for reg in self.ofs_regs:
adxl345.set_reg(reg, 0x00)
adxl345.start_measurements()
reactor = self.printer.get_reactor()
reactor.register_callback(lambda ev: self._offset_axes(gcmd, retries),
reactor.monotonic() + PROBE_CALIBRATION_TIME)
def _offset_axes(self, gcmd, retries):
res = self.adxl345.finish_measurements()
msg_func = gcmd.respond_info if gcmd is not None else logging.info
samples = res.decode_samples()
x_ofs = sum([s.accel_x for s in samples]) / len(samples)
y_ofs = sum([s.accel_y for s in samples]) / len(samples)
z_ofs = sum([s.accel_z for s in samples]) / len(samples)
meas_freefall_accel = math.sqrt(x_ofs**2 + y_ofs**2 + z_ofs**2)
if abs(meas_freefall_accel - FREEFALL_ACCEL) > FREEFALL_ACCEL * 0.5:
err_msg = ("Calibration error: ADXL345 incorrectly measures "
"freefall accleration: %.0f (measured) vs %.0f "
"(expected)" % (meas_freefall_accel, FREEFALL_ACCEL))
if retries > 0:
msg_func(err_msg + ", retrying (%d)" % (retries-1,))
self.calibrate(gcmd, retries-1)
else:
msg_func(err_msg + ", aborting self-calibration")
return
# End measurements
name = gcmd.get("NAME", time.strftime("%Y%m%d_%H%M%S"))
if not name.replace('-', '').replace('_', '').isalnum():
raise gcmd.error("Invalid NAME parameter")
bg_client = self.bg_client
self.bg_client = None
bg_client.finish_measurements()
# Write data to file
if self.base_name == self.name:
filename = "/tmp/%s-%s.csv" % (self.base_name, name)
else:
filename = "/tmp/%s-%s-%s.csv" % (self.base_name, self.name, name)
bg_client.write_to_file(filename)
gcmd.respond_info("Writing raw accelerometer data to %s file"
% (filename,))
cmd_ACCELEROMETER_QUERY_help = "Query accelerometer for the current values"
def cmd_ACCELEROMETER_QUERY(self, gcmd):
aclient = self.chip.start_internal_client()
self.printer.lookup_object('toolhead').dwell(1.)
aclient.finish_measurements()
values = aclient.get_samples()
if not values:
raise gcmd.error("No accelerometer measurements found")
_, accel_x, accel_y, accel_z = values[-1]
gcmd.respond_info("accelerometer values (x, y, z): %.6f, %.6f, %.6f"
% (accel_x, accel_y, accel_z))
cmd_ACCELEROMETER_DEBUG_READ_help = "Query register (for debugging)"
def cmd_ACCELEROMETER_DEBUG_READ(self, gcmd):
reg = gcmd.get("REG", minval=0, maxval=126, parser=lambda x: int(x, 0))
val = self.chip.read_reg(reg)
gcmd.respond_info("Accelerometer REG[0x%x] = 0x%x" % (reg, val))
cmd_ACCELEROMETER_DEBUG_WRITE_help = "Set register (for debugging)"
def cmd_ACCELEROMETER_DEBUG_WRITE(self, gcmd):
reg = gcmd.get("REG", minval=0, maxval=126, parser=lambda x: int(x, 0))
val = gcmd.get("VAL", minval=0, maxval=255, parser=lambda x: int(x, 0))
self.chip.set_reg(reg, val)
# Helper class for chip clock synchronization via linear regression
class ClockSyncRegression:
def __init__(self, mcu, chip_clock_smooth, decay = 1. / 20.):
self.mcu = mcu
self.chip_clock_smooth = chip_clock_smooth
self.decay = decay
self.last_chip_clock = self.last_exp_mcu_clock = 0.
self.mcu_clock_avg = self.mcu_clock_variance = 0.
self.chip_clock_avg = self.chip_clock_covariance = 0.
def reset(self, mcu_clock, chip_clock):
self.mcu_clock_avg = self.last_mcu_clock = mcu_clock
self.chip_clock_avg = chip_clock
self.mcu_clock_variance = self.chip_clock_covariance = 0.
self.last_chip_clock = self.last_exp_mcu_clock = 0.
def update(self, mcu_clock, chip_clock):
# Update linear regression
decay = self.decay
diff_mcu_clock = mcu_clock - self.mcu_clock_avg
self.mcu_clock_avg += decay * diff_mcu_clock
self.mcu_clock_variance = (1. - decay) * (
self.mcu_clock_variance + diff_mcu_clock**2 * decay)
diff_chip_clock = chip_clock - self.chip_clock_avg
self.chip_clock_avg += decay * diff_chip_clock
self.chip_clock_covariance = (1. - decay) * (
self.chip_clock_covariance + diff_mcu_clock*diff_chip_clock*decay)
def set_last_chip_clock(self, chip_clock):
base_mcu, base_chip, inv_cfreq = self.get_clock_translation()
self.last_chip_clock = chip_clock
self.last_exp_mcu_clock = base_mcu + (chip_clock-base_chip) * inv_cfreq
def get_clock_translation(self):
inv_chip_freq = self.mcu_clock_variance / self.chip_clock_covariance
if not self.last_chip_clock:
return self.mcu_clock_avg, self.chip_clock_avg, inv_chip_freq
# Find mcu clock associated with future chip_clock
s_chip_clock = self.last_chip_clock + self.chip_clock_smooth
scdiff = s_chip_clock - self.chip_clock_avg
s_mcu_clock = self.mcu_clock_avg + scdiff * inv_chip_freq
# Calculate frequency to converge at future point
mdiff = s_mcu_clock - self.last_exp_mcu_clock
s_inv_chip_freq = mdiff / self.chip_clock_smooth
return self.last_exp_mcu_clock, self.last_chip_clock, s_inv_chip_freq
def get_time_translation(self):
base_mcu, base_chip, inv_cfreq = self.get_clock_translation()
clock_to_print_time = self.mcu.clock_to_print_time
base_time = clock_to_print_time(base_mcu)
inv_freq = clock_to_print_time(base_mcu + inv_cfreq) - base_time
return base_time, base_chip, inv_freq
MIN_MSG_TIME = 0.100
BYTES_PER_SAMPLE = 5
SAMPLES_PER_BLOCK = 10
x_m = max([abs(s.accel_x - x_ofs) for s in samples])
y_m = max([abs(s.accel_y - y_ofs) for s in samples])
z_m = max([abs(s.accel_z - z_ofs) for s in samples])
accel_noise = max(x_m, y_m, z_m)
if accel_noise > self.tap_thresh:
err_msg = ("Calibration error: ADXL345 noise level too high for "
"the configured tap_thresh: %.0f (tap_thresh) vs "
"%.0f (noise)" % (self.tap_thresh, accel_noise))
if retries > 0:
msg_func(err_msg + ", retrying (%d)" % (retries-1,))
self.calibrate(gcmd, retries-1)
else:
msg_func(err_msg + ", aborting self-calibration")
return
for ofs, axis in zip((x_ofs, y_ofs, z_ofs), (0, 1, 2)):
ofs_reg = self.ofs_regs[self.axes_map[axis][0]]
ofs_val = 0xFF & int(round(
-ofs / self.axes_map[axis][1] * (SCALE / OFS_SCALE)))
self.adxl345.set_reg(ofs_reg, ofs_val)
msg_func("Successfully calibrated ADXL345")
self.calibrated = True
def multi_probe_begin(self):
pass
def multi_probe_end(self):
pass
def _try_clear_tap(self):
adxl345 = self.adxl345
tries = 8
while tries > 0:
val = adxl345.read_reg(REG_INT_SOURCE)
if not (val & 0x40):
return True
tries -= 1
return False
def probe_prepare(self, hmove):
if not self.calibrated:
raise self.printer.command_error(
"ADXL345 probe failed calibration, "
"retry with ACCEL_PROBE_CALIBRATE command")
adxl345 = self.adxl345
toolhead = self.printer.lookup_object('toolhead')
toolhead.flush_step_generation()
print_time = toolhead.get_last_move_time()
clock = self.adxl345.get_mcu().print_time_to_clock(print_time +
ADXL345_REST_TIME)
if not adxl345.is_initialized():
adxl345.initialize()
adxl345.set_reg(REG_INT_ENABLE, 0x00, minclock=clock)
adxl345.read_reg(REG_INT_SOURCE)
adxl345.set_reg(REG_INT_ENABLE, 0x40, minclock=clock)
if not adxl345.is_measuring():
adxl345.set_reg(REG_POWER_CTL, 0x08, minclock=clock)
if not self._try_clear_tap():
raise self.printer.command_error(
"ADXL345 tap triggered before move, too sensitive?")
def probe_finish(self, hmove):
adxl345 = self.adxl345
toolhead = self.printer.lookup_object('toolhead')
toolhead.dwell(ADXL345_REST_TIME)
print_time = toolhead.get_last_move_time()
clock = adxl345.get_mcu().print_time_to_clock(print_time)
adxl345.set_reg(REG_INT_ENABLE, 0x00, minclock=clock)
if not adxl345.is_measuring():
adxl345.set_reg(REG_POWER_CTL, 0x00)
if not self._try_clear_tap():
raise self.printer.command_error(
"ADXL345 tap triggered after move, too sensitive?")
cmd_ACCEL_PROBE_CALIBRATE_help = "Force ADXL345 probe [re-]calibration"
def cmd_ACCEL_PROBE_CALIBRATE(self, gcmd):
self.calibrate(gcmd)
cmd_SET_ACCEL_PROBE_help = "Configure ADXL345 parameters related to probing"
def cmd_SET_ACCEL_PROBE(self, gcmd):
self.tap_thresh = gcmd.get_float('TAP_THRESH', self.tap_thresh,
minval=TAP_SCALE, maxval=100000.)
self.tap_dur = config.getfloat('TAP_DUR', self.tap_dur,
above=DUR_SCALE, maxval=0.1)
adxl345.set_reg(REG_THRESH_TAP, int(self.tap_thresh / TAP_SCALE))
adxl345.set_reg(REG_DUR, int(self.tap_dur / DUR_SCALE))
# Printer class that controls ADXL345 chip
class ADXL345:
def __init__(self, config):
self.printer = config.get_printer()
AccelCommandHelper(config, self)
self.query_rate = 0
self.last_tx_time = 0.
self.config = config
am = {'x': (0, SCALE), 'y': (1, SCALE), 'z': (2, SCALE),
'-x': (0, -SCALE), '-y': (1, -SCALE), '-z': (2, -SCALE)}
axes_map = config.getlist('axes_map', ('x','y','z'), count=3)
if any([a not in am for a in axes_map]):
axes_map = config.get('axes_map', 'x,y,z').split(',')
if len(axes_map) != 3 or any([a.strip() not in am for a in axes_map]):
raise config.error("Invalid adxl345 axes_map parameter")
self.axes_map = [am[a.strip()] for a in axes_map]
self.data_rate = config.getint('rate', 3200)
if self.data_rate not in QUERY_RATES:
raise config.error("Invalid rate parameter: %d" % (self.data_rate,))
# Measurement storage (accessed from background thread)
self.lock = threading.Lock()
self.raw_samples = []
self.last_sequence = 0
self.samples_start1 = self.samples_start2 = 0.
# Setup mcu sensor_adxl345 bulk query code
self.spi = bus.MCU_SPI_from_config(config, 3, default_speed=5000000)
self.mcu = mcu = self.spi.get_mcu()
self.oid = oid = mcu.create_oid()
self.query_adxl345_cmd = self.query_adxl345_end_cmd = None
self.query_adxl345_status_cmd = None
self.query_adxl345_cmd = self.query_adxl345_end_cmd =None
mcu.add_config_cmd("config_adxl345 oid=%d spi_oid=%d"
% (oid, self.spi.get_oid()))
mcu.add_config_cmd("query_adxl345 oid=%d clock=0 rest_ticks=0"
% (oid,), on_restart=True)
mcu.register_config_callback(self._build_config)
mcu.register_response(self._handle_adxl345_start, "adxl345_start", oid)
mcu.register_response(self._handle_adxl345_data, "adxl345_data", oid)
# Clock tracking
self.last_sequence = self.max_query_duration = 0
self.last_limit_count = self.last_error_count = 0
self.clock_sync = ClockSyncRegression(self.mcu, 640)
# API server endpoints
self.api_dump = motion_report.APIDumpHelper(
self.printer, self._api_update, self._api_startstop, 0.100)
self.name = config.get_name().split()[-1]
wh = self.printer.lookup_object('webhooks')
wh.register_mux_endpoint("adxl345/dump_adxl345", "sensor", self.name,
self._handle_dump_adxl345)
# Register commands
self.name = "default"
if len(config.get_name().split()) > 1:
self.name = config.get_name().split()[1]
gcode = self.printer.lookup_object('gcode')
gcode.register_mux_command("ACCELEROMETER_MEASURE", "CHIP", self.name,
self.cmd_ACCELEROMETER_MEASURE,
desc=self.cmd_ACCELEROMETER_MEASURE_help)
gcode.register_mux_command("ACCELEROMETER_QUERY", "CHIP", self.name,
self.cmd_ACCELEROMETER_QUERY,
desc=self.cmd_ACCELEROMETER_QUERY_help)
gcode.register_mux_command("ADXL345_DEBUG_READ", "CHIP", self.name,
self.cmd_ADXL345_DEBUG_READ,
desc=self.cmd_ADXL345_DEBUG_READ_help)
gcode.register_mux_command("ADXL345_DEBUG_WRITE", "CHIP", self.name,
self.cmd_ADXL345_DEBUG_WRITE,
desc=self.cmd_ADXL345_DEBUG_WRITE_help)
gcode.register_mux_command("TEST_MYCMD", "CHIP", self.name,
self.cmd_TEST_MYCMD,
desc=self.cmd_TEST_MYCMD_help)
gcode.register_mux_command("MKS_PROBE", "CHIP", self.name,
self.cmd_MKS_PROBE,
desc=self.cmd_MKS_PROBE_help)
if self.name == "default":
gcode.register_mux_command("ACCELEROMETER_MEASURE", "CHIP", None,
self.cmd_ACCELEROMETER_MEASURE)
gcode.register_mux_command("ACCELEROMETER_QUERY", "CHIP", None,
self.cmd_ACCELEROMETER_QUERY)
gcode.register_mux_command("ADXL345_DEBUG_READ", "CHIP", None,
self.cmd_ADXL345_DEBUG_READ,
desc=self.cmd_ADXL345_DEBUG_READ_help)
gcode.register_mux_command("ADXL345_DEBUG_WRITE", "CHIP", None,
self.cmd_ADXL345_DEBUG_WRITE,
desc=self.cmd_ADXL345_DEBUG_WRITE_help)
gcode.register_mux_command("TEST_MYCMD", "CHIP", None,
self.cmd_TEST_MYCMD,
desc=self.cmd_TEST_MYCMD_help)
gcode.register_mux_command("MKS_PROBE", "CHIP", None,
self.cmd_MKS_PROBE,
desc=self.cmd_MKS_PROBE_help)
self.adxl345_endstop = ADXL345EndstopWrapper(self.config, self, self.axes_map)
cmd_MKS_PROBE_help = "test my cmd"
def cmd_MKS_PROBE(self, gcmd):
gcmd.respond_info("go to mks Probe success")
self.printer.remove_object('probe')
self.printer.lookup_object('gcode').remove_command('PROBE')
self.printer.lookup_object('gcode').remove_command('QUERY_PROBE')
self.printer.lookup_object('gcode').remove_command('PROBE_CALIBRATE')
self.printer.lookup_object('gcode').remove_command('PROBE_ACCURACY')
self.printer.lookup_object('gcode').remove_command('Z_OFFSET_APPLY_PROBE')
self.printer.lookup_object('gcode').remove_command('MKS_SHOW_Z_OFFSET')
self.printer.lookup_object('pins').remove_chip('probe')
self.printer.add_object('probe', probe.load_config(self.probe_config))
# self.printer.lookup_object('probe').multi_probe_end()
cmd_TEST_MYCMD_help = "test my cmd"
def cmd_TEST_MYCMD(self, gcmd):
gcmd.respond_info("TEST MY CMD success")
# if config.get('probe_pin', None) is not None:
# adxl345_endstop = ADXL345EndstopWrapper(config, self, self.axes_map)
self.probe_config = self.printer.lookup_object('probe').config
# self.printer.add_object('probebak', None)
# self.printer.copy_object('probe', 'probebak')
self.printer.remove_object('probe')
self.printer.lookup_object('gcode').remove_command('PROBE')
self.printer.lookup_object('gcode').remove_command('QUERY_PROBE')
self.printer.lookup_object('gcode').remove_command('PROBE_CALIBRATE')
self.printer.lookup_object('gcode').remove_command('PROBE_ACCURACY')
self.printer.lookup_object('gcode').remove_command('Z_OFFSET_APPLY_PROBE')
self.printer.lookup_object('gcode').remove_command('MKS_SHOW_Z_OFFSET')
self.printer.lookup_object('pins').remove_chip('probe')
self.printer.add_object('probe', probe.PrinterProbe(self.config, self.adxl345_endstop))
def is_initialized(self):
# In case of miswiring, testing ADXL345 device ID prevents treating
# noise or wrong signal as a correctly initialized device
return (self.read_reg(REG_DEVID) == ADXL345_DEV_ID and
(self.read_reg(REG_DATA_FORMAT) & 0xB) != 0)
def initialize(self):
# Setup ADXL345 parameters and verify chip connectivity
self.set_reg(REG_POWER_CTL, 0x00)
dev_id = self.read_reg(REG_DEVID)
if dev_id != ADXL345_DEV_ID:
raise self.printer.command_error("Invalid adxl345 id (got %x vs %x)"
% (dev_id, ADXL345_DEV_ID))
self.set_reg(REG_DATA_FORMAT, 0x0B)
def get_mcu(self):
return self.spi.get_mcu()
def _build_config(self):
cmdqueue = self.spi.get_command_queue()
self.query_adxl345_cmd = self.mcu.lookup_command(
"query_adxl345 oid=%c clock=%u rest_ticks=%u", cq=cmdqueue)
"query_adxl345 oid=%c clock=%u rest_ticks=%u",
cq=self.spi.get_command_queue())
self.query_adxl345_end_cmd = self.mcu.lookup_query_command(
"query_adxl345 oid=%c clock=%u rest_ticks=%u",
"adxl345_status oid=%c clock=%u query_ticks=%u next_sequence=%hu"
" buffered=%c fifo=%c limit_count=%hu", oid=self.oid, cq=cmdqueue)
self.query_adxl345_status_cmd = self.mcu.lookup_query_command(
"query_adxl345_status oid=%c",
"adxl345_status oid=%c clock=%u query_ticks=%u next_sequence=%hu"
" buffered=%c fifo=%c limit_count=%hu", oid=self.oid, cq=cmdqueue)
"adxl345_end oid=%c end1_clock=%u end2_clock=%u"
" limit_count=%hu sequence=%hu",
oid=self.oid, cq=self.spi.get_command_queue())
def _clock_to_print_time(self, clock):
return self.mcu.clock_to_print_time(self.mcu.clock32_to_clock64(clock))
def _handle_adxl345_start(self, params):
self.samples_start1 = self._clock_to_print_time(params['start1_clock'])
self.samples_start2 = self._clock_to_print_time(params['start2_clock'])
def _handle_adxl345_data(self, params):
last_sequence = self.last_sequence
sequence = (last_sequence & ~0xffff) | params['sequence']
if sequence < last_sequence:
sequence += 0x10000
self.last_sequence = sequence
raw_samples = self.raw_samples
if len(raw_samples) >= 300000:
# Avoid filling up memory with too many samples
return
raw_samples.append((sequence, params['data']))
def _convert_sequence(self, sequence):
sequence = (self.last_sequence & ~0xffff) | sequence
if sequence < self.last_sequence:
sequence += 0x10000
return sequence
def read_reg(self, reg):
params = self.spi.spi_transfer([reg | REG_MOD_READ, 0x00])
response = bytearray(params['response'])
@@ -291,151 +501,116 @@ class ADXL345:
"This is generally indicative of connection problems "
"(e.g. faulty wiring) or a faulty adxl345 chip." % (
reg, val, stored_val))
# Measurement collection
def is_measuring(self):
return self.query_rate > 0
def _handle_adxl345_data(self, params):
with self.lock:
self.raw_samples.append(params)
def _extract_samples(self, raw_samples):
# Load variables to optimize inner loop below
(x_pos, x_scale), (y_pos, y_scale), (z_pos, z_scale) = self.axes_map
last_sequence = self.last_sequence
time_base, chip_base, inv_freq = self.clock_sync.get_time_translation()
# Process every message in raw_samples
count = seq = 0
samples = [None] * (len(raw_samples) * SAMPLES_PER_BLOCK)
for params in raw_samples:
seq_diff = (last_sequence - params['sequence']) & 0xffff
seq_diff -= (seq_diff & 0x8000) << 1
seq = last_sequence - seq_diff
d = bytearray(params['data'])
msg_cdiff = seq * SAMPLES_PER_BLOCK - chip_base
for i in range(len(d) // BYTES_PER_SAMPLE):
d_xyz = d[i*BYTES_PER_SAMPLE:(i+1)*BYTES_PER_SAMPLE]
xlow, ylow, zlow, xzhigh, yzhigh = d_xyz
if yzhigh & 0x80:
self.last_error_count += 1
continue
rx = (xlow | ((xzhigh & 0x1f) << 8)) - ((xzhigh & 0x10) << 9)
ry = (ylow | ((yzhigh & 0x1f) << 8)) - ((yzhigh & 0x10) << 9)
rz = ((zlow | ((xzhigh & 0xe0) << 3) | ((yzhigh & 0xe0) << 6))
- ((yzhigh & 0x40) << 7))
raw_xyz = (rx, ry, rz)
x = round(raw_xyz[x_pos] * x_scale, 6)
y = round(raw_xyz[y_pos] * y_scale, 6)
z = round(raw_xyz[z_pos] * z_scale, 6)
ptime = round(time_base + (msg_cdiff + i) * inv_freq, 6)
samples[count] = (ptime, x, y, z)
count += 1
self.clock_sync.set_last_chip_clock(seq * SAMPLES_PER_BLOCK + i)
del samples[count:]
return samples
def _update_clock(self, minclock=0):
# Query current state
for retry in range(5):
params = self.query_adxl345_status_cmd.send([self.oid],
minclock=minclock)
fifo = params['fifo'] & 0x7f
if fifo <= 32:
break
else:
raise self.printer.command_error("Unable to query adxl345 fifo")
mcu_clock = self.mcu.clock32_to_clock64(params['clock'])
sequence = (self.last_sequence & ~0xffff) | params['next_sequence']
if sequence < self.last_sequence:
sequence += 0x10000
self.last_sequence = sequence
buffered = params['buffered']
limit_count = (self.last_limit_count & ~0xffff) | params['limit_count']
if limit_count < self.last_limit_count:
limit_count += 0x10000
self.last_limit_count = limit_count
duration = params['query_ticks']
if duration > self.max_query_duration:
# Skip measurement as a high query time could skew clock tracking
self.max_query_duration = max(2 * self.max_query_duration,
self.mcu.seconds_to_clock(.000005))
return
self.max_query_duration = 2 * duration
msg_count = (sequence * SAMPLES_PER_BLOCK
+ buffered // BYTES_PER_SAMPLE + fifo)
# The "chip clock" is the message counter plus .5 for average
# inaccuracy of query responses and plus .5 for assumed offset
# of adxl345 hw processing time.
chip_clock = msg_count + 1
self.clock_sync.update(mcu_clock + duration // 2, chip_clock)
def _start_measurements(self):
def start_measurements(self, rate=None):
if self.is_measuring():
return
# In case of miswiring, testing ADXL345 device ID prevents treating
# noise or wrong signal as a correctly initialized device
dev_id = self.read_reg(REG_DEVID)
if dev_id != ADXL345_DEV_ID:
raise self.printer.command_error(
"Invalid adxl345 id (got %x vs %x).\n"
"This is generally indicative of connection problems\n"
"(e.g. faulty wiring) or a faulty adxl345 chip."
% (dev_id, ADXL345_DEV_ID))
rate = rate or self.data_rate
if not self.is_initialized():
self.initialize()
# Setup chip in requested query rate
self.set_reg(REG_POWER_CTL, 0x00)
self.set_reg(REG_DATA_FORMAT, 0x0B)
clock = 0
if self.last_tx_time:
clock = self.mcu.print_time_to_clock(self.last_tx_time)
self.set_reg(REG_POWER_CTL, 0x00, minclock=clock)
self.set_reg(REG_FIFO_CTL, 0x00)
self.set_reg(REG_BW_RATE, QUERY_RATES[self.data_rate])
self.set_reg(REG_FIFO_CTL, SET_FIFO_CTL)
self.set_reg(REG_BW_RATE, QUERY_RATES[rate])
self.set_reg(REG_FIFO_CTL, 0x80)
# Setup samples
with self.lock:
self.raw_samples = []
print_time = self.printer.lookup_object('toolhead').get_last_move_time()
self.raw_samples = []
self.last_sequence = 0
self.samples_start1 = self.samples_start2 = print_time
# Start bulk reading
systime = self.printer.get_reactor().monotonic()
print_time = self.mcu.estimated_print_time(systime) + MIN_MSG_TIME
reqclock = self.mcu.print_time_to_clock(print_time)
rest_ticks = self.mcu.seconds_to_clock(4. / self.data_rate)
self.query_rate = self.data_rate
rest_ticks = self.mcu.seconds_to_clock(4. / rate)
self.last_tx_time = print_time
self.query_rate = rate
self.query_adxl345_cmd.send([self.oid, reqclock, rest_ticks],
reqclock=reqclock)
logging.info("ADXL345 starting '%s' measurements", self.name)
# Initialize clock tracking
self.last_sequence = 0
self.last_limit_count = self.last_error_count = 0
self.clock_sync.reset(reqclock, 0)
self.max_query_duration = 1 << 31
self._update_clock(minclock=reqclock)
self.max_query_duration = 1 << 31
def _finish_measurements(self):
def finish_measurements(self):
if not self.is_measuring():
return ADXL345Results()
# Halt bulk reading
print_time = self.printer.lookup_object('toolhead').get_last_move_time()
clock = self.mcu.print_time_to_clock(print_time)
params = self.query_adxl345_end_cmd.send([self.oid, 0, 0],
minclock=clock)
self.last_tx_time = print_time
self.query_rate = 0
raw_samples = self.raw_samples
self.raw_samples = []
# Generate results
end1_time = self._clock_to_print_time(params['end1_clock'])
end2_time = self._clock_to_print_time(params['end2_clock'])
end_sequence = self._convert_sequence(params['sequence'])
overflows = params['limit_count']
res = ADXL345Results()
res.setup_data(self.axes_map, raw_samples, end_sequence, overflows,
self.samples_start1, self.samples_start2,
end1_time, end2_time)
logging.info("ADXL345 finished %d measurements: %s",
res.total_count, res.get_stats())
return res
def end_query(self, name, gcmd):
if not self.is_measuring():
return
# Halt bulk reading
params = self.query_adxl345_end_cmd.send([self.oid, 0, 0])
self.query_rate = 0
with self.lock:
self.raw_samples = []
logging.info("ADXL345 finished '%s' measurements", self.name)
# API interface
def _api_update(self, eventtime):
self._update_clock()
with self.lock:
raw_samples = self.raw_samples
self.raw_samples = []
if not raw_samples:
return {}
samples = self._extract_samples(raw_samples)
if not samples:
return {}
return {'data': samples, 'errors': self.last_error_count,
'overflows': self.last_limit_count}
def _api_startstop(self, is_start):
if is_start:
self._start_measurements()
res = self.finish_measurements()
# Write data to file
if self.name == "default":
filename = "/tmp/adxl345-%s.csv" % (name,)
else:
self._finish_measurements()
def _handle_dump_adxl345(self, web_request):
self.api_dump.add_client(web_request)
hdr = ('time', 'x_acceleration', 'y_acceleration', 'z_acceleration')
web_request.send({'header': hdr})
def start_internal_client(self):
cconn = self.api_dump.add_internal_client()
return AccelQueryHelper(self.printer, cconn)
filename = "/tmp/adxl345-%s-%s.csv" % (self.name, name,)
res.write_to_file(filename)
gcmd.respond_info(
"Writing raw accelerometer data to %s file" % (filename,))
cmd_ACCELEROMETER_MEASURE_help = "Start/stop accelerometer"
def cmd_ACCELEROMETER_MEASURE(self, gcmd):
if self.is_measuring():
name = gcmd.get("NAME", time.strftime("%Y%m%d_%H%M%S"))
if not name.replace('-', '').replace('_', '').isalnum():
raise gcmd.error("Invalid adxl345 NAME parameter")
self.end_query(name, gcmd)
gcmd.respond_info("adxl345 measurements stopped")
else:
rate = gcmd.get_int("RATE", self.data_rate)
if rate not in QUERY_RATES:
raise gcmd.error("Not a valid adxl345 query rate: %d" % (rate,))
self.start_measurements(rate)
gcmd.respond_info("adxl345 measurements started")
cmd_ACCELEROMETER_QUERY_help = "Query accelerometer for the current values"
def cmd_ACCELEROMETER_QUERY(self, gcmd):
if self.is_measuring():
raise gcmd.error("adxl345 measurements in progress")
self.start_measurements()
reactor = self.printer.get_reactor()
eventtime = starttime = reactor.monotonic()
while not self.raw_samples:
eventtime = reactor.pause(eventtime + .1)
if eventtime > starttime + 3.:
# Try to shutdown the measurements
self.finish_measurements()
raise gcmd.error("Timeout reading adxl345 data")
result = self.finish_measurements()
values = result.decode_samples()
_, accel_x, accel_y, accel_z = values[-1]
gcmd.respond_info("adxl345 values (x, y, z): %.6f, %.6f, %.6f" % (
accel_x, accel_y, accel_z))
cmd_ADXL345_DEBUG_READ_help = "Query accelerometer register (for debugging)"
def cmd_ADXL345_DEBUG_READ(self, gcmd):
if self.is_measuring():
raise gcmd.error("adxl345 measurements in progress")
reg = gcmd.get("REG", minval=29, maxval=57, parser=lambda x: int(x, 0))
val = self.read_reg(reg)
gcmd.respond_info("ADXL345 REG[0x%x] = 0x%x" % (reg, val))
cmd_ADXL345_DEBUG_WRITE_help = "Set accelerometer register (for debugging)"
def cmd_ADXL345_DEBUG_WRITE(self, gcmd):
if self.is_measuring():
raise gcmd.error("adxl345 measurements in progress")
reg = gcmd.get("REG", minval=29, maxval=57, parser=lambda x: int(x, 0))
val = gcmd.get("VAL", minval=0, maxval=255, parser=lambda x: int(x, 0))
self.set_reg(reg, val)
def load_config(config):
return ADXL345(config)