update test

This commit is contained in:
QIDI TECH
2025-02-10 15:31:36 +08:00
parent 7529de7fe1
commit 748e5f2db2
76 changed files with 9796 additions and 99 deletions

View File

@@ -28,7 +28,6 @@ option(SLIC3R_GUI "Compile QIDISlicer with GUI components (OpenGL, wxWidge
option(SLIC3R_FHS "Assume QIDISlicer is to be installed in a FHS directory structure" 0)
option(SLIC3R_PCH "Use precompiled headers" 1)
option(SLIC3R_MSVC_COMPILE_PARALLEL "Compile on Visual Studio in parallel" 1)
option(SLIC3R_MSVC_PDB "Generate PDB files on MSVC in Release mode" 1)
option(SLIC3R_ASAN "Enable ASan on Clang and GCC" 0)
option(SLIC3R_UBSAN "Enable UBSan on Clang and GCC" 0)
option(SLIC3R_ENABLE_FORMAT_STEP "Enable compilation of STEP file support" ON)
@@ -236,7 +235,7 @@ if (CMAKE_SYSTEM_NAME STREQUAL "Linux")
set(THREADS_PREFER_PTHREAD_FLAG ON)
find_package(Threads REQUIRED)
find_package(DBus REQUIRED)
find_package(DBus1 REQUIRED)
endif()
if (CMAKE_COMPILER_IS_GNUCC OR CMAKE_COMPILER_IS_GNUXX)
@@ -360,7 +359,7 @@ endif()
# set(Boost_COMPILER "-mgw81")
# boost::process was introduced first in version 1.64.0,
# boost::beast::detail::base64 was introduced first in version 1.66.0
set(MINIMUM_BOOST_VERSION "1.66.0")
set(MINIMUM_BOOST_VERSION "1.83.0")
set(_boost_components "system;filesystem;thread;log;locale;regex;chrono;atomic;date_time;iostreams;nowide")
find_package(Boost ${MINIMUM_BOOST_VERSION} REQUIRED COMPONENTS ${_boost_components})

View File

@@ -0,0 +1,5 @@
{
"files.associations": {
"string_view": "cpp"
}
}

View File

@@ -0,0 +1,35 @@
project(slic3r-arrange-wrapper)
cmake_minimum_required(VERSION 3.13)
add_library(slic3r-arrange-wrapper
include/arrange-wrapper/Arrange.hpp
include/arrange-wrapper/ArrangeSettingsDb_AppCfg.hpp
include/arrange-wrapper/ArrangeSettingsView.hpp
include/arrange-wrapper/Items/ArbitraryDataStore.hpp
include/arrange-wrapper/Items/ArrangeItem.hpp
include/arrange-wrapper/Items/MutableItemTraits.hpp
include/arrange-wrapper/Items/SimpleArrangeItem.hpp
include/arrange-wrapper/Items/TrafoOnlyArrangeItem.hpp
include/arrange-wrapper/Scene.hpp
include/arrange-wrapper/SceneBuilder.hpp
include/arrange-wrapper/SegmentedRectangleBed.hpp
include/arrange-wrapper/Tasks/ArrangeTask.hpp
include/arrange-wrapper/Tasks/FillBedTask.hpp
include/arrange-wrapper/Tasks/MultiplySelectionTask.hpp
include/arrange-wrapper/ModelArrange.hpp
src/ArrangeImpl.hpp
src/ArrangeSettingsDb_AppCfg.cpp
src/Items/SimpleArrangeItem.cpp
src/SceneBuilder.cpp
src/Scene.cpp
src/Items/ArrangeItem.cpp
src/ModelArrange.cpp
src/Tasks/ArrangeTaskImpl.hpp
src/Tasks/FillBedTaskImpl.hpp
src/Tasks/MultiplySelectionTaskImpl.hpp
)
target_include_directories(slic3r-arrange-wrapper PRIVATE src)
target_include_directories(slic3r-arrange-wrapper PUBLIC include)
target_link_libraries(slic3r-arrange-wrapper PUBLIC slic3r-arrange)

View File

@@ -0,0 +1,268 @@
#ifndef ARRANGE2_HPP
#define ARRANGE2_HPP
#include <libslic3r/MinAreaBoundingBox.hpp>
#include <arrange/NFP/NFPArrangeItemTraits.hpp>
#include "Scene.hpp"
#include "Items/MutableItemTraits.hpp"
namespace Slic3r { namespace arr2 {
template<class ArrItem> class Arranger
{
public:
class Ctl : public ArrangeTaskCtl {
public:
virtual void on_packed(ArrItem &item) {};
};
virtual ~Arranger() = default;
virtual void arrange(std::vector<ArrItem> &items,
const std::vector<ArrItem> &fixed,
const ExtendedBed &bed,
Ctl &ctl) = 0;
void arrange(std::vector<ArrItem> &items,
const std::vector<ArrItem> &fixed,
const ExtendedBed &bed,
ArrangeTaskCtl &ctl);
void arrange(std::vector<ArrItem> &items,
const std::vector<ArrItem> &fixed,
const ExtendedBed &bed,
Ctl &&ctl)
{
arrange(items, fixed, bed, ctl);
}
void arrange(std::vector<ArrItem> &items,
const std::vector<ArrItem> &fixed,
const ExtendedBed &bed,
ArrangeTaskCtl &&ctl)
{
arrange(items, fixed, bed, ctl);
}
static std::unique_ptr<Arranger> create(const ArrangeSettingsView &settings);
};
template<class ArrItem> using ArrangerCtl = typename Arranger<ArrItem>::Ctl;
template<class ArrItem>
class DefaultArrangerCtl : public Arranger<ArrItem>::Ctl {
ArrangeTaskCtl *taskctl = nullptr;
public:
DefaultArrangerCtl() = default;
explicit DefaultArrangerCtl(ArrangeTaskCtl &ctl) : taskctl{&ctl} {}
void update_status(int st) override
{
if (taskctl)
taskctl->update_status(st);
}
bool was_canceled() const override
{
if (taskctl)
return taskctl->was_canceled();
return false;
}
};
template<class ArrItem>
void Arranger<ArrItem>::arrange(std::vector<ArrItem> &items,
const std::vector<ArrItem> &fixed,
const ExtendedBed &bed,
ArrangeTaskCtl &ctl)
{
arrange(items, fixed, bed, DefaultArrangerCtl<ArrItem>{ctl});
}
class EmptyItemOutlineError: public std::exception {
static constexpr const char *Msg = "No outline can be derived for object";
public:
const char* what() const noexcept override { return Msg; }
};
template<class ArrItem> class ArrangeableToItemConverter
{
public:
virtual ~ArrangeableToItemConverter() = default;
// May throw EmptyItemOutlineError
virtual ArrItem convert(const Arrangeable &arrbl, coord_t offs = 0) const = 0;
// Returns the extent of simplification that the converter utilizes when
// creating arrange items. Zero shall mean no simplification at all.
virtual coord_t simplification_tolerance() const { return 0; }
static std::unique_ptr<ArrangeableToItemConverter> create(
ArrangeSettingsView::GeometryHandling geometry_handling,
coord_t safety_d);
static std::unique_ptr<ArrangeableToItemConverter> create(
const Scene &sc)
{
return create(sc.settings().get_geometry_handling(),
scaled(sc.settings().get_distance_from_objects()));
}
};
template<class DStore, class = WritableDataStoreOnly<DStore>>
class AnyWritableDataStore: public AnyWritable
{
DStore &dstore;
public:
AnyWritableDataStore(DStore &store): dstore{store} {}
void write(std::string_view key, std::any d) override
{
set_data(dstore, std::string{key}, std::move(d));
}
};
template<class ArrItem>
class BasicItemConverter : public ArrangeableToItemConverter<ArrItem>
{
coord_t m_safety_d;
coord_t m_simplify_tol;
public:
BasicItemConverter(coord_t safety_d = 0, coord_t simpl_tol = 0)
: m_safety_d{safety_d}, m_simplify_tol{simpl_tol}
{}
coord_t safety_dist() const noexcept { return m_safety_d; }
coord_t simplification_tolerance() const override
{
return m_simplify_tol;
}
};
template<class ArrItem>
class ConvexItemConverter : public BasicItemConverter<ArrItem>
{
public:
using BasicItemConverter<ArrItem>::BasicItemConverter;
ArrItem convert(const Arrangeable &arrbl, coord_t offs) const override;
};
template<class ArrItem>
class AdvancedItemConverter : public BasicItemConverter<ArrItem>
{
protected:
virtual ArrItem get_arritem(const Arrangeable &arrbl, coord_t eps) const;
public:
using BasicItemConverter<ArrItem>::BasicItemConverter;
ArrItem convert(const Arrangeable &arrbl, coord_t offs) const override;
};
template<class ArrItem>
class BalancedItemConverter : public AdvancedItemConverter<ArrItem>
{
protected:
ArrItem get_arritem(const Arrangeable &arrbl, coord_t offs) const override;
public:
using AdvancedItemConverter<ArrItem>::AdvancedItemConverter;
};
template<class ArrItem, class En = void> struct ImbueableItemTraits_
{
static constexpr const char *Key = "object_id";
static void imbue_id(ArrItem &itm, const ObjectID &id)
{
set_arbitrary_data(itm, Key, id);
}
static std::optional<ObjectID> retrieve_id(const ArrItem &itm)
{
std::optional<ObjectID> ret;
auto idptr = get_data<const ObjectID>(itm, Key);
if (idptr)
ret = *idptr;
return ret;
}
};
template<class ArrItem>
using ImbueableItemTraits = ImbueableItemTraits_<StripCVRef<ArrItem>>;
template<class ArrItem>
void imbue_id(ArrItem &itm, const ObjectID &id)
{
ImbueableItemTraits<ArrItem>::imbue_id(itm, id);
}
template<class ArrItem>
std::optional<ObjectID> retrieve_id(const ArrItem &itm)
{
return ImbueableItemTraits<ArrItem>::retrieve_id(itm);
}
template<class ArrItem>
bool apply_arrangeitem(const ArrItem &itm, ArrangeableModel &mdl)
{
bool ret = false;
if (auto id = retrieve_id(itm)) {
mdl.visit_arrangeable(*id, [&itm, &ret](Arrangeable &arrbl) {
if ((ret = arrbl.assign_bed(get_bed_index(itm))))
arrbl.transform(unscaled(get_translation(itm)), get_rotation(itm));
});
}
return ret;
}
template<class ArrItem>
double get_min_area_bounding_box_rotation(const ArrItem &itm)
{
return MinAreaBoundigBox{envelope_convex_hull(itm),
MinAreaBoundigBox::pcConvex}
.angle_to_X();
}
template<class ArrItem>
double get_fit_into_bed_rotation(const ArrItem &itm, const RectangleBed &bed)
{
double ret = 0.;
auto bbsz = envelope_bounding_box(itm).size();
auto binbb = bounding_box(bed);
auto binbbsz = binbb.size();
if (bbsz.x() >= binbbsz.x() || bbsz.y() >= binbbsz.y())
ret = fit_into_box_rotation(envelope_convex_hull(itm), binbb);
return ret;
}
template<class ArrItem>
auto get_corrected_bed(const ExtendedBed &bed,
const ArrangeableToItemConverter<ArrItem> &converter)
{
auto bedcpy = bed;
visit_bed([tol = -converter.simplification_tolerance()](auto &rawbed) {
rawbed = offset(rawbed, tol);
}, bedcpy);
return bedcpy;
}
}} // namespace Slic3r::arr2
#endif // ARRANGE2_HPP

View File

@@ -0,0 +1,96 @@
#ifndef ARRANGESETTINGSDB_APPCFG_HPP
#define ARRANGESETTINGSDB_APPCFG_HPP
#include <string>
#include "ArrangeSettingsView.hpp"
#include "libslic3r/AppConfig.hpp"
#include "libslic3r/PrintConfig.hpp"
namespace Slic3r {
class AppConfig;
class ArrangeSettingsDb_AppCfg: public arr2::ArrangeSettingsDb
{
public:
enum Slots { slotFFF, slotFFFSeqPrint, slotSLA };
private:
AppConfig *m_appcfg;
Slots m_current_slot = slotFFF;
struct FloatRange { float minval = 0.f, maxval = 100.f; };
struct Slot
{
Values vals;
Values defaults;
FloatRange dobj_range, dbed_range;
std::string postfix;
};
// Settings and their defaults are stored separately for fff,
// sla and fff sequential mode
Slot m_settings_fff, m_settings_fff_seq, m_settings_sla;
template<class Self>
static auto & get_slot(Self *self, Slots slot) {
switch(slot) {
case slotFFF: return self->m_settings_fff;
case slotFFFSeqPrint: return self->m_settings_fff_seq;
case slotSLA: return self->m_settings_sla;
}
return self->m_settings_fff;
}
template<class Self> static auto &get_slot(Self *self)
{
return get_slot(self, self->m_current_slot);
}
template<class Self>
static auto& get_ref(Self *self) { return get_slot(self).vals; }
public:
explicit ArrangeSettingsDb_AppCfg(AppConfig *appcfg);
void sync();
float get_distance_from_objects() const override { return get_ref(this).d_obj; }
float get_distance_from_bed() const override { return get_ref(this).d_bed; }
bool is_rotation_enabled() const override { return get_ref(this).rotations; }
XLPivots get_xl_alignment() const override { return m_settings_fff.vals.xl_align; }
GeometryHandling get_geometry_handling() const override { return m_settings_fff.vals.geom_handling; }
ArrangeStrategy get_arrange_strategy() const override { return m_settings_fff.vals.arr_strategy; }
void distance_from_obj_range(float &min, float &max) const override;
void distance_from_bed_range(float &min, float &max) const override;
ArrangeSettingsDb& set_distance_from_objects(float v) override;
ArrangeSettingsDb& set_distance_from_bed(float v) override;
ArrangeSettingsDb& set_rotation_enabled(bool v) override;
ArrangeSettingsDb& set_xl_alignment(XLPivots v) override;
ArrangeSettingsDb& set_geometry_handling(GeometryHandling v) override;
ArrangeSettingsDb& set_arrange_strategy(ArrangeStrategy v) override;
Values get_defaults() const override { return get_slot(this).defaults; }
void set_active_slot(Slots slot) noexcept { m_current_slot = slot; }
void set_distance_from_obj_range(Slots slot, float min, float max)
{
get_slot(this, slot).dobj_range = FloatRange{min, max};
}
void set_distance_from_bed_range(Slots slot, float min, float max)
{
get_slot(this, slot).dbed_range = FloatRange{min, max};
}
Values &get_defaults(Slots slot) { return get_slot(this, slot).defaults; }
};
} // namespace Slic3r
#endif // ARRANGESETTINGSDB_APPCFG_HPP

View File

@@ -0,0 +1,234 @@
#ifndef ARRANGESETTINGSVIEW_HPP
#define ARRANGESETTINGSVIEW_HPP
#include <string_view>
#include <array>
#include "libslic3r/StaticMap.hpp"
namespace Slic3r { namespace arr2 {
using namespace std::string_view_literals;
class ArrangeSettingsView
{
public:
enum GeometryHandling { ghConvex, ghBalanced, ghAdvanced, ghCount };
enum ArrangeStrategy { asAuto, asPullToCenter, asCount };
enum XLPivots {
xlpCenter,
xlpRearLeft,
xlpFrontLeft,
xlpFrontRight,
xlpRearRight,
xlpRandom,
xlpCount
};
virtual ~ArrangeSettingsView() = default;
virtual float get_distance_from_objects() const = 0;
virtual float get_distance_from_bed() const = 0;
virtual bool is_rotation_enabled() const = 0;
virtual XLPivots get_xl_alignment() const = 0;
virtual GeometryHandling get_geometry_handling() const = 0;
virtual ArrangeStrategy get_arrange_strategy() const = 0;
static constexpr std::string_view get_label(GeometryHandling v)
{
constexpr auto STR = std::array{
"0"sv, // convex
"1"sv, // balanced
"2"sv, // advanced
"-1"sv, // undefined
};
return STR[v];
}
static constexpr std::string_view get_label(ArrangeStrategy v)
{
constexpr auto STR = std::array{
"0"sv, // auto
"1"sv, // pulltocenter
"-1"sv, // undefined
};
return STR[v];
}
static constexpr std::string_view get_label(XLPivots v)
{
constexpr auto STR = std::array{
"0"sv, // center
"1"sv, // rearleft
"2"sv, // frontleft
"3"sv, // frontright
"4"sv, // rearright
"5"sv, // random
"-1"sv, // undefined
};
return STR[v];
}
private:
template<class EnumType, size_t N>
using EnumMap = StaticMap<std::string_view, EnumType, N>;
template<class EnumType, size_t N>
static constexpr std::optional<EnumType> get_enumval(std::string_view str,
const EnumMap<EnumType, N> &emap)
{
std::optional<EnumType> ret;
if (auto v = query(emap, str); v.has_value()) {
ret = *v;
}
return ret;
}
public:
static constexpr std::optional<GeometryHandling> to_geometry_handling(std::string_view str)
{
return get_enumval(str, GeometryHandlingLabels);
}
static constexpr std::optional<ArrangeStrategy> to_arrange_strategy(std::string_view str)
{
return get_enumval(str, ArrangeStrategyLabels);
}
static constexpr std::optional<XLPivots> to_xl_pivots(std::string_view str)
{
return get_enumval(str, XLPivotsLabels);
}
private:
static constexpr const auto GeometryHandlingLabels = make_staticmap<std::string_view, GeometryHandling>({
{"convex"sv, ghConvex},
{"balanced"sv, ghBalanced},
{"advanced"sv, ghAdvanced},
{"0"sv, ghConvex},
{"1"sv, ghBalanced},
{"2"sv, ghAdvanced},
});
static constexpr const auto ArrangeStrategyLabels = make_staticmap<std::string_view, ArrangeStrategy>({
{"auto"sv, asAuto},
{"pulltocenter"sv, asPullToCenter},
{"0"sv, asAuto},
{"1"sv, asPullToCenter}
});
static constexpr const auto XLPivotsLabels = make_staticmap<std::string_view, XLPivots>({
{"center"sv, xlpCenter },
{"rearleft"sv, xlpRearLeft },
{"frontleft"sv, xlpFrontLeft },
{"frontright"sv, xlpFrontRight },
{"rearright"sv, xlpRearRight },
{"random"sv, xlpRandom },
{"0"sv, xlpCenter },
{"1"sv, xlpRearLeft },
{"2"sv, xlpFrontLeft },
{"3"sv, xlpFrontRight },
{"4"sv, xlpRearRight },
{"5"sv, xlpRandom }
});
};
class ArrangeSettingsDb: public ArrangeSettingsView
{
public:
virtual void distance_from_obj_range(float &min, float &max) const = 0;
virtual void distance_from_bed_range(float &min, float &max) const = 0;
virtual ArrangeSettingsDb& set_distance_from_objects(float v) = 0;
virtual ArrangeSettingsDb& set_distance_from_bed(float v) = 0;
virtual ArrangeSettingsDb& set_rotation_enabled(bool v) = 0;
virtual ArrangeSettingsDb& set_xl_alignment(XLPivots v) = 0;
virtual ArrangeSettingsDb& set_geometry_handling(GeometryHandling v) = 0;
virtual ArrangeSettingsDb& set_arrange_strategy(ArrangeStrategy v) = 0;
struct Values {
float d_obj = 6.f, d_bed = 0.f;
bool rotations = false;
XLPivots xl_align = XLPivots::xlpFrontLeft;
GeometryHandling geom_handling = GeometryHandling::ghConvex;
ArrangeStrategy arr_strategy = ArrangeStrategy::asAuto;
Values() = default;
Values(const ArrangeSettingsView &sv)
{
d_bed = sv.get_distance_from_bed();
d_obj = sv.get_distance_from_objects();
arr_strategy = sv.get_arrange_strategy();
geom_handling = sv.get_geometry_handling();
rotations = sv.is_rotation_enabled();
xl_align = sv.get_xl_alignment();
}
};
virtual Values get_defaults() const { return {}; }
ArrangeSettingsDb& set_from(const ArrangeSettingsView &sv)
{
set_distance_from_bed(sv.get_distance_from_bed());
set_distance_from_objects(sv.get_distance_from_objects());
set_arrange_strategy(sv.get_arrange_strategy());
set_geometry_handling(sv.get_geometry_handling());
set_rotation_enabled(sv.is_rotation_enabled());
set_xl_alignment(sv.get_xl_alignment());
return *this;
}
};
class ArrangeSettings: public Slic3r::arr2::ArrangeSettingsDb
{
ArrangeSettingsDb::Values m_v = {};
public:
explicit ArrangeSettings(
const ArrangeSettingsDb::Values &v = {})
: m_v{v}
{}
explicit ArrangeSettings(const ArrangeSettingsView &v)
: m_v{v}
{}
float get_distance_from_objects() const override { return m_v.d_obj; }
float get_distance_from_bed() const override { return m_v.d_bed; }
bool is_rotation_enabled() const override { return m_v.rotations; }
XLPivots get_xl_alignment() const override { return m_v.xl_align; }
GeometryHandling get_geometry_handling() const override { return m_v.geom_handling; }
ArrangeStrategy get_arrange_strategy() const override { return m_v.arr_strategy; }
void distance_from_obj_range(float &min, float &max) const override { min = 0.f; max = 100.f; }
void distance_from_bed_range(float &min, float &max) const override { min = 0.f; max = 100.f; }
ArrangeSettings& set_distance_from_objects(float v) override { m_v.d_obj = v; return *this; }
ArrangeSettings& set_distance_from_bed(float v) override { m_v.d_bed = v; return *this; }
ArrangeSettings& set_rotation_enabled(bool v) override { m_v.rotations = v; return *this; }
ArrangeSettings& set_xl_alignment(XLPivots v) override { m_v.xl_align = v; return *this; }
ArrangeSettings& set_geometry_handling(GeometryHandling v) override { m_v.geom_handling = v; return *this; }
ArrangeSettings& set_arrange_strategy(ArrangeStrategy v) override { m_v.arr_strategy = v; return *this; }
auto & values() const { return m_v; }
auto & values() { return m_v; }
};
}} // namespace Slic3r::arr2
#endif // ARRANGESETTINGSVIEW_HPP

View File

@@ -0,0 +1,91 @@
#ifndef ARBITRARYDATASTORE_HPP
#define ARBITRARYDATASTORE_HPP
#include <string>
#include <map>
#include <any>
#include <arrange/DataStoreTraits.hpp>
namespace Slic3r { namespace arr2 {
// An associative container able to store and retrieve any data type.
// Based on std::any
class ArbitraryDataStore {
std::map<std::string, std::any> m_data;
public:
template<class T> void add(const std::string &key, T &&data)
{
m_data[key] = std::any{std::forward<T>(data)};
}
void add(const std::string &key, std::any &&data)
{
m_data[key] = std::move(data);
}
// Return nullptr if the key does not exist or the stored data has a
// type other then T. Otherwise returns a pointer to the stored data.
template<class T> const T *get(const std::string &key) const
{
auto it = m_data.find(key);
return it != m_data.end() ? std::any_cast<T>(&(it->second)) :
nullptr;
}
// Same as above just not const.
template<class T> T *get(const std::string &key)
{
auto it = m_data.find(key);
return it != m_data.end() ? std::any_cast<T>(&(it->second)) : nullptr;
}
bool has_key(const std::string &key) const
{
auto it = m_data.find(key);
return it != m_data.end();
}
};
// Some items can be containers of arbitrary data stored under string keys.
template<> struct DataStoreTraits_<ArbitraryDataStore>
{
static constexpr bool Implemented = true;
template<class T>
static const T *get(const ArbitraryDataStore &s, const std::string &key)
{
return s.get<T>(key);
}
// Same as above just not const.
template<class T>
static T *get(ArbitraryDataStore &s, const std::string &key)
{
return s.get<T>(key);
}
template<class T>
static bool has_key(ArbitraryDataStore &s, const std::string &key)
{
return s.has_key(key);
}
};
template<> struct WritableDataStoreTraits_<ArbitraryDataStore>
{
static constexpr bool Implemented = true;
template<class T>
static void set(ArbitraryDataStore &store,
const std::string &key,
T &&data)
{
store.add(key, std::forward<T>(data));
}
};
}} // namespace Slic3r::arr2
#endif // ARBITRARYDATASTORE_HPP

View File

@@ -0,0 +1,509 @@
#ifndef ARRANGEITEM_HPP
#define ARRANGEITEM_HPP
#include <boost/variant.hpp>
#include <libslic3r/ClipperUtils.hpp>
#include <assert.h>
#include <stddef.h>
#include <optional>
#include <algorithm>
#include <initializer_list>
#include <memory>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include <cassert>
#include <cstddef>
#include <libslic3r/ExPolygon.hpp>
#include <libslic3r/BoundingBox.hpp>
#include <libslic3r/AnyPtr.hpp>
#include <libslic3r/Point.hpp>
#include <libslic3r/Polygon.hpp>
#include <libslic3r/libslic3r.h>
#include <arrange/PackingContext.hpp>
#include <arrange/NFP/NFPArrangeItemTraits.hpp>
#include <arrange/NFP/NFP.hpp>
#include <arrange/ArrangeBase.hpp>
#include <arrange/ArrangeItemTraits.hpp>
#include <arrange/DataStoreTraits.hpp>
#include <arrange-wrapper/Items/MutableItemTraits.hpp>
#include <arrange-wrapper/Arrange.hpp>
#include <arrange-wrapper/Tasks/ArrangeTask.hpp>
#include <arrange-wrapper/Tasks/FillBedTask.hpp>
#include <arrange-wrapper/Tasks/MultiplySelectionTask.hpp>
#include <arrange-wrapper/Items/ArbitraryDataStore.hpp>
namespace Slic3r { namespace arr2 {
struct InfiniteBed;
inline bool check_polygons_are_convex(const Polygons &pp) {
return std::all_of(pp.begin(), pp.end(), [](const Polygon &p) {
return polygon_is_convex(p);
});
}
// A class that stores a set of polygons that are garanteed to be all convex.
// They collectively represent a decomposition of a more complex shape into
// its convex part. Note that this class only stores the result of the decomp,
// does not do the job itself. In debug mode, an explicit check is done for
// each component to be convex.
//
// Additionally class stores a translation vector and a rotation angle for the
// stored polygon, plus additional privitives that are all cached cached after
// appying a the transformations. The caching is not thread safe!
class DecomposedShape
{
Polygons m_shape;
Vec2crd m_translation{0, 0}; // The translation of the poly
double m_rotation{0.0}; // The rotation of the poly in radians
mutable Polygons m_transformed_outline;
mutable bool m_transformed_outline_valid = false;
mutable Point m_reference_vertex;
mutable std::vector<Point> m_refs;
mutable std::vector<Point> m_mins;
mutable bool m_reference_vertex_valid = false;
mutable Point m_centroid;
mutable bool m_centroid_valid = false;
mutable Polygon m_convex_hull;
mutable BoundingBox m_bounding_box;
mutable double m_area = 0;
public:
DecomposedShape() = default;
explicit DecomposedShape(Polygon sh)
{
m_shape.emplace_back(std::move(sh));
assert(check_polygons_are_convex(m_shape));
}
explicit DecomposedShape(std::initializer_list<Point> pts)
: DecomposedShape(Polygon{pts})
{}
explicit DecomposedShape(Polygons sh) : m_shape{std::move(sh)}
{
assert(check_polygons_are_convex(m_shape));
}
const Polygons &contours() const { return m_shape; }
const Vec2crd &translation() const { return m_translation; }
double rotation() const { return m_rotation; }
void translation(const Vec2crd &v)
{
m_translation = v;
m_transformed_outline_valid = false;
m_reference_vertex_valid = false;
m_centroid_valid = false;
}
void rotation(double v)
{
m_rotation = v;
m_transformed_outline_valid = false;
m_reference_vertex_valid = false;
m_centroid_valid = false;
}
const Polygons &transformed_outline() const;
const Polygon &convex_hull() const;
const BoundingBox &bounding_box() const;
// The cached reference vertex in the context of NFP creation. Always
// refers to the leftmost upper vertex.
const Vec2crd &reference_vertex() const;
const Vec2crd &reference_vertex(size_t idx) const;
// Also for NFP calculations, the rightmost lowest vertex of the shape.
const Vec2crd &min_vertex(size_t idx) const;
double area_unscaled() const
{
// update cache
transformed_outline();
return m_area;
}
Vec2crd centroid() const;
};
DecomposedShape decompose(const ExPolygons &polys);
DecomposedShape decompose(const Polygon &p);
class ArrangeItem
{
private:
DecomposedShape m_shape; // Shape of item when it's not moving
AnyPtr<DecomposedShape> m_envelope; // Possibly different shape when packed
ArbitraryDataStore m_datastore;
int m_bed_idx{Unarranged}; // To which logical bed does this item belong
int m_priority{0}; // For sorting
std::optional<int> m_bed_constraint;
public:
ArrangeItem() = default;
explicit ArrangeItem(DecomposedShape shape)
: m_shape(std::move(shape)), m_envelope{&m_shape}
{}
explicit ArrangeItem(DecomposedShape shape, DecomposedShape envelope)
: m_shape(std::move(shape))
, m_envelope{std::make_unique<DecomposedShape>(std::move(envelope))}
{}
explicit ArrangeItem(const ExPolygons &shape);
explicit ArrangeItem(Polygon shape);
explicit ArrangeItem(std::initializer_list<Point> pts)
: ArrangeItem(Polygon{pts})
{}
ArrangeItem(const ArrangeItem &);
ArrangeItem(ArrangeItem &&) noexcept;
ArrangeItem & operator=(const ArrangeItem &);
ArrangeItem & operator=(ArrangeItem &&) noexcept;
int bed_idx() const { return m_bed_idx; }
int priority() const { return m_priority; }
std::optional<int> bed_constraint() const { return m_bed_constraint; };
void bed_idx(int v) { m_bed_idx = v; }
void priority(int v) { m_priority = v; }
void bed_constraint(std::optional<int> v) { m_bed_constraint = v; }
const ArbitraryDataStore &datastore() const { return m_datastore; }
ArbitraryDataStore &datastore() { return m_datastore; }
const DecomposedShape & shape() const { return m_shape; }
void set_shape(DecomposedShape shape);
const DecomposedShape & envelope() const { return *m_envelope; }
void set_envelope(DecomposedShape envelope);
const Vec2crd &translation() const { return m_shape.translation(); }
double rotation() const { return m_shape.rotation(); }
void translation(const Vec2crd &v)
{
m_shape.translation(v);
m_envelope->translation(v);
}
void rotation(double v)
{
m_shape.rotation(v);
m_envelope->rotation(v);
}
void update_caches() const
{
m_shape.reference_vertex();
m_envelope->reference_vertex();
m_shape.centroid();
m_envelope->centroid();
}
};
template<> struct ArrangeItemTraits_<ArrangeItem>
{
static const Vec2crd &get_translation(const ArrangeItem &itm)
{
return itm.translation();
}
static double get_rotation(const ArrangeItem &itm)
{
return itm.rotation();
}
static int get_bed_index(const ArrangeItem &itm)
{
return itm.bed_idx();
}
static int get_priority(const ArrangeItem &itm)
{
return itm.priority();
}
static std::optional<int> get_bed_constraint(const ArrangeItem &itm)
{
return itm.bed_constraint();
}
// Setters:
static void set_translation(ArrangeItem &itm, const Vec2crd &v)
{
itm.translation(v);
}
static void set_rotation(ArrangeItem &itm, double v)
{
itm.rotation(v);
}
static void set_bed_index(ArrangeItem &itm, int v)
{
itm.bed_idx(v);
}
static void set_bed_constraint(ArrangeItem &itm, std::optional<int> v)
{
itm.bed_constraint(v);
}
};
// Some items can be containers of arbitrary data stored under string keys.
template<> struct DataStoreTraits_<ArrangeItem>
{
static constexpr bool Implemented = true;
template<class T>
static const T *get(const ArrangeItem &itm, const std::string &key)
{
return itm.datastore().get<T>(key);
}
// Same as above just not const.
template<class T>
static T *get(ArrangeItem &itm, const std::string &key)
{
return itm.datastore().get<T>(key);
}
static bool has_key(const ArrangeItem &itm, const std::string &key)
{
return itm.datastore().has_key(key);
}
};
template<> struct WritableDataStoreTraits_<ArrangeItem>
{
static constexpr bool Implemented = true;
template<class T>
static void set(ArrangeItem &itm,
const std::string &key,
T &&data)
{
itm.datastore().add(key, std::forward<T>(data));
}
};
template<class FixedIt, class StopCond = DefaultStopCondition>
static Polygons calculate_nfp_unnormalized(const ArrangeItem &item,
const Range<FixedIt> &fixed_items,
StopCond &&stop_cond = {})
{
size_t cap = 0;
for (const ArrangeItem &fixitem : fixed_items) {
const Polygons &outlines = fixitem.shape().transformed_outline();
cap += outlines.size();
}
const Polygons &item_outlines = item.envelope().transformed_outline();
auto nfps = reserve_polygons(cap * item_outlines.size());
Vec2crd ref_whole = item.envelope().reference_vertex();
Polygon subnfp;
for (const ArrangeItem &fixed : fixed_items) {
// fixed_polys should already be a set of strictly convex polygons,
// as ArrangeItem stores convex-decomposed polygons
const Polygons & fixed_polys = fixed.shape().transformed_outline();
for (const Polygon &fixed_poly : fixed_polys) {
Point max_fixed = Slic3r::reference_vertex(fixed_poly);
for (size_t mi = 0; mi < item_outlines.size(); ++mi) {
const Polygon &movable = item_outlines[mi];
const Vec2crd &mref = item.envelope().reference_vertex(mi);
subnfp = nfp_convex_convex_legacy(fixed_poly, movable);
Vec2crd min_movable = item.envelope().min_vertex(mi);
Vec2crd dtouch = max_fixed - min_movable;
Vec2crd top_other = mref + dtouch;
Vec2crd max_nfp = Slic3r::reference_vertex(subnfp);
auto dnfp = top_other - max_nfp;
auto d = ref_whole - mref + dnfp;
subnfp.translate(d);
nfps.emplace_back(subnfp);
}
if (stop_cond())
break;
nfps = union_(nfps);
}
if (stop_cond()) {
nfps.clear();
break;
}
}
return nfps;
}
template<> struct NFPArrangeItemTraits_<ArrangeItem> {
template<class Context, class Bed, class StopCond>
static ExPolygons calculate_nfp(const ArrangeItem &item,
const Context &packing_context,
const Bed &bed,
StopCond &&stopcond)
{
auto static_items = all_items_range(packing_context);
Polygons nfps = arr2::calculate_nfp_unnormalized(item, static_items, stopcond);
ExPolygons nfp_ex;
if (!stopcond()) {
if constexpr (!std::is_convertible_v<Bed, InfiniteBed>) {
ExPolygons ifpbed = ifp_convex(bed, item.envelope().convex_hull());
nfp_ex = diff_ex(ifpbed, nfps);
} else {
nfp_ex = union_ex(nfps);
}
}
item.update_caches();
return nfp_ex;
}
static const Vec2crd& reference_vertex(const ArrangeItem &item)
{
return item.envelope().reference_vertex();
}
static BoundingBox envelope_bounding_box(const ArrangeItem &itm)
{
return itm.envelope().bounding_box();
}
static BoundingBox fixed_bounding_box(const ArrangeItem &itm)
{
return itm.shape().bounding_box();
}
static double envelope_area(const ArrangeItem &itm)
{
return itm.envelope().area_unscaled() * scaled<double>(1.) *
scaled<double>(1.);
}
static double fixed_area(const ArrangeItem &itm)
{
return itm.shape().area_unscaled() * scaled<double>(1.) *
scaled<double>(1.);
}
static const Polygons & envelope_outline(const ArrangeItem &itm)
{
return itm.envelope().transformed_outline();
}
static const Polygons & fixed_outline(const ArrangeItem &itm)
{
return itm.shape().transformed_outline();
}
static const Polygon & envelope_convex_hull(const ArrangeItem &itm)
{
return itm.envelope().convex_hull();
}
static const Polygon & fixed_convex_hull(const ArrangeItem &itm)
{
return itm.shape().convex_hull();
}
static const std::vector<double>& allowed_rotations(const ArrangeItem &itm)
{
static const std::vector<double> ret_zero = {0.};
const std::vector<double> * ret_ptr = &ret_zero;
auto rots = get_data<std::vector<double>>(itm, "rotations");
if (rots) {
ret_ptr = rots;
}
return *ret_ptr;
}
static Vec2crd fixed_centroid(const ArrangeItem &itm)
{
return itm.shape().centroid();
}
static Vec2crd envelope_centroid(const ArrangeItem &itm)
{
return itm.envelope().centroid();
}
};
template<> struct IsMutableItem_<ArrangeItem>: public std::true_type {};
template<>
struct MutableItemTraits_<ArrangeItem> {
static void set_priority(ArrangeItem &itm, int p) { itm.priority(p); }
static void set_convex_shape(ArrangeItem &itm, const Polygon &shape)
{
itm.set_shape(DecomposedShape{shape});
}
static void set_shape(ArrangeItem &itm, const ExPolygons &shape)
{
itm.set_shape(decompose(shape));
}
static void set_convex_envelope(ArrangeItem &itm, const Polygon &envelope)
{
itm.set_envelope(DecomposedShape{envelope});
}
static void set_envelope(ArrangeItem &itm, const ExPolygons &envelope)
{
itm.set_envelope(decompose(envelope));
}
template<class T>
static void set_arbitrary_data(ArrangeItem &itm, const std::string &key, T &&data)
{
set_data(itm, key, std::forward<T>(data));
}
static void set_allowed_rotations(ArrangeItem &itm, const std::vector<double> &rotations)
{
set_data(itm, "rotations", rotations);
}
};
extern template struct ImbueableItemTraits_<ArrangeItem>;
extern template class ArrangeableToItemConverter<ArrangeItem>;
extern template struct ArrangeTask<ArrangeItem>;
extern template struct FillBedTask<ArrangeItem>;
extern template struct MultiplySelectionTask<ArrangeItem>;
extern template class Arranger<ArrangeItem>;
}} // namespace Slic3r::arr2
#endif // ARRANGEITEM_HPP

View File

@@ -0,0 +1,136 @@
#ifndef MutableItemTraits_HPP
#define MutableItemTraits_HPP
#include <libslic3r/ExPolygon.hpp>
#include <arrange/ArrangeItemTraits.hpp>
#include <arrange/DataStoreTraits.hpp>
namespace Slic3r { namespace arr2 {
template<class Itm> struct IsMutableItem_ : public std::false_type
{};
// Using this interface to set up any arrange item. Provides default
// implementation but it needs to be explicitly switched on with
// IsMutableItem_ or completely reimplement a specialization.
template<class Itm, class En = void> struct MutableItemTraits_
{
static_assert(IsMutableItem_<Itm>::value, "Not a Writable item type!");
static void set_priority(Itm &itm, int p) { itm.set_priority(p); }
static void set_convex_shape(Itm &itm, const Polygon &shape)
{
itm.set_convex_shape(shape);
}
static void set_shape(Itm &itm, const ExPolygons &shape)
{
itm.set_shape(shape);
}
static void set_convex_envelope(Itm &itm, const Polygon &envelope)
{
itm.set_convex_envelope(envelope);
}
static void set_envelope(Itm &itm, const ExPolygons &envelope)
{
itm.set_envelope(envelope);
}
template<class T>
static void set_arbitrary_data(Itm &itm, const std::string &key, T &&data)
{
if constexpr (IsWritableDataStore<Itm>)
set_data(itm, key, std::forward<T>(data));
}
static void set_allowed_rotations(Itm &itm,
const std::vector<double> &rotations)
{
itm.set_allowed_rotations(rotations);
}
};
template<class T>
using MutableItemTraits = MutableItemTraits_<StripCVRef<T>>;
template<class T> constexpr bool IsMutableItem = IsMutableItem_<T>::value;
template<class T, class TT = T>
using MutableItemOnly = std::enable_if_t<IsMutableItem<T>, TT>;
template<class Itm> void set_priority(Itm &itm, int p)
{
MutableItemTraits<Itm>::set_priority(itm, p);
}
template<class Itm> void set_convex_shape(Itm &itm, const Polygon &shape)
{
MutableItemTraits<Itm>::set_convex_shape(itm, shape);
}
template<class Itm> void set_shape(Itm &itm, const ExPolygons &shape)
{
MutableItemTraits<Itm>::set_shape(itm, shape);
}
template<class Itm>
void set_convex_envelope(Itm &itm, const Polygon &envelope)
{
MutableItemTraits<Itm>::set_convex_envelope(itm, envelope);
}
template<class Itm> void set_envelope(Itm &itm, const ExPolygons &envelope)
{
MutableItemTraits<Itm>::set_envelope(itm, envelope);
}
template<class T, class Itm>
void set_arbitrary_data(Itm &itm, const std::string &key, T &&data)
{
MutableItemTraits<Itm>::set_arbitrary_data(itm, key, std::forward<T>(data));
}
template<class Itm>
void set_allowed_rotations(Itm &itm, const std::vector<double> &rotations)
{
MutableItemTraits<Itm>::set_allowed_rotations(itm, rotations);
}
template<class ArrItem> int raise_priority(ArrItem &itm)
{
int ret = get_priority(itm) + 1;
set_priority(itm, ret);
return ret;
}
template<class ArrItem> int reduce_priority(ArrItem &itm)
{
int ret = get_priority(itm) - 1;
set_priority(itm, ret);
return ret;
}
template<class It> int lowest_priority(const Range<It> &item_range)
{
auto minp_it = std::min_element(item_range.begin(),
item_range.end(),
[](auto &itm1, auto &itm2) {
return get_priority(itm1) <
get_priority(itm2);
});
int min_priority = 0;
if (minp_it != item_range.end())
min_priority = get_priority(*minp_it);
return min_priority;
}
}} // namespace Slic3r::arr2
#endif // MutableItemTraits_HPP

View File

@@ -0,0 +1,233 @@
#ifndef SIMPLEARRANGEITEM_HPP
#define SIMPLEARRANGEITEM_HPP
#include <optional>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include <libslic3r/Polygon.hpp>
#include <libslic3r/Geometry/ConvexHull.hpp>
#include <libslic3r/BoundingBox.hpp>
#include <libslic3r/ClipperUtils.hpp>
#include <libslic3r/ObjectID.hpp>
#include <libslic3r/Point.hpp>
#include <arrange/ArrangeItemTraits.hpp>
#include <arrange/PackingContext.hpp>
#include <arrange/NFP/NFPArrangeItemTraits.hpp>
#include <arrange/NFP/NFP.hpp>
#include <arrange-wrapper/Arrange.hpp>
#include <arrange-wrapper/Tasks/FillBedTask.hpp>
#include <arrange-wrapper/Tasks/ArrangeTask.hpp>
#include <arrange-wrapper/Items/MutableItemTraits.hpp>
namespace Slic3r { namespace arr2 {
struct InfiniteBed;
class SimpleArrangeItem {
Polygon m_shape;
Vec2crd m_translation = Vec2crd::Zero();
double m_rotation = 0.;
int m_priority = 0;
int m_bed_idx = Unarranged;
std::optional<int> m_bed_constraint;
std::vector<double> m_allowed_rotations = {0.};
ObjectID m_obj_id;
public:
explicit SimpleArrangeItem(Polygon chull = {}): m_shape{std::move(chull)} {}
void set_shape(Polygon chull) { m_shape = std::move(chull); }
const Vec2crd& get_translation() const noexcept { return m_translation; }
double get_rotation() const noexcept { return m_rotation; }
int get_priority() const noexcept { return m_priority; }
int get_bed_index() const noexcept { return m_bed_idx; }
std::optional<int> get_bed_constraint() const noexcept {
return m_bed_constraint;
}
void set_translation(const Vec2crd &v) { m_translation = v; }
void set_rotation(double v) noexcept { m_rotation = v; }
void set_priority(int v) noexcept { m_priority = v; }
void set_bed_index(int v) noexcept { m_bed_idx = v; }
void set_bed_constraint(std::optional<int> v) noexcept { m_bed_constraint = v; }
const Polygon &shape() const { return m_shape; }
Polygon outline() const;
const auto &allowed_rotations() const noexcept
{
return m_allowed_rotations;
}
void set_allowed_rotations(std::vector<double> rots)
{
m_allowed_rotations = std::move(rots);
}
void set_object_id(const ObjectID &id) noexcept { m_obj_id = id; }
const ObjectID & get_object_id() const noexcept { return m_obj_id; }
};
template<> struct NFPArrangeItemTraits_<SimpleArrangeItem>
{
template<class Context, class Bed, class StopCond>
static ExPolygons calculate_nfp(const SimpleArrangeItem &item,
const Context &packing_context,
const Bed &bed,
StopCond &&stop_cond)
{
auto fixed_items = all_items_range(packing_context);
auto nfps = reserve_polygons(fixed_items.size());
for (const SimpleArrangeItem &fixed_part : fixed_items) {
Polygon subnfp = nfp_convex_convex_legacy(fixed_part.outline(),
item.outline());
nfps.emplace_back(subnfp);
if (stop_cond()) {
nfps.clear();
break;
}
}
ExPolygons nfp_ex;
if (!stop_cond()) {
if constexpr (!std::is_convertible_v<Bed, InfiniteBed>) {
ExPolygons ifpbed = ifp_convex(bed, item.outline());
nfp_ex = diff_ex(ifpbed, nfps);
} else {
nfp_ex = union_ex(nfps);
}
}
return nfp_ex;
}
static Vec2crd reference_vertex(const SimpleArrangeItem &item)
{
return Slic3r::reference_vertex(item.outline());
}
static BoundingBox envelope_bounding_box(const SimpleArrangeItem &itm)
{
return get_extents(itm.outline());
}
static BoundingBox fixed_bounding_box(const SimpleArrangeItem &itm)
{
return get_extents(itm.outline());
}
static Polygons envelope_outline(const SimpleArrangeItem &itm)
{
return {itm.outline()};
}
static Polygons fixed_outline(const SimpleArrangeItem &itm)
{
return {itm.outline()};
}
static Polygon envelope_convex_hull(const SimpleArrangeItem &itm)
{
return Geometry::convex_hull(itm.outline());
}
static Polygon fixed_convex_hull(const SimpleArrangeItem &itm)
{
return Geometry::convex_hull(itm.outline());
}
static double envelope_area(const SimpleArrangeItem &itm)
{
return itm.shape().area();
}
static double fixed_area(const SimpleArrangeItem &itm)
{
return itm.shape().area();
}
static const auto& allowed_rotations(const SimpleArrangeItem &itm) noexcept
{
return itm.allowed_rotations();
}
static Vec2crd fixed_centroid(const SimpleArrangeItem &itm) noexcept
{
return itm.outline().centroid();
}
static Vec2crd envelope_centroid(const SimpleArrangeItem &itm) noexcept
{
return itm.outline().centroid();
}
};
template<> struct IsMutableItem_<SimpleArrangeItem>: public std::true_type {};
template<>
struct MutableItemTraits_<SimpleArrangeItem> {
static void set_priority(SimpleArrangeItem &itm, int p) { itm.set_priority(p); }
static void set_convex_shape(SimpleArrangeItem &itm, const Polygon &shape)
{
itm.set_shape(shape);
}
static void set_shape(SimpleArrangeItem &itm, const ExPolygons &shape)
{
itm.set_shape(Geometry::convex_hull(shape));
}
static void set_convex_envelope(SimpleArrangeItem &itm, const Polygon &envelope)
{
itm.set_shape(envelope);
}
static void set_envelope(SimpleArrangeItem &itm, const ExPolygons &envelope)
{
itm.set_shape(Geometry::convex_hull(envelope));
}
template<class T>
static void set_data(SimpleArrangeItem &itm, const std::string &key, T &&data)
{}
static void set_allowed_rotations(SimpleArrangeItem &itm, const std::vector<double> &rotations)
{
itm.set_allowed_rotations(rotations);
}
};
template<> struct ImbueableItemTraits_<SimpleArrangeItem>
{
static void imbue_id(SimpleArrangeItem &itm, const ObjectID &id)
{
itm.set_object_id(id);
}
static std::optional<ObjectID> retrieve_id(const SimpleArrangeItem &itm)
{
std::optional<ObjectID> ret;
if (itm.get_object_id().valid())
ret = itm.get_object_id();
return ret;
}
};
extern template class ArrangeableToItemConverter<SimpleArrangeItem>;
extern template struct ArrangeTask<SimpleArrangeItem>;
extern template struct FillBedTask<SimpleArrangeItem>;
extern template struct MultiplySelectionTask<SimpleArrangeItem>;
extern template class Arranger<SimpleArrangeItem>;
}} // namespace Slic3r::arr2
#endif // SIMPLEARRANGEITEM_HPP

View File

@@ -0,0 +1,82 @@
#ifndef TRAFOONLYARRANGEITEM_HPP
#define TRAFOONLYARRANGEITEM_HPP
#include <arrange/ArrangeItemTraits.hpp>
#include "ArbitraryDataStore.hpp"
#include "MutableItemTraits.hpp"
namespace Slic3r { namespace arr2 {
class TrafoOnlyArrangeItem {
int m_bed_idx = Unarranged;
int m_priority = 0;
Vec2crd m_translation = Vec2crd::Zero();
double m_rotation = 0.;
std::optional<int> m_bed_constraint;
ArbitraryDataStore m_datastore;
public:
TrafoOnlyArrangeItem() = default;
template<class ArrItm>
explicit TrafoOnlyArrangeItem(const ArrItm &other)
: m_bed_idx{arr2::get_bed_index(other)},
m_priority{arr2::get_priority(other)},
m_translation(arr2::get_translation(other)),
m_rotation{arr2::get_rotation(other)},
m_bed_constraint{arr2::get_bed_constraint(other)}
{}
const Vec2crd& get_translation() const noexcept { return m_translation; }
double get_rotation() const noexcept { return m_rotation; }
int get_bed_index() const noexcept { return m_bed_idx; }
int get_priority() const noexcept { return m_priority; }
std::optional<int> get_bed_constraint() const noexcept { return m_bed_constraint; }
const ArbitraryDataStore &datastore() const noexcept { return m_datastore; }
ArbitraryDataStore &datastore() { return m_datastore; }
};
template<> struct DataStoreTraits_<TrafoOnlyArrangeItem>
{
static constexpr bool Implemented = true;
template<class T>
static const T *get(const TrafoOnlyArrangeItem &itm, const std::string &key)
{
return itm.datastore().get<T>(key);
}
template<class T>
static T *get(TrafoOnlyArrangeItem &itm, const std::string &key)
{
return itm.datastore().get<T>(key);
}
static bool has_key(const TrafoOnlyArrangeItem &itm, const std::string &key)
{
return itm.datastore().has_key(key);
}
};
template<> struct IsMutableItem_<TrafoOnlyArrangeItem>: public std::true_type {};
template<> struct WritableDataStoreTraits_<TrafoOnlyArrangeItem>
{
static constexpr bool Implemented = true;
template<class T>
static void set(TrafoOnlyArrangeItem &itm,
const std::string &key,
T &&data)
{
set_data(itm.datastore(), key, std::forward<T>(data));
}
};
} // namespace arr2
} // namespace Slic3r
#endif // TRAFOONLYARRANGEITEM_HPP

View File

@@ -0,0 +1,41 @@
#ifndef MODELARRANGE_HPP
#define MODELARRANGE_HPP
#include <stddef.h>
#include <vector>
#include <cstddef>
#include <arrange/Beds.hpp>
#include "Scene.hpp"
namespace Slic3r {
class Model;
class ModelInstance;
namespace arr2 {
class ArrangeSettingsView;
} // namespace arr2
using ModelInstancePtrs = std::vector<ModelInstance*>;
//void duplicate(Model &model, ArrangePolygons &copies, VirtualBedFn);
void duplicate_objects(Model &model, size_t copies_num);
bool arrange_objects(Model &model,
const arr2::ArrangeBed &bed,
const arr2::ArrangeSettingsView &settings);
void duplicate_objects(Model & model,
size_t copies_num,
const arr2::ArrangeBed &bed,
const arr2::ArrangeSettingsView &settings);
void duplicate(Model & model,
size_t copies_num,
const arr2::ArrangeBed &bed,
const arr2::ArrangeSettingsView &settings);
} // namespace Slic3r
#endif // MODELARRANGE_HPP

View File

@@ -0,0 +1,440 @@
#ifndef ARR2_SCENE_HPP
#define ARR2_SCENE_HPP
#include <stddef.h>
#include <boost/variant.hpp>
#include <boost/variant/variant.hpp>
#include <any>
#include <string_view>
#include <algorithm>
#include <functional>
#include <memory>
#include <set>
#include <type_traits>
#include <utility>
#include <vector>
#include <cstddef>
#include <libslic3r/ObjectID.hpp>
#include <libslic3r/AnyPtr.hpp>
#include <libslic3r/BoundingBox.hpp>
#include <libslic3r/ExPolygon.hpp>
#include <libslic3r/Point.hpp>
#include <libslic3r/Polygon.hpp>
#include <libslic3r/libslic3r.h>
#include <arrange/Beds.hpp>
#include "ArrangeSettingsView.hpp"
#include "SegmentedRectangleBed.hpp"
namespace Slic3r { namespace arr2 {
// This module contains all the necessary high level interfaces for
// arrangement. No dependency on the rest of libslic3r is intoduced here. (No
// Model, ModelObject, etc...) except for ObjectID.
// An interface that allows to store arbitrary data (std::any) under a specific
// key in an object implementing the interface. This is later used to pass
// arbitrary parameters from any arrangeable object down to the arrangement core.
class AnyWritable
{
public:
virtual ~AnyWritable() = default;
virtual void write(std::string_view key, std::any d) = 0;
};
// The interface that captures the objects which are actually moved around.
// Implementations must provide means to extract the 2D outline that is used
// by the arrangement core.
class Arrangeable
{
public:
virtual ~Arrangeable() = default;
// ID is implementation specific, must uniquely identify an Arrangeable
// object.
virtual ObjectID id() const = 0;
// This is different than id(), and identifies an underlying group into
// which the Arrangeable belongs. Can be used to group arrangeables sharing
// the same outline.
virtual ObjectID geometry_id() const = 0;
// Outline extraction can be a demanding operation, so there is a separate
// method the extract the full outline of an object and the convex hull only
// It will depend on the arrangement config to choose which one is called.
// convex_outline might be considerably faster than calling full_outline()
// and then calculating the convex hull from that.
virtual ExPolygons full_outline() const = 0;
virtual Polygon convex_outline() const = 0;
// Envelope is the boundary that an arrangeble object might have which
// is used when the object is being placed or moved around. Once it is
// placed, the outline (convex or full) will be used to determine the
// boundaries instead of the envelope. This concept can be used to
// implement arranging objects with support structures that can overlap,
// but never touch the actual object. In this case, full envelope would
// return the silhouette of the object with supports (pad, brim, etc...) and
// outline would be the actual object boundary.
virtual ExPolygons full_envelope() const { return {}; }
virtual Polygon convex_envelope() const { return {}; }
// Write the transformations determined by the arrangement into the object
virtual void transform(const Vec2d &transl, double rot) = 0;
// An arrangeable can be printable or unprintable, they should not be on
// the same bed. (See arrange tasks)
virtual bool is_printable() const { return true; }
// An arrangeable can be selected or not, this will determine if treated
// as static objects or movable ones.
virtual bool is_selected() const { return true; }
// Determines the order in which the objects are arranged. Higher priority
// objects are arranged first.
virtual int priority() const { return 0; }
virtual std::optional<int> bed_constraint() const { return std::nullopt; }
// Any implementation specific properties can be passed to the arrangement
// core by overriding this method. This implies that the specific Arranger
// will be able to interpret these properties. An example usage is to mark
// special objects (like a wipe tower)
virtual void imbue_data(AnyWritable &datastore) const {}
// for convinience to pass an AnyWritable created in the same expression
// as the method call
void imbue_data(AnyWritable &&datastore) const { imbue_data(datastore); }
// An Arrangeable might reside on a logical bed instead of the real one
// in case that the arrangement can not fit it onto the real bed. Handling
// of logical beds is also implementation specific and are specified with
// the next two methods:
// Returns the bed index on which the given Arrangeable is sitting.
virtual int get_bed_index() const = 0;
// Assign the Arrangeable to the given bed index. Note that this
// method can return false, indicating that the given bed is not available
// to be occupied.
virtual bool assign_bed(int bed_idx) = 0;
};
// Arrangeable objects are provided by an ArrangeableModel which is also able to
// create new arrangeables given a prototype id to copy.
class ArrangeableModel
{
public:
virtual ~ArrangeableModel() = default;
// Visit all arrangeable in this model and call the provided visitor
virtual void for_each_arrangeable(std::function<void(Arrangeable &)>) = 0;
virtual void for_each_arrangeable(std::function<void(const Arrangeable&)>) const = 0;
// Visit a specific arrangeable identified by it's id
virtual void visit_arrangeable(const ObjectID &id, std::function<void(const Arrangeable &)>) const = 0;
virtual void visit_arrangeable(const ObjectID &id, std::function<void(Arrangeable &)>) = 0;
// Add a new arrangeable which is a copy of the one matching prototype_id
// Return the new object id or an invalid id if the new object was not
// created.
virtual ObjectID add_arrangeable(const ObjectID &prototype_id) = 0;
size_t arrangeable_count() const
{
size_t cnt = 0;
for_each_arrangeable([&cnt](auto &) { ++cnt; });
return cnt;
}
};
// The special bed type used by XL printers
using XLBed = SegmentedRectangleBed<std::integral_constant<size_t, 4>,
std::integral_constant<size_t, 4>>;
// ExtendedBed is a variant type holding all bed types supported by the
// arrange core and the additional XLBed
template<class... Args> struct ExtendedBed_
{
using Type =
boost::variant<XLBed, /* insert other types if needed*/ Args...>;
};
template<class... Args> struct ExtendedBed_<boost::variant<Args...>>
{
using Type = boost::variant<XLBed, Args...>;
};
using ExtendedBed = typename ExtendedBed_<ArrangeBed>::Type;
template<class BedFn> void visit_bed(BedFn &&fn, const ExtendedBed &bed)
{
boost::apply_visitor(fn, bed);
}
template<class BedFn> void visit_bed(BedFn &&fn, ExtendedBed &bed)
{
boost::apply_visitor(fn, bed);
}
inline BoundingBox bounding_box(const ExtendedBed &bed)
{
BoundingBox bedbb;
visit_bed([&bedbb](auto &rawbed) { bedbb = bounding_box(rawbed); }, bed);
return bedbb;
}
inline Vec2crd bed_gap(const ExtendedBed &bed)
{
Vec2crd gap;
visit_bed([&gap](auto &rawbed) { gap = bed_gap(rawbed); }, bed);
return gap;
}
class Scene;
// SceneBuilderBase is intended for Scene construction. A simple constructor
// is not enough here to capture all the possible ways of constructing a Scene.
// Subclasses of SceneBuilderBase can add more domain specific methods and
// overloads. An rvalue object of this class is handed over to the Scene
// constructor which can then establish itself using the provided builder.
// A little CRTP is used to implement fluent interface returning Subclass
// references.
template<class Subclass>
class SceneBuilderBase
{
protected:
AnyPtr<ArrangeableModel> m_arrangeable_model;
AnyPtr<const ArrangeSettingsView> m_settings;
ExtendedBed m_bed = arr2::InfiniteBed{};
coord_t m_brims_offs = 0;
coord_t m_skirt_offs = 0;
public:
virtual ~SceneBuilderBase() = default;
SceneBuilderBase() = default;
SceneBuilderBase(const SceneBuilderBase &) = delete;
SceneBuilderBase& operator=(const SceneBuilderBase &) = delete;
SceneBuilderBase(SceneBuilderBase &&) = default;
SceneBuilderBase& operator=(SceneBuilderBase &&) = default;
// All setters return an rvalue reference so that at the end, the
// build_scene method can be called fluently
Subclass &&set_arrange_settings(AnyPtr<const ArrangeSettingsView> settings)
{
m_settings = std::move(settings);
return std::move(static_cast<Subclass&>(*this));
}
Subclass &&set_arrange_settings(const ArrangeSettingsView &settings)
{
m_settings = std::make_unique<ArrangeSettings>(settings);
return std::move(static_cast<Subclass&>(*this));
}
Subclass &&set_bed(const Points &pts, const Vec2crd &gap)
{
m_bed = arr2::to_arrange_bed(pts, gap);
return std::move(static_cast<Subclass&>(*this));
}
Subclass && set_bed(const arr2::ArrangeBed &bed)
{
m_bed = bed;
return std::move(static_cast<Subclass&>(*this));
}
Subclass &&set_bed(const XLBed &bed)
{
m_bed = bed;
return std::move(static_cast<Subclass&>(*this));
}
Subclass &&set_arrangeable_model(AnyPtr<ArrangeableModel> model)
{
m_arrangeable_model = std::move(model);
return std::move(static_cast<Subclass&>(*this));
}
// Can only be called on an rvalue instance (hence the && at the end),
// the method will potentially move its content into sc
virtual void build_scene(Scene &sc) &&;
};
class BasicSceneBuilder: public SceneBuilderBase<BasicSceneBuilder> {};
// The Scene class captures all data needed to do an arrangement.
class Scene
{
template <class Sub> friend class SceneBuilderBase;
// These fields always need to be initialized to valid objects after
// construction of Scene which is ensured by the SceneBuilder
AnyPtr<ArrangeableModel> m_amodel;
AnyPtr<const ArrangeSettingsView> m_settings;
ExtendedBed m_bed;
public:
// Scene can only be built from an rvalue SceneBuilder whose content will
// potentially be moved to the constructed Scene object.
template<class Sub>
explicit Scene(SceneBuilderBase<Sub> &&bld)
{
std::move(bld).build_scene(*this);
}
const ArrangeableModel &model() const noexcept { return *m_amodel; }
ArrangeableModel &model() noexcept { return *m_amodel; }
const ArrangeSettingsView &settings() const noexcept { return *m_settings; }
template<class BedFn> void visit_bed(BedFn &&fn) const
{
arr2::visit_bed(fn, m_bed);
}
const ExtendedBed & bed() const { return m_bed; }
std::vector<ObjectID> selected_ids() const;
};
// Get all the ObjectIDs of Arrangeables which are in selected state
std::set<ObjectID> selected_geometry_ids(const Scene &sc);
// A dummy, empty ArrangeableModel for testing and as placeholder to avoiod using nullptr
class EmptyArrangeableModel: public ArrangeableModel
{
public:
void for_each_arrangeable(std::function<void(Arrangeable &)>) override {}
void for_each_arrangeable(std::function<void(const Arrangeable&)>) const override {}
void visit_arrangeable(const ObjectID &id, std::function<void(const Arrangeable &)>) const override {}
void visit_arrangeable(const ObjectID &id, std::function<void(Arrangeable &)>) override {}
ObjectID add_arrangeable(const ObjectID &prototype_id) override { return {}; }
};
template<class Subclass>
void SceneBuilderBase<Subclass>::build_scene(Scene &sc) &&
{
if (!m_arrangeable_model)
m_arrangeable_model = std::make_unique<EmptyArrangeableModel>();
if (!m_settings)
m_settings = std::make_unique<arr2::ArrangeSettings>();
// Apply the bed minimum distance by making the original bed smaller
// and arranging on this smaller bed.
coord_t inset = std::max(scaled(m_settings->get_distance_from_bed()),
m_skirt_offs + m_brims_offs);
// Objects have also a minimum distance from each other implemented
// as inflation applied to object outlines. This object distance
// does not apply to the bed, so the bed is inflated by this amount
// to compensate.
coord_t md = scaled(m_settings->get_distance_from_objects());
md = md / 2 - inset;
// Applying the final bed with the corrected dimensions to account
// for safety distances
visit_bed([md](auto &rawbed) { rawbed = offset(rawbed, md); }, m_bed);
sc.m_settings = std::move(m_settings);
sc.m_amodel = std::move(m_arrangeable_model);
sc.m_bed = std::move(m_bed);
}
// Arrange tasks produce an object implementing this interface. The arrange
// result can be applied to an ArrangeableModel which may or may not succeed.
// The ArrangeableModel could be in a different state (it's objects may have
// changed or removed) than it was at the time of arranging.
class ArrangeResult
{
public:
virtual ~ArrangeResult() = default;
virtual bool apply_on(ArrangeableModel &mdlwt) = 0;
};
enum class Tasks { Arrange, FillBed };
class ArrangeTaskCtl
{
public:
virtual ~ArrangeTaskCtl() = default;
virtual void update_status(int st) = 0;
virtual bool was_canceled() const = 0;
};
class DummyCtl : public ArrangeTaskCtl
{
public:
void update_status(int) override {}
bool was_canceled() const override { return false; }
};
class ArrangeTaskBase
{
public:
using Ctl = ArrangeTaskCtl;
virtual ~ArrangeTaskBase() = default;
[[nodiscard]] virtual std::unique_ptr<ArrangeResult> process(Ctl &ctl) = 0;
[[nodiscard]] virtual int item_count_to_process() const = 0;
[[nodiscard]] static std::unique_ptr<ArrangeTaskBase> create(
Tasks task_type, const Scene &sc);
[[nodiscard]] std::unique_ptr<ArrangeResult> process(Ctl &&ctl)
{
return process(ctl);
}
[[nodiscard]] std::unique_ptr<ArrangeResult> process()
{
return process(DummyCtl{});
}
};
bool arrange(Scene &scene, ArrangeTaskCtl &ctl);
inline bool arrange(Scene &scene, ArrangeTaskCtl &&ctl = DummyCtl{})
{
return arrange(scene, ctl);
}
inline bool arrange(Scene &&scene, ArrangeTaskCtl &ctl)
{
return arrange(scene, ctl);
}
inline bool arrange(Scene &&scene, ArrangeTaskCtl &&ctl = DummyCtl{})
{
return arrange(scene, ctl);
}
template<class Builder, class Ctl = DummyCtl>
bool arrange(SceneBuilderBase<Builder> &&builder, Ctl &&ctl = {})
{
return arrange(Scene{std::move(builder)}, ctl);
}
} // namespace arr2
} // namespace Slic3r
#endif // ARR2_SCENE_HPP

View File

@@ -0,0 +1,722 @@
#ifndef SCENEBUILDER_HPP
#define SCENEBUILDER_HPP
#include <assert.h>
#include <stddef.h>
#include <algorithm>
#include <functional>
#include <initializer_list>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
#include <cassert>
#include <cstddef>
#include <libslic3r/AnyPtr.hpp>
#include <libslic3r/BoundingBox.hpp>
#include <libslic3r/ExPolygon.hpp>
#include <libslic3r/Model.hpp>
#include <libslic3r/ObjectID.hpp>
#include <libslic3r/Point.hpp>
#include <libslic3r/Polygon.hpp>
#include <libslic3r/libslic3r.h>
#include <arrange/ArrangeItemTraits.hpp>
#include <arrange/Beds.hpp>
#include "Scene.hpp"
namespace Slic3r {
class Model;
class ModelInstance;
class ModelWipeTower;
class Print;
class SLAPrint;
class SLAPrintObject;
class PrintObject;
class DynamicPrintConfig;
namespace arr2 {
using SelectionPredicate = std::function<bool(int)>;
// Objects implementing this interface should know how to present the wipe tower
// as an Arrangeable. If the wipe tower is not present, the overloads of visit() shouldn't do
// anything. (See MissingWipeTowerHandler)
class WipeTowerHandler
{
public:
virtual ~WipeTowerHandler() = default;
virtual void visit(std::function<void(Arrangeable &)>) = 0;
virtual void visit(std::function<void(const Arrangeable &)>) const = 0;
virtual void set_selection_predicate(SelectionPredicate pred) = 0;
virtual ObjectID get_id() const = 0;
};
// Something that has a bounding box and can be displaced by arbitrary 2D offset and rotated
// by arbitrary rotation. Used as targets to place on virtual beds. Normally this would correspond
// to ModelInstances but the same functionality was needed in more contexts.
class VBedPlaceable {
public:
virtual ~VBedPlaceable() = default;
virtual BoundingBoxf bounding_box() const = 0;
virtual void displace(const Vec2d &transl, double rot) = 0;
};
// An interface to handle virtual beds for VBedPlaceable objects. A VBedPlaceable
// may be assigned to a logical bed identified by an integer index value (zero
// is the actual physical bed). The VBedPlaceable may still be outside of it's
// bed, regardless of being assigned to it. The handler object should provide
// means to read the assigned bed index of a VBedPlaceable, to assign a
// different bed index and to provide a trafo that maps it to the physical bed
// given a logical bed index. The reason is that the arrangement expects items
// to be in the coordinate system of the physical bed.
class VirtualBedHandler
{
public:
virtual ~VirtualBedHandler() = default;
// Returns the bed index on which the given VBedPlaceable is sitting.
virtual int get_bed_index(const VBedPlaceable &obj) const = 0;
// The returned trafo can be used to displace the VBedPlaceable
// to the coordinate system of the physical bed, should that differ from
// the coordinate space of a logical bed.
virtual Transform3d get_physical_bed_trafo(int bed_index) const = 0;
// Assign the VBedPlaceable to the given bed index. Note that this
// method can return false, indicating that the given bed is not available
// to be occupied (e.g. the handler has a limited amount of logical bed)
virtual bool assign_bed(VBedPlaceable &obj, int bed_idx) = 0;
bool assign_bed(VBedPlaceable &&obj, int bed_idx)
{
return assign_bed(obj, bed_idx);
}
static std::unique_ptr<VirtualBedHandler> create(const ExtendedBed &bed);
};
// Holds the info about which object (ID) is selected/unselected
class SelectionMask
{
public:
virtual ~SelectionMask() = default;
virtual std::vector<bool> selected_objects() const = 0;
virtual std::vector<bool> selected_instances(int obj_id) const = 0;
virtual bool is_wipe_tower_selected(int wipe_tower_index) const = 0;
};
class FixedSelection : public Slic3r::arr2::SelectionMask
{
std::vector<std::vector<bool>> m_seldata;
bool m_wp = false;
public:
FixedSelection() = default;
explicit FixedSelection(std::initializer_list<std::vector<bool>> seld,
bool wp = false)
: m_seldata{std::move(seld)}, m_wp{wp}
{}
explicit FixedSelection(const Model &m);
explicit FixedSelection(const SelectionMask &other);
std::vector<bool> selected_objects() const override;
std::vector<bool> selected_instances(int obj_id) const override
{
return obj_id < int(m_seldata.size()) ? m_seldata[obj_id] :
std::vector<bool>{};
}
bool is_wipe_tower_selected(int) const override { return m_wp; }
};
// Common part of any Arrangeable which is a wipe tower
struct ArrangeableWipeTowerBase: public Arrangeable
{
ObjectID oid;
Polygon poly;
SelectionPredicate selection_pred;
int bed_index{0};
ArrangeableWipeTowerBase(
const ObjectID &objid,
Polygon shape,
int bed_index,
SelectionPredicate selection_predicate = [](int){ return false; })
: oid{objid},
poly{std::move(shape)},
bed_index{bed_index},
selection_pred{std::move(selection_predicate)}
{}
ObjectID id() const override { return oid; }
ObjectID geometry_id() const override { return {}; }
ExPolygons full_outline() const override
{
auto cpy = poly;
return {ExPolygon{std::move(cpy)}};
}
Polygon convex_outline() const override
{
return poly;
}
bool is_selected() const override
{
return selection_pred(bed_index);
}
int get_bed_index() const override;
bool assign_bed(int /*bed_idx*/) override;
int priority() const override { return 1; }
std::optional<int> bed_constraint() const override {
return this->bed_index;
}
void transform(const Vec2d &transl, double rot) override {}
void imbue_data(AnyWritable &datastore) const override
{
datastore.write("is_wipe_tower", {});
}
};
class SceneBuilder;
struct InstPos { size_t obj_idx = 0, inst_idx = 0; };
using BedConstraints = std::map<ObjectID, int>;
// Implementing ArrangeableModel interface for QIDISlicer's Model, ModelObject, ModelInstance data
// hierarchy
class ArrangeableSlicerModel: public ArrangeableModel
{
protected:
AnyPtr<Model> m_model;
std::vector<AnyPtr<WipeTowerHandler>> m_wths; // Determines how wipe tower is handled
AnyPtr<VirtualBedHandler> m_vbed_handler; // Determines how virtual beds are handled
AnyPtr<const SelectionMask> m_selmask; // Determines which objects are selected/unselected
BedConstraints m_bed_constraints;
std::optional<std::set<ObjectID>> m_considered_instances;
private:
friend class SceneBuilder;
template<class Self, class Fn>
static void for_each_arrangeable_(Self &&self, Fn &&fn);
template<class Self, class Fn>
static void visit_arrangeable_(Self &&self, const ObjectID &id, Fn &&fn);
public:
explicit ArrangeableSlicerModel(SceneBuilder &builder);
~ArrangeableSlicerModel();
void for_each_arrangeable(std::function<void(Arrangeable &)>) override;
void for_each_arrangeable(std::function<void(const Arrangeable&)>) const override;
void visit_arrangeable(const ObjectID &id, std::function<void(const Arrangeable &)>) const override;
void visit_arrangeable(const ObjectID &id, std::function<void(Arrangeable &)>) override;
ObjectID add_arrangeable(const ObjectID &prototype_id) override;
Model & get_model() { return *m_model; }
const Model &get_model() const { return *m_model; }
};
// SceneBuilder implementation for QIDISlicer API.
class SceneBuilder: public SceneBuilderBase<SceneBuilder>
{
protected:
AnyPtr<Model> m_model;
std::vector<AnyPtr<WipeTowerHandler>> m_wipetower_handlers;
BedConstraints m_bed_constraints;
std::optional<std::set<ObjectID>> m_considered_instances;
AnyPtr<VirtualBedHandler> m_vbed_handler;
AnyPtr<const SelectionMask> m_selection;
AnyPtr<const SLAPrint> m_sla_print;
AnyPtr<const Print> m_fff_print;
bool m_xl_printer = false;
void set_brim_and_skirt();
public:
SceneBuilder();
~SceneBuilder();
SceneBuilder(SceneBuilder&&);
SceneBuilder& operator=(SceneBuilder&&);
SceneBuilder && set_model(AnyPtr<Model> mdl);
SceneBuilder && set_model(Model &mdl);
SceneBuilder && set_fff_print(AnyPtr<const Print> fffprint);
SceneBuilder && set_sla_print(AnyPtr<const SLAPrint> mdl_print);
using SceneBuilderBase<SceneBuilder>::set_bed;
SceneBuilder &&set_bed(const DynamicPrintConfig &cfg, const Vec2crd &gap);
SceneBuilder &&set_bed(const Print &print, const Vec2crd &gap);
SceneBuilder && set_wipe_tower_handlers(std::vector<AnyPtr<WipeTowerHandler>> &&handlers)
{
m_wipetower_handlers = std::move(handlers);
return std::move(*this);
}
SceneBuilder && set_bed_constraints(BedConstraints &&bed_constraints)
{
m_bed_constraints = std::move(bed_constraints);
return std::move(*this);
}
SceneBuilder && set_considered_instances(std::set<ObjectID> &&considered_instances)
{
m_considered_instances = std::move(considered_instances);
return std::move(*this);
}
SceneBuilder && set_virtual_bed_handler(AnyPtr<VirtualBedHandler> vbedh)
{
m_vbed_handler = std::move(vbedh);
return std::move(*this);
}
SceneBuilder && set_sla_print(const SLAPrint *slaprint);
SceneBuilder && set_selection(AnyPtr<const SelectionMask> sel)
{
m_selection = std::move(sel);
return std::move(*this);
}
// Can only be called on an rvalue instance (hence the && at the end),
// the method will potentially move its content into sc
void build_scene(Scene &sc) && override;
void build_arrangeable_slicer_model(ArrangeableSlicerModel &amodel);
};
// Only a physical bed, non-zero bed index values are discarded.
class PhysicalOnlyVBedHandler final : public VirtualBedHandler
{
public:
using VirtualBedHandler::assign_bed;
int get_bed_index(const VBedPlaceable &obj) const override { return 0; }
Transform3d get_physical_bed_trafo(int bed_index) const override
{
return Transform3d::Identity();
}
bool assign_bed(VBedPlaceable &inst, int bed_idx) override;
};
// A virtual bed handler implementation, that defines logical beds to be created
// on the right side of the physical bed along the X axis in a row
class XStriderVBedHandler final : public VirtualBedHandler
{
coord_t m_stride_scaled;
coord_t m_start;
public:
explicit XStriderVBedHandler(const BoundingBox &bedbb, coord_t xgap)
: m_stride_scaled{bedbb.size().x() + 2 * std::max(0, xgap)},
m_start{bedbb.min.x() - std::max(0, xgap)}
{
}
coord_t stride_scaled() const { return m_stride_scaled; }
// Can return negative indices when the instance is to the left of the
// physical bed
int get_bed_index(const VBedPlaceable &obj) const override;
// Only positive beds are accepted
bool assign_bed(VBedPlaceable &inst, int bed_idx) override;
using VirtualBedHandler::assign_bed;
Transform3d get_physical_bed_trafo(int bed_index) const override;
};
// Same as XStriderVBedHandler only that it lays out vbeds on the Y axis
class YStriderVBedHandler final : public VirtualBedHandler
{
coord_t m_stride_scaled;
coord_t m_start;
public:
coord_t stride_scaled() const { return m_stride_scaled; }
explicit YStriderVBedHandler(const BoundingBox &bedbb, coord_t ygap)
: m_stride_scaled{bedbb.size().y() + 2 * std::max(0, ygap)}
, m_start{bedbb.min.y() - std::max(0, ygap)}
{}
int get_bed_index(const VBedPlaceable &obj) const override;
bool assign_bed(VBedPlaceable &inst, int bed_idx) override;
Transform3d get_physical_bed_trafo(int bed_index) const override;
};
class GridStriderVBedHandler: public VirtualBedHandler
{
XStriderVBedHandler m_xstrider;
YStriderVBedHandler m_ystrider;
public:
GridStriderVBedHandler(const BoundingBox &bedbb, const Vec2crd &gap)
: m_xstrider{bedbb, gap.x()}
, m_ystrider{bedbb, gap.y()}
{}
int get_bed_index(const VBedPlaceable &obj) const override;
bool assign_bed(VBedPlaceable &inst, int bed_idx) override;
Transform3d get_physical_bed_trafo(int bed_index) const override;
};
std::vector<size_t> selected_object_indices(const SelectionMask &sm);
std::vector<size_t> selected_instance_indices(int obj_idx, const SelectionMask &sm);
coord_t get_skirt_inset(const Print &fffprint);
coord_t brim_offset(const PrintObject &po);
// unscaled coords are necessary to be able to handle bigger coordinate range
// than what is available with scaled coords. This is useful when working with
// virtual beds.
void transform_instance(ModelInstance &mi,
const Vec2d &transl_unscaled,
double rot,
const Transform3d &physical_tr = Transform3d::Identity());
BoundingBoxf3 instance_bounding_box(const ModelInstance &mi,
bool dont_translate = false);
BoundingBoxf3 instance_bounding_box(const ModelInstance &mi,
const Transform3d &tr,
bool dont_translate = false);
constexpr double UnscaledCoordLimit = 1000.;
ExPolygons extract_full_outline(const ModelInstance &inst,
const Transform3d &tr = Transform3d::Identity());
Polygon extract_convex_outline(const ModelInstance &inst,
const Transform3d &tr = Transform3d::Identity());
size_t model_instance_count (const Model &m);
class VBedPlaceableMI : public VBedPlaceable
{
ModelInstance *m_mi;
public:
explicit VBedPlaceableMI(ModelInstance &mi) : m_mi{&mi} {}
BoundingBoxf bounding_box() const override { return to_2d(instance_bounding_box(*m_mi)); }
void displace(const Vec2d &transl, double rot) override
{
transform_instance(*m_mi, transl, rot);
}
};
// Arrangeable interface implementation for ModelInstances
template<class InstPtr, class VBedHPtr>
class ArrangeableModelInstance : public Arrangeable, VBedPlaceable
{
InstPtr *m_mi;
VBedHPtr *m_vbedh;
const SelectionMask *m_selmask;
InstPos m_pos_within_model;
std::optional<int> m_bed_constraint;
public:
explicit ArrangeableModelInstance(InstPtr *mi,
VBedHPtr *vbedh,
const SelectionMask *selmask,
const InstPos &pos,
const std::optional<int> bed_constraint)
: m_mi{mi}, m_vbedh{vbedh}, m_selmask{selmask}, m_pos_within_model{pos}, m_bed_constraint(bed_constraint)
{
assert(m_mi != nullptr && m_vbedh != nullptr);
}
// Arrangeable:
ObjectID id() const override { return m_mi->id(); }
ObjectID geometry_id() const override { return m_mi->get_object()->id(); }
ExPolygons full_outline() const override;
Polygon convex_outline() const override;
bool is_printable() const override { return m_mi->printable; }
bool is_selected() const override;
void transform(const Vec2d &tr, double rot) override;
int get_bed_index() const override { return m_vbedh->get_bed_index(*this); }
bool assign_bed(int bed_idx) override;
std::optional<int> bed_constraint() const override { return m_bed_constraint; }
// VBedPlaceable:
BoundingBoxf bounding_box() const override { return to_2d(instance_bounding_box(*m_mi)); }
void displace(const Vec2d &transl, double rot) override
{
if constexpr (!std::is_const_v<InstPtr>)
transform_instance(*m_mi, transl, rot);
}
};
extern template class ArrangeableModelInstance<ModelInstance, VirtualBedHandler>;
extern template class ArrangeableModelInstance<const ModelInstance, const VirtualBedHandler>;
// Arrangeable implementation for an SLAPrintObject to be able to arrange with the supports and pad
class ArrangeableSLAPrintObject : public Arrangeable
{
const SLAPrintObject *m_po;
Arrangeable *m_arrbl;
Transform3d m_inst_trafo;
std::optional<int> m_bed_constraint;
public:
ArrangeableSLAPrintObject(const SLAPrintObject *po,
Arrangeable *arrbl,
const std::optional<int> bed_constraint,
const Transform3d &inst_tr = Transform3d::Identity())
: m_po{po}, m_arrbl{arrbl}, m_inst_trafo{inst_tr}, m_bed_constraint(bed_constraint)
{}
ObjectID id() const override { return m_arrbl->id(); }
ObjectID geometry_id() const override { return m_arrbl->geometry_id(); }
ExPolygons full_outline() const override;
ExPolygons full_envelope() const override;
Polygon convex_outline() const override;
Polygon convex_envelope() const override;
void transform(const Vec2d &transl, double rot) override
{
m_arrbl->transform(transl, rot);
}
int get_bed_index() const override { return m_arrbl->get_bed_index(); }
bool assign_bed(int bedidx) override
{
return m_arrbl->assign_bed(bedidx);
}
std::optional<int> bed_constraint() const override { return m_bed_constraint; }
bool is_printable() const override { return m_arrbl->is_printable(); }
bool is_selected() const override { return m_arrbl->is_selected(); }
int priority() const override { return m_arrbl->priority(); }
};
// Extension of ArrangeableSlicerModel for SLA
class ArrangeableSLAPrint : public ArrangeableSlicerModel {
const SLAPrint *m_slaprint;
friend class SceneBuilder;
template<class Self, class Fn>
static void for_each_arrangeable_(Self &&self, Fn &&fn);
template<class Self, class Fn>
static void visit_arrangeable_(Self &&self, const ObjectID &id, Fn &&fn);
public:
explicit ArrangeableSLAPrint(const SLAPrint *slaprint, SceneBuilder &builder)
: m_slaprint{slaprint}
, ArrangeableSlicerModel{builder}
{
assert(slaprint != nullptr);
}
void for_each_arrangeable(std::function<void(Arrangeable &)>) override;
void for_each_arrangeable(
std::function<void(const Arrangeable &)>) const override;
void visit_arrangeable(
const ObjectID &id,
std::function<void(const Arrangeable &)>) const override;
void visit_arrangeable(const ObjectID &id,
std::function<void(Arrangeable &)>) override;
};
template<class Mdl>
auto find_instance_by_id(Mdl &&model, const ObjectID &id)
{
std::remove_reference_t<
decltype(std::declval<Mdl>().objects[0]->instances[0])>
ret = nullptr;
InstPos pos;
for (auto * obj : model.objects) {
for (auto *inst : obj->instances) {
if (inst->id() == id) {
ret = inst;
break;
}
++pos.inst_idx;
}
if (ret)
break;
++pos.obj_idx;
pos.inst_idx = 0;
}
return std::make_pair(ret, pos);
}
struct ModelDuplicate
{
ObjectID id;
Vec2d tr = Vec2d::Zero();
double rot = 0.;
int bed_idx = Unarranged;
};
// Implementing the Arrangeable interface with the whole Model being one outline
// with all its objects and instances.
template<class Mdl, class Dup, class VBH>
class ArrangeableFullModel: public Arrangeable, VBedPlaceable
{
Mdl *m_mdl;
Dup *m_dup;
VBH *m_vbh;
public:
explicit ArrangeableFullModel(Mdl *mdl,
Dup *md,
VBH *vbh)
: m_mdl{mdl}, m_dup{md}, m_vbh{vbh}
{
assert(m_mdl != nullptr);
}
ObjectID id() const override { return m_dup->id.id + 1; }
ObjectID geometry_id() const override;
ExPolygons full_outline() const override;
Polygon convex_outline() const override;
bool is_printable() const override { return true; }
bool is_selected() const override { return m_dup->id == 0; }
int get_bed_index() const override
{
return m_vbh->get_bed_index(*this);
}
void transform(const Vec2d &tr, double rot) override
{
if constexpr (!std::is_const_v<Mdl> && !std::is_const_v<Dup>) {
m_dup->tr += tr;
m_dup->rot += rot;
}
}
bool assign_bed(int bed_idx) override
{
bool ret = false;
if constexpr (!std::is_const_v<VBH> && !std::is_const_v<Dup>) {
if ((ret = m_vbh->assign_bed(*this, bed_idx)))
m_dup->bed_idx = bed_idx;
}
return ret;
}
BoundingBoxf bounding_box() const override { return unscaled(get_extents(convex_outline())); }
void displace(const Vec2d &transl, double rot) override
{
transform(transl, rot);
}
};
extern template class ArrangeableFullModel<Model, ModelDuplicate, VirtualBedHandler>;
extern template class ArrangeableFullModel<const Model, const ModelDuplicate, const VirtualBedHandler>;
// An implementation of the ArrangeableModel to be used for the full model 'duplicate' feature
// accessible from CLI
class DuplicableModel: public ArrangeableModel {
AnyPtr<Model> m_model;
AnyPtr<VirtualBedHandler> m_vbh;
std::vector<ModelDuplicate> m_duplicates;
BoundingBox m_bedbb;
template<class Self, class Fn>
static void visit_arrangeable_(Self &&self, const ObjectID &id, Fn &&fn)
{
if (id.valid()) {
size_t idx = id.id - 1;
if (idx < self.m_duplicates.size()) {
auto &md = self.m_duplicates[idx];
ArrangeableFullModel arrbl{self.m_model.get(), &md, self.m_vbh.get()};
fn(arrbl);
}
}
}
public:
explicit DuplicableModel(AnyPtr<Model> mdl,
AnyPtr<VirtualBedHandler> vbh,
const BoundingBox &bedbb);
~DuplicableModel();
void for_each_arrangeable(std::function<void(Arrangeable &)> fn) override
{
for (ModelDuplicate &md : m_duplicates) {
ArrangeableFullModel arrbl{m_model.get(), &md, m_vbh.get()};
fn(arrbl);
}
}
void for_each_arrangeable(std::function<void(const Arrangeable&)> fn) const override
{
for (const ModelDuplicate &md : m_duplicates) {
ArrangeableFullModel arrbl{m_model.get(), &md, m_vbh.get()};
fn(arrbl);
}
}
void visit_arrangeable(const ObjectID &id, std::function<void(const Arrangeable &)> fn) const override
{
visit_arrangeable_(*this, id, fn);
}
void visit_arrangeable(const ObjectID &id, std::function<void(Arrangeable &)> fn) override
{
visit_arrangeable_(*this, id, fn);
}
ObjectID add_arrangeable(const ObjectID &prototype_id) override;
void apply_duplicates();
};
} // namespace arr2
} // namespace Slic3r
#endif // SCENEBUILDER_HPP

View File

@@ -0,0 +1,121 @@
#ifndef SEGMENTEDRECTANGLEBED_HPP
#define SEGMENTEDRECTANGLEBED_HPP
#include <arrange/Beds.hpp>
namespace Slic3r { namespace arr2 {
enum class RectPivots {
Center, BottomLeft, BottomRight, TopLeft, TopRight
};
template<class T> struct IsSegmentedBed_ : public std::false_type {};
template<class T> constexpr bool IsSegmentedBed = IsSegmentedBed_<StripCVRef<T>>::value;
template<class SegX = void, class SegY = void, class Pivot = void>
struct SegmentedRectangleBed {
Vec<2, size_t> segments = Vec<2, size_t>::Ones();
BoundingBox bb;
Vec2crd gap;
RectPivots pivot = RectPivots::Center;
SegmentedRectangleBed() = default;
SegmentedRectangleBed(const BoundingBox &bb,
size_t segments_x,
size_t segments_y,
const Vec2crd &gap,
const RectPivots pivot = RectPivots::Center)
: segments{segments_x, segments_y}, bb{bb}, gap{gap}, pivot{pivot}
{}
size_t segments_x() const noexcept { return segments.x(); }
size_t segments_y() const noexcept { return segments.y(); }
auto alignment() const noexcept { return pivot; }
};
template<size_t SegX, size_t SegY>
struct SegmentedRectangleBed<std::integral_constant<size_t, SegX>,
std::integral_constant<size_t, SegY>>
{
BoundingBox bb;
Vec2crd gap;
RectPivots pivot = RectPivots::Center;
SegmentedRectangleBed() = default;
explicit SegmentedRectangleBed(const BoundingBox &b,
const Vec2crd &gap,
const RectPivots pivot = RectPivots::Center)
: bb{b},
gap{gap}
{}
size_t segments_x() const noexcept { return SegX; }
size_t segments_y() const noexcept { return SegY; }
auto alignment() const noexcept { return pivot; }
};
template<size_t SegX, size_t SegY, RectPivots pivot>
struct SegmentedRectangleBed<std::integral_constant<size_t, SegX>,
std::integral_constant<size_t, SegY>,
std::integral_constant<RectPivots, pivot>>
{
BoundingBox bb;
Vec2crd gap;
SegmentedRectangleBed() = default;
explicit SegmentedRectangleBed(const BoundingBox &b, const Vec2crd &gap) : bb{b}, gap{gap} {}
size_t segments_x() const noexcept { return SegX; }
size_t segments_y() const noexcept { return SegY; }
auto alignment() const noexcept { return pivot; }
};
template<class... Args>
struct IsSegmentedBed_<SegmentedRectangleBed<Args...>>
: public std::true_type {};
template<class... Args>
auto offset(const SegmentedRectangleBed<Args...> &bed, coord_t val_scaled)
{
auto cpy = bed;
cpy.bb.offset(val_scaled);
return cpy;
}
template<class...Args>
auto bounding_box(const SegmentedRectangleBed<Args...> &bed)
{
return bed.bb;
}
template<class...Args>
auto bed_gap(const SegmentedRectangleBed<Args...> &bed)
{
return bed.gap;
}
template<class...Args>
auto area(const SegmentedRectangleBed<Args...> &bed)
{
return arr2::area(bed.bb);
}
template<class...Args>
ExPolygons to_expolygons(const SegmentedRectangleBed<Args...> &bed)
{
return to_expolygons(RectangleBed{bed.bb});
}
template<class SegB>
struct IsRectangular_<SegB, std::enable_if_t<IsSegmentedBed<SegB>, void>> : public std::true_type
{};
}} // namespace Slic3r::arr2
#endif // SEGMENTEDRECTANGLEBED_HPP

View File

@@ -0,0 +1,81 @@
#ifndef ARRANGETASK_HPP
#define ARRANGETASK_HPP
#include <arrange-wrapper/Arrange.hpp>
#include <arrange-wrapper/Items/TrafoOnlyArrangeItem.hpp>
namespace Slic3r { namespace arr2 {
struct ArrangeTaskResult : public ArrangeResult
{
std::vector<TrafoOnlyArrangeItem> items;
bool apply_on(ArrangeableModel &mdl) override
{
bool ret = true;
for (auto &itm : items) {
if (is_arranged(itm))
ret = ret && apply_arrangeitem(itm, mdl);
}
return ret;
}
template<class ArrItem>
void add_item(const ArrItem &itm)
{
items.emplace_back(itm);
if (auto id = retrieve_id(itm))
imbue_id(items.back(), *id);
}
template<class It>
void add_items(const Range<It> &items_range)
{
for (auto &itm : items_range)
add_item(itm);
}
};
template<class ArrItem> struct ArrangeTask : public ArrangeTaskBase
{
struct ArrangeSet
{
std::vector<ArrItem> selected, unselected;
} printable, unprintable;
ExtendedBed bed;
ArrangeSettings settings;
static std::unique_ptr<ArrangeTask> create(
const Scene &sc,
const ArrangeableToItemConverter<ArrItem> &converter);
static std::unique_ptr<ArrangeTask> create(const Scene &sc)
{
auto conv = ArrangeableToItemConverter<ArrItem>::create(sc);
return create(sc, *conv);
}
std::unique_ptr<ArrangeResult> process(Ctl &ctl) override
{
return process_native(ctl);
}
std::unique_ptr<ArrangeTaskResult> process_native(Ctl &ctl);
std::unique_ptr<ArrangeTaskResult> process_native(Ctl &&ctl)
{
return process_native(ctl);
}
int item_count_to_process() const override
{
return static_cast<int>(printable.selected.size() +
unprintable.selected.size());
}
};
} // namespace arr2
} // namespace Slic3r
#endif // ARRANGETASK_HPP

View File

@@ -0,0 +1,57 @@
#ifndef FILLBEDTASK_HPP
#define FILLBEDTASK_HPP
#include <arrange-wrapper/Arrange.hpp>
#include "MultiplySelectionTask.hpp"
namespace Slic3r { namespace arr2 {
struct FillBedTaskResult: public MultiplySelectionTaskResult {};
template<class ArrItem>
struct FillBedTask: public ArrangeTaskBase
{
std::optional<ArrItem> prototype_item;
std::vector<ArrItem> selected, unselected;
// For workaround regarding "holes" when filling the bed with the same
// item's copies
std::vector<ArrItem> selected_fillers;
ArrangeSettings settings;
ExtendedBed bed;
size_t selected_existing_count = 0;
std::unique_ptr<FillBedTaskResult> process_native(Ctl &ctl);
std::unique_ptr<FillBedTaskResult> process_native(Ctl &&ctl)
{
return process_native(ctl);
}
std::unique_ptr<ArrangeResult> process(Ctl &ctl) override
{
return process_native(ctl);
}
int item_count_to_process() const override
{
return selected.size();
}
static std::unique_ptr<FillBedTask> create(
const Scene &sc,
const ArrangeableToItemConverter<ArrItem> &converter);
static std::unique_ptr<FillBedTask> create(const Scene &sc)
{
auto conv = ArrangeableToItemConverter<ArrItem>::create(sc);
return create(sc, *conv);
}
};
} // namespace arr2
} // namespace Slic3r
#endif // FILLBEDTASK_HPP

View File

@@ -0,0 +1,108 @@
#ifndef MULTIPLYSELECTIONTASK_HPP
#define MULTIPLYSELECTIONTASK_HPP
#include <arrange-wrapper/Arrange.hpp>
#include <arrange-wrapper/Items/TrafoOnlyArrangeItem.hpp>
namespace Slic3r { namespace arr2 {
struct MultiplySelectionTaskResult: public ArrangeResult {
ObjectID prototype_id;
std::vector<TrafoOnlyArrangeItem> arranged_items;
std::vector<TrafoOnlyArrangeItem> to_add;
bool apply_on(ArrangeableModel &mdl) override
{
bool ret = prototype_id.valid();
if (!ret)
return ret;
for (auto &itm : to_add) {
auto id = mdl.add_arrangeable(prototype_id);
imbue_id(itm, id);
ret = ret && apply_arrangeitem(itm, mdl);
}
for (auto &itm : arranged_items) {
if (is_arranged(itm))
ret = ret && apply_arrangeitem(itm, mdl);
}
return ret;
}
template<class ArrItem>
void add_arranged_item(const ArrItem &itm)
{
arranged_items.emplace_back(itm);
if (auto id = retrieve_id(itm))
imbue_id(arranged_items.back(), *id);
}
template<class It>
void add_arranged_items(const Range<It> &items_range)
{
arranged_items.reserve(items_range.size());
for (auto &itm : items_range)
add_arranged_item(itm);
}
template<class ArrItem> void add_new_item(const ArrItem &itm)
{
to_add.emplace_back(itm);
}
template<class It> void add_new_items(const Range<It> &items_range)
{
to_add.reserve(items_range.size());
for (auto &itm : items_range) {
to_add.emplace_back(itm);
}
}
};
template<class ArrItem>
struct MultiplySelectionTask: public ArrangeTaskBase
{
std::optional<ArrItem> prototype_item;
std::vector<ArrItem> selected, unselected;
ArrangeSettings settings;
ExtendedBed bed;
size_t selected_existing_count = 0;
std::unique_ptr<MultiplySelectionTaskResult> process_native(Ctl &ctl);
std::unique_ptr<MultiplySelectionTaskResult> process_native(Ctl &&ctl)
{
return process_native(ctl);
}
std::unique_ptr<ArrangeResult> process(Ctl &ctl) override
{
return process_native(ctl);
}
int item_count_to_process() const override
{
return selected.size();
}
static std::unique_ptr<MultiplySelectionTask> create(
const Scene &sc,
size_t multiply_count,
const ArrangeableToItemConverter<ArrItem> &converter);
static std::unique_ptr<MultiplySelectionTask> create(const Scene &sc,
size_t multiply_count)
{
auto conv = ArrangeableToItemConverter<ArrItem>::create(sc);
return create(sc, multiply_count, *conv);
}
};
}} // namespace Slic3r::arr2
#endif // MULTIPLYSELECTIONTASK_HPP

View File

@@ -0,0 +1,498 @@
#ifndef ARRANGEIMPL_HPP
#define ARRANGEIMPL_HPP
#include <random>
#include <map>
#include <libslic3r/Execution/ExecutionTBB.hpp>
#include <libslic3r/Geometry/ConvexHull.hpp>
#include <arrange/ArrangeBase.hpp>
#include <arrange/ArrangeFirstFit.hpp>
#include <arrange/NFP/PackStrategyNFP.hpp>
#include <arrange/NFP/Kernels/TMArrangeKernel.hpp>
#include <arrange/NFP/Kernels/GravityKernel.hpp>
#include <arrange/NFP/RectangleOverfitPackingStrategy.hpp>
#include <arrange/Beds.hpp>
#include <arrange-wrapper/Arrange.hpp>
#include <arrange-wrapper/Items/MutableItemTraits.hpp>
#include <arrange-wrapper/SegmentedRectangleBed.hpp>
#ifndef NDEBUG
#include <arrange/NFP/Kernels/SVGDebugOutputKernelWrapper.hpp>
#endif
namespace Slic3r { namespace arr2 {
// arrange overload for SegmentedRectangleBed which is exactly what is used
// by XL printers.
template<class It,
class ConstIt,
class SelectionStrategy,
class PackStrategy, class...SBedArgs>
void arrange(SelectionStrategy &&selstrategy,
PackStrategy &&packingstrategy,
const Range<It> &items,
const Range<ConstIt> &fixed,
const SegmentedRectangleBed<SBedArgs...> &bed)
{
// Dispatch:
arrange(std::forward<SelectionStrategy>(selstrategy),
std::forward<PackStrategy>(packingstrategy), items, fixed,
RectangleBed{bed.bb, bed.gap}, SelStrategyTag<SelectionStrategy>{});
std::vector<int> bed_indices = get_bed_indices(items, fixed);
std::map<int, BoundingBox> pilebb;
std::map<int, bool> bed_occupied;
for (auto &itm : items) {
auto bedidx = get_bed_index(itm);
if (bedidx >= 0) {
pilebb[bedidx].merge(fixed_bounding_box(itm));
if (is_wipe_tower(itm))
bed_occupied[bedidx] = true;
}
}
for (auto &fxitm : fixed) {
auto bedidx = get_bed_index(fxitm);
if (bedidx >= 0)
bed_occupied[bedidx] = true;
}
auto bedbb = bounding_box(bed);
auto piecesz = unscaled(bedbb).size();
piecesz.x() /= bed.segments_x();
piecesz.y() /= bed.segments_y();
using Pivots = RectPivots;
Pivots pivot = bed.alignment();
for (int bedidx : bed_indices) {
if (auto occup_it = bed_occupied.find(bedidx);
occup_it != bed_occupied.end() && occup_it->second)
continue;
BoundingBox bb;
auto pilesz = unscaled(pilebb[bedidx]).size();
bb.max.x() = scaled(std::ceil(pilesz.x() / piecesz.x()) * piecesz.x());
bb.max.y() = scaled(std::ceil(pilesz.y() / piecesz.y()) * piecesz.y());
switch (pivot) {
case Pivots::BottomLeft:
bb.translate(bedbb.min - bb.min);
break;
case Pivots::TopRight:
bb.translate(bedbb.max - bb.max);
break;
case Pivots::BottomRight: {
Point bedref{bedbb.max.x(), bedbb.min.y()};
Point bbref {bb.max.x(), bb.min.y()};
bb.translate(bedref - bbref);
break;
}
case Pivots::TopLeft: {
Point bedref{bedbb.min.x(), bedbb.max.y()};
Point bbref {bb.min.x(), bb.max.y()};
bb.translate(bedref - bbref);
break;
}
case Pivots::Center: {
bb.translate(bedbb.center() - bb.center());
break;
}
default:
;
}
Vec2crd d = bb.center() - pilebb[bedidx].center();
auto pilebbx = pilebb[bedidx];
pilebbx.translate(d);
Point corr{0, 0};
corr.x() = -std::min(0, pilebbx.min.x() - bedbb.min.x())
-std::max(0, pilebbx.max.x() - bedbb.max.x());
corr.y() = -std::min(0, pilebbx.min.y() - bedbb.min.y())
-std::max(0, pilebbx.max.y() - bedbb.max.y());
d += corr;
for (auto &itm : items)
if (get_bed_index(itm) == static_cast<int>(bedidx) && !is_wipe_tower(itm))
translate(itm, d);
}
}
using VariantKernel =
boost::variant<TMArrangeKernel, GravityKernel>;
template<> struct KernelTraits_<VariantKernel> {
template<class ArrItem>
static double placement_fitness(const VariantKernel &kernel,
const ArrItem &itm,
const Vec2crd &transl)
{
double ret = NaNd;
boost::apply_visitor(
[&](auto &k) { ret = k.placement_fitness(itm, transl); }, kernel);
return ret;
}
template<class ArrItem, class Bed, class Ctx, class RemIt>
static bool on_start_packing(VariantKernel &kernel,
ArrItem &itm,
const Bed &bed,
const Ctx &packing_context,
const Range<RemIt> &remaining_items)
{
bool ret = false;
boost::apply_visitor([&](auto &k) {
ret = k.on_start_packing(itm, bed, packing_context, remaining_items);
}, kernel);
return ret;
}
template<class ArrItem>
static bool on_item_packed(VariantKernel &kernel, ArrItem &itm)
{
bool ret = false;
boost::apply_visitor([&](auto &k) { ret = k.on_item_packed(itm); },
kernel);
return ret;
}
};
template<class ArrItem>
struct firstfit::ItemArrangedVisitor<ArrItem, DataStoreOnly<ArrItem>> {
template<class Bed, class PIt, class RIt>
static void on_arranged(ArrItem &itm,
const Bed &bed,
const Range<PIt> &packed,
const Range<RIt> &remaining)
{
using OnArrangeCb = std::function<void(StripCVRef<ArrItem> &)>;
auto cb = get_data<OnArrangeCb>(itm, "on_arranged");
if (cb) {
(*cb)(itm);
}
}
};
inline RectPivots xlpivots_to_rect_pivots(ArrangeSettingsView::XLPivots xlpivot)
{
if (xlpivot == arr2::ArrangeSettingsView::xlpRandom) {
// means it should be random
std::random_device rd{};
std::mt19937 rng(rd());
std::uniform_int_distribution<std::mt19937::result_type>
dist(0, arr2::ArrangeSettingsView::xlpRandom - 1);
xlpivot = static_cast<ArrangeSettingsView::XLPivots>(dist(rng));
}
RectPivots rectpivot = RectPivots::Center;
switch(xlpivot) {
case arr2::ArrangeSettingsView::xlpCenter: rectpivot = RectPivots::Center; break;
case arr2::ArrangeSettingsView::xlpFrontLeft: rectpivot = RectPivots::BottomLeft; break;
case arr2::ArrangeSettingsView::xlpFrontRight: rectpivot = RectPivots::BottomRight; break;
case arr2::ArrangeSettingsView::xlpRearLeft: rectpivot = RectPivots::TopLeft; break;
case arr2::ArrangeSettingsView::xlpRearRight: rectpivot = RectPivots::TopRight; break;
default:
;
}
return rectpivot;
}
template<class It, class Bed>
void fill_rotations(const Range<It> &items,
const Bed &bed,
const ArrangeSettingsView &settings)
{
if (!settings.is_rotation_enabled())
return;
for (auto &itm : items) {
if (is_wipe_tower(itm)) // Rotating the wipe tower is currently problematic
continue;
// Use the minimum bounding box rotation as a starting point.
auto minbbr = get_min_area_bounding_box_rotation(itm);
std::vector<double> rotations =
{minbbr,
minbbr + PI / 4., minbbr + PI / 2.,
minbbr + PI, minbbr + 3 * PI / 4.};
// Add the original rotation of the item if minbbr
// is not already the original rotation (zero)
if (std::abs(minbbr) > 0.)
rotations.emplace_back(0.);
// Also try to find the rotation that fits the item
// into a rectangular bed, given that it cannot fit,
// and there exists a rotation which can fit.
if constexpr (std::is_convertible_v<Bed, RectangleBed>) {
double fitbrot = get_fit_into_bed_rotation(itm, bed);
if (std::abs(fitbrot) > 0.)
rotations.emplace_back(fitbrot);
}
set_allowed_rotations(itm, rotations);
}
}
// An arranger put together to fulfill all the requirements of QIDISlicer based
// on the supplied ArrangeSettings
template<class ArrItem>
class DefaultArranger: public Arranger<ArrItem> {
ArrangeSettings m_settings;
static constexpr auto Accuracy = 1.;
template<class It, class FixIt, class Bed>
void arrange_(
const Range<It> &items,
const Range<FixIt> &fixed,
const Bed &bed,
ArrangerCtl<ArrItem> &ctl)
{
auto cmpfn = [](const auto &itm1, const auto &itm2) {
int pa = get_priority(itm1);
int pb = get_priority(itm2);
return pa == pb ? area(envelope_convex_hull(itm1)) > area(envelope_convex_hull(itm2)) :
pa > pb;
};
auto on_arranged = [&ctl](auto &itm, auto &bed, auto &ctx, auto &rem) {
ctl.update_status(rem.size());
ctl.on_packed(itm);
firstfit::DefaultOnArrangedFn{}(itm, bed, ctx, rem);
};
auto stop_cond = [&ctl] { return ctl.was_canceled(); };
firstfit::SelectionStrategy sel{cmpfn, on_arranged, stop_cond};
constexpr auto ep = ex_tbb;
VariantKernel basekernel;
switch (m_settings.get_arrange_strategy()) {
default:
[[fallthrough]];
case ArrangeSettingsView::asAuto:
if constexpr (std::is_convertible_v<Bed, CircleBed>){
basekernel = GravityKernel{};
} else {
basekernel = TMArrangeKernel{items.size(), area(bed)};
}
break;
case ArrangeSettingsView::asPullToCenter:
basekernel = GravityKernel{};
break;
}
#ifndef NDEBUG
SVGDebugOutputKernelWrapper<VariantKernel> kernel{bounding_box(bed), basekernel};
#else
auto & kernel = basekernel;
#endif
fill_rotations(items, bed, m_settings);
bool with_wipe_tower = std::any_of(items.begin(), items.end(),
[](auto &itm) {
return is_wipe_tower(itm);
});
// With rectange bed, and no fixed items, let's use an infinite bed
// with RectangleOverfitKernelWrapper. It produces better results than
// a pure RectangleBed with inner-fit polygon calculation.
if (!with_wipe_tower &&
m_settings.get_arrange_strategy() == ArrangeSettingsView::asAuto &&
IsRectangular<Bed>) {
PackStrategyNFP base_strategy{std::move(kernel), ep, Accuracy, stop_cond};
RectangleOverfitPackingStrategy final_strategy{std::move(base_strategy)};
arr2::arrange(sel, final_strategy, items, fixed, bed);
} else {
PackStrategyNFP ps{std::move(kernel), ep, Accuracy, stop_cond};
arr2::arrange(sel, ps, items, fixed, bed);
}
}
public:
explicit DefaultArranger(const ArrangeSettingsView &settings)
{
m_settings.set_from(settings);
}
void arrange(
std::vector<ArrItem> &items,
const std::vector<ArrItem> &fixed,
const ExtendedBed &bed,
ArrangerCtl<ArrItem> &ctl) override
{
visit_bed([this, &items, &fixed, &ctl](auto rawbed) {
if constexpr (IsSegmentedBed<decltype(rawbed)>)
rawbed.pivot = xlpivots_to_rect_pivots(
m_settings.get_xl_alignment());
arrange_(range(items), crange(fixed), rawbed, ctl);
}, bed);
}
};
template<class ArrItem>
std::unique_ptr<Arranger<ArrItem>> Arranger<ArrItem>::create(
const ArrangeSettingsView &settings)
{
// Currently all that is needed is handled by DefaultArranger
return std::make_unique<DefaultArranger<ArrItem>>(settings);
}
template<class ArrItem>
ArrItem ConvexItemConverter<ArrItem>::convert(const Arrangeable &arrbl,
coord_t offs) const
{
auto bed_index = arrbl.get_bed_index();
Polygon outline = arrbl.convex_outline();
if (outline.empty())
throw EmptyItemOutlineError{};
Polygon envelope = arrbl.convex_envelope();
coord_t infl = offs + coord_t(std::ceil(this->safety_dist() / 2.));
if (infl != 0) {
outline = Geometry::convex_hull(offset(outline, infl));
if (! envelope.empty())
envelope = Geometry::convex_hull(offset(envelope, infl));
}
ArrItem ret;
set_convex_shape(ret, outline);
if (! envelope.empty())
set_convex_envelope(ret, envelope);
set_bed_index(ret, bed_index);
set_priority(ret, arrbl.priority());
set_bed_constraint(ret, arrbl.bed_constraint());
imbue_id(ret, arrbl.id());
if constexpr (IsWritableDataStore<ArrItem>)
arrbl.imbue_data(AnyWritableDataStore{ret});
return ret;
}
template<class ArrItem>
ArrItem AdvancedItemConverter<ArrItem>::convert(const Arrangeable &arrbl,
coord_t offs) const
{
auto bed_index = arrbl.get_bed_index();
ArrItem ret = get_arritem(arrbl, offs);
set_bed_index(ret, bed_index);
set_priority(ret, arrbl.priority());
set_bed_constraint(ret, arrbl.bed_constraint());
imbue_id(ret, arrbl.id());
if constexpr (IsWritableDataStore<ArrItem>)
arrbl.imbue_data(AnyWritableDataStore{ret});
return ret;
}
template<class ArrItem>
ArrItem AdvancedItemConverter<ArrItem>::get_arritem(const Arrangeable &arrbl,
coord_t offs) const
{
coord_t infl = offs + coord_t(std::ceil(this->safety_dist() / 2.));
auto outline = arrbl.full_outline();
if (outline.empty())
throw EmptyItemOutlineError{};
auto envelope = arrbl.full_envelope();
if (infl != 0) {
outline = offset_ex(outline, infl);
if (! envelope.empty())
envelope = offset_ex(envelope, infl);
}
auto simpl_tol = static_cast<double>(this->simplification_tolerance());
if (simpl_tol > 0.)
{
outline = expolygons_simplify(outline, simpl_tol);
if (!envelope.empty())
envelope = expolygons_simplify(envelope, simpl_tol);
}
ArrItem ret;
set_shape(ret, outline);
if (! envelope.empty())
set_envelope(ret, envelope);
return ret;
}
template<class ArrItem>
ArrItem BalancedItemConverter<ArrItem>::get_arritem(const Arrangeable &arrbl,
coord_t offs) const
{
ArrItem ret = AdvancedItemConverter<ArrItem>::get_arritem(arrbl, offs);
set_convex_envelope(ret, envelope_convex_hull(ret));
return ret;
}
template<class ArrItem>
std::unique_ptr<ArrangeableToItemConverter<ArrItem>>
ArrangeableToItemConverter<ArrItem>::create(
ArrangeSettingsView::GeometryHandling gh,
coord_t safety_d)
{
std::unique_ptr<ArrangeableToItemConverter<ArrItem>> ret;
constexpr coord_t SimplifyTol = scaled(.2);
switch(gh) {
case arr2::ArrangeSettingsView::ghConvex:
ret = std::make_unique<ConvexItemConverter<ArrItem>>(safety_d);
break;
case arr2::ArrangeSettingsView::ghBalanced:
ret = std::make_unique<BalancedItemConverter<ArrItem>>(safety_d, SimplifyTol);
break;
case arr2::ArrangeSettingsView::ghAdvanced:
ret = std::make_unique<AdvancedItemConverter<ArrItem>>(safety_d, SimplifyTol);
break;
default:
;
}
return ret;
}
}} // namespace Slic3r::arr2
#endif // ARRANGEIMPL_HPP

View File

@@ -0,0 +1,190 @@
#include <arrange-wrapper/ArrangeSettingsDb_AppCfg.hpp>
#include <LocalesUtils.hpp>
#include <libslic3r/AppConfig.hpp>
#include <arrange-wrapper/ArrangeSettingsView.hpp>
namespace Slic3r {
ArrangeSettingsDb_AppCfg::ArrangeSettingsDb_AppCfg(AppConfig *appcfg) : m_appcfg{appcfg}
{
sync();
}
void ArrangeSettingsDb_AppCfg::sync()
{
m_settings_fff.postfix = "_fff";
m_settings_fff_seq.postfix = "_fff_seq_print";
m_settings_sla.postfix = "_sla";
std::string dist_fff_str =
m_appcfg->get("arrange", "min_object_distance_fff");
std::string dist_bed_fff_str =
m_appcfg->get("arrange", "min_bed_distance_fff");
std::string dist_fff_seq_print_str =
m_appcfg->get("arrange", "min_object_distance_fff_seq_print");
std::string dist_bed_fff_seq_print_str =
m_appcfg->get("arrange", "min_bed_distance_fff_seq_print");
std::string dist_sla_str =
m_appcfg->get("arrange", "min_object_distance_sla");
std::string dist_bed_sla_str =
m_appcfg->get("arrange", "min_bed_distance_sla");
std::string en_rot_fff_str =
m_appcfg->get("arrange", "enable_rotation_fff");
std::string en_rot_fff_seqp_str =
m_appcfg->get("arrange", "enable_rotation_fff_seq_print");
std::string en_rot_sla_str =
m_appcfg->get("arrange", "enable_rotation_sla");
std::string alignment_xl_str =
m_appcfg->get("arrange", "alignment_xl");
std::string geom_handling_str =
m_appcfg->get("arrange", "geometry_handling");
std::string strategy_str =
m_appcfg->get("arrange", "arrange_strategy");
if (!dist_fff_str.empty())
m_settings_fff.vals.d_obj = string_to_float_decimal_point(dist_fff_str);
else
m_settings_fff.vals.d_obj = m_settings_fff.defaults.d_obj;
if (!dist_bed_fff_str.empty())
m_settings_fff.vals.d_bed = string_to_float_decimal_point(dist_bed_fff_str);
else
m_settings_fff.vals.d_bed = m_settings_fff.defaults.d_bed;
if (!dist_fff_seq_print_str.empty())
m_settings_fff_seq.vals.d_obj = string_to_float_decimal_point(dist_fff_seq_print_str);
else
m_settings_fff_seq.vals.d_obj = m_settings_fff_seq.defaults.d_obj;
if (!dist_bed_fff_seq_print_str.empty())
m_settings_fff_seq.vals.d_bed = string_to_float_decimal_point(dist_bed_fff_seq_print_str);
else
m_settings_fff_seq.vals.d_bed = m_settings_fff_seq.defaults.d_bed;
if (!dist_sla_str.empty())
m_settings_sla.vals.d_obj = string_to_float_decimal_point(dist_sla_str);
else
m_settings_sla.vals.d_obj = m_settings_sla.defaults.d_obj;
if (!dist_bed_sla_str.empty())
m_settings_sla.vals.d_bed = string_to_float_decimal_point(dist_bed_sla_str);
else
m_settings_sla.vals.d_bed = m_settings_sla.defaults.d_bed;
if (!en_rot_fff_str.empty())
m_settings_fff.vals.rotations = (en_rot_fff_str == "1" || en_rot_fff_str == "yes");
if (!en_rot_fff_seqp_str.empty())
m_settings_fff_seq.vals.rotations = (en_rot_fff_seqp_str == "1" || en_rot_fff_seqp_str == "yes");
else
m_settings_fff_seq.vals.rotations = m_settings_fff_seq.defaults.rotations;
if (!en_rot_sla_str.empty())
m_settings_sla.vals.rotations = (en_rot_sla_str == "1" || en_rot_sla_str == "yes");
else
m_settings_sla.vals.rotations = m_settings_sla.defaults.rotations;
// Override default alignment and save/load it to a temporary slot "alignment_xl"
auto arr_alignment = ArrangeSettingsView::to_xl_pivots(alignment_xl_str)
.value_or(m_settings_fff.defaults.xl_align);
m_settings_sla.vals.xl_align = arr_alignment ;
m_settings_fff.vals.xl_align = arr_alignment ;
m_settings_fff_seq.vals.xl_align = arr_alignment ;
auto geom_handl = ArrangeSettingsView::to_geometry_handling(geom_handling_str)
.value_or(m_settings_fff.defaults.geom_handling);
m_settings_sla.vals.geom_handling = geom_handl;
m_settings_fff.vals.geom_handling = geom_handl;
m_settings_fff_seq.vals.geom_handling = geom_handl;
auto arr_strategy = ArrangeSettingsView::to_arrange_strategy(strategy_str)
.value_or(m_settings_fff.defaults.arr_strategy);
m_settings_sla.vals.arr_strategy = arr_strategy;
m_settings_fff.vals.arr_strategy = arr_strategy;
m_settings_fff_seq.vals.arr_strategy = arr_strategy;
}
void ArrangeSettingsDb_AppCfg::distance_from_obj_range(float &min,
float &max) const
{
min = get_slot(this).dobj_range.minval;
max = get_slot(this).dobj_range.maxval;
}
void ArrangeSettingsDb_AppCfg::distance_from_bed_range(float &min,
float &max) const
{
min = get_slot(this).dbed_range.minval;
max = get_slot(this).dbed_range.maxval;
}
arr2::ArrangeSettingsDb& ArrangeSettingsDb_AppCfg::set_distance_from_objects(float v)
{
Slot &slot = get_slot(this);
slot.vals.d_obj = v;
m_appcfg->set("arrange", "min_object_distance" + slot.postfix,
float_to_string_decimal_point(v));
return *this;
}
arr2::ArrangeSettingsDb& ArrangeSettingsDb_AppCfg::set_distance_from_bed(float v)
{
Slot &slot = get_slot(this);
slot.vals.d_bed = v;
m_appcfg->set("arrange", "min_bed_distance" + slot.postfix,
float_to_string_decimal_point(v));
return *this;
}
arr2::ArrangeSettingsDb& ArrangeSettingsDb_AppCfg::set_rotation_enabled(bool v)
{
Slot &slot = get_slot(this);
slot.vals.rotations = v;
m_appcfg->set("arrange", "enable_rotation" + slot.postfix, v ? "1" : "0");
return *this;
}
arr2::ArrangeSettingsDb& ArrangeSettingsDb_AppCfg::set_xl_alignment(XLPivots v)
{
m_settings_fff.vals.xl_align = v;
m_appcfg->set("arrange", "alignment_xl", std::string{get_label(v)});
return *this;
}
arr2::ArrangeSettingsDb& ArrangeSettingsDb_AppCfg::set_geometry_handling(GeometryHandling v)
{
m_settings_fff.vals.geom_handling = v;
m_appcfg->set("arrange", "geometry_handling", std::string{get_label(v)});
return *this;
}
arr2::ArrangeSettingsDb& ArrangeSettingsDb_AppCfg::set_arrange_strategy(ArrangeStrategy v)
{
m_settings_fff.vals.arr_strategy = v;
m_appcfg->set("arrange", "arrange_strategy", std::string{get_label(v)});
return *this;
}
} // namespace Slic3r

View File

@@ -0,0 +1,207 @@
#include <numeric>
#include <libslic3r/Geometry/ConvexHull.hpp>
#include <arrange/NFP/NFPConcave_Tesselate.hpp>
#include <arrange-wrapper/Items/ArrangeItem.hpp>
#include "ArrangeImpl.hpp" // IWYU pragma: keep
#include "Tasks/ArrangeTaskImpl.hpp" // IWYU pragma: keep
#include "Tasks/FillBedTaskImpl.hpp" // IWYU pragma: keep
#include "Tasks/MultiplySelectionTaskImpl.hpp" // IWYU pragma: keep
namespace Slic3r { namespace arr2 {
const Polygons &DecomposedShape::transformed_outline() const
{
constexpr auto sc = scaled<double>(1.) * scaled<double>(1.);
if (!m_transformed_outline_valid) {
m_transformed_outline = contours();
for (Polygon &poly : m_transformed_outline) {
poly.rotate(rotation());
poly.translate(translation());
}
m_area = std::accumulate(m_transformed_outline.begin(),
m_transformed_outline.end(), 0.,
[sc](double s, const auto &p) {
return s + p.area() / sc;
});
m_convex_hull = Geometry::convex_hull(m_transformed_outline);
m_bounding_box = get_extents(m_convex_hull);
m_transformed_outline_valid = true;
}
return m_transformed_outline;
}
const Polygon &DecomposedShape::convex_hull() const
{
if (!m_transformed_outline_valid)
transformed_outline();
return m_convex_hull;
}
const BoundingBox &DecomposedShape::bounding_box() const
{
if (!m_transformed_outline_valid)
transformed_outline();
return m_bounding_box;
}
const Vec2crd &DecomposedShape::reference_vertex() const
{
if (!m_reference_vertex_valid) {
m_reference_vertex = Slic3r::reference_vertex(transformed_outline());
m_refs.clear();
m_mins.clear();
m_refs.reserve(m_transformed_outline.size());
m_mins.reserve(m_transformed_outline.size());
for (auto &poly : m_transformed_outline) {
m_refs.emplace_back(Slic3r::reference_vertex(poly));
m_mins.emplace_back(Slic3r::min_vertex(poly));
}
m_reference_vertex_valid = true;
}
return m_reference_vertex;
}
const Vec2crd &DecomposedShape::reference_vertex(size_t i) const
{
if (!m_reference_vertex_valid) {
reference_vertex();
}
return m_refs[i];
}
const Vec2crd &DecomposedShape::min_vertex(size_t idx) const
{
if (!m_reference_vertex_valid) {
reference_vertex();
}
return m_mins[idx];
}
Vec2crd DecomposedShape::centroid() const
{
constexpr double area_sc = scaled<double>(1.) * scaled(1.);
if (!m_centroid_valid) {
double total_area = 0.0;
Vec2d cntr = Vec2d::Zero();
for (const Polygon& poly : transformed_outline()) {
double parea = poly.area() / area_sc;
Vec2d pcntr = unscaled(poly.centroid());
total_area += parea;
cntr += pcntr * parea;
}
cntr /= total_area;
m_centroid = scaled(cntr);
m_centroid_valid = true;
}
return m_centroid;
}
DecomposedShape decompose(const ExPolygons &shape)
{
return DecomposedShape{convex_decomposition_tess(shape)};
}
DecomposedShape decompose(const Polygon &shape)
{
Polygons convex_shapes;
bool is_convex = polygon_is_convex(shape);
if (is_convex) {
convex_shapes.emplace_back(shape);
} else {
convex_shapes = convex_decomposition_tess(shape);
}
return DecomposedShape{std::move(convex_shapes)};
}
ArrangeItem::ArrangeItem(const ExPolygons &shape)
: m_shape{decompose(shape)}, m_envelope{&m_shape}
{}
ArrangeItem::ArrangeItem(Polygon shape)
: m_shape{decompose(shape)}, m_envelope{&m_shape}
{}
ArrangeItem::ArrangeItem(const ArrangeItem &other)
{
this->operator= (other);
}
ArrangeItem::ArrangeItem(ArrangeItem &&other) noexcept
{
this->operator=(std::move(other));
}
ArrangeItem &ArrangeItem::operator=(const ArrangeItem &other)
{
m_shape = other.m_shape;
m_datastore = other.m_datastore;
m_bed_idx = other.m_bed_idx;
m_priority = other.m_priority;
m_bed_constraint = other.m_bed_constraint;
if (other.m_envelope.get() == &other.m_shape)
m_envelope = &m_shape;
else
m_envelope = std::make_unique<DecomposedShape>(other.envelope());
return *this;
}
void ArrangeItem::set_shape(DecomposedShape shape)
{
m_shape = std::move(shape);
m_envelope = &m_shape;
}
void ArrangeItem::set_envelope(DecomposedShape envelope)
{
m_envelope = std::make_unique<DecomposedShape>(std::move(envelope));
// Initial synch of transformations of envelope and shape.
// They need to be in synch all the time
m_envelope->translation(m_shape.translation());
m_envelope->rotation(m_shape.rotation());
}
ArrangeItem &ArrangeItem::operator=(ArrangeItem &&other) noexcept
{
m_shape = std::move(other.m_shape);
m_datastore = std::move(other.m_datastore);
m_bed_idx = other.m_bed_idx;
m_priority = other.m_priority;
m_bed_constraint = other.m_bed_constraint;
if (other.m_envelope.get() == &other.m_shape)
m_envelope = &m_shape;
else
m_envelope = std::move(other.m_envelope);
return *this;
}
template struct ImbueableItemTraits_<ArrangeItem>;
template class ArrangeableToItemConverter<ArrangeItem>;
template struct ArrangeTask<ArrangeItem>;
template struct FillBedTask<ArrangeItem>;
template struct MultiplySelectionTask<ArrangeItem>;
template class Arranger<ArrangeItem>;
}} // namespace Slic3r::arr2

View File

@@ -0,0 +1,24 @@
#include <arrange-wrapper/Items/SimpleArrangeItem.hpp>
#include "ArrangeImpl.hpp" // IWYU pragma: keep
#include "Tasks/ArrangeTaskImpl.hpp" // IWYU pragma: keep
#include "Tasks/FillBedTaskImpl.hpp" // IWYU pragma: keep
#include "Tasks/MultiplySelectionTaskImpl.hpp" // IWYU pragma: keep
namespace Slic3r { namespace arr2 {
Polygon SimpleArrangeItem::outline() const
{
Polygon ret = shape();
ret.rotate(m_rotation);
ret.translate(m_translation);
return ret;
}
template class ArrangeableToItemConverter<SimpleArrangeItem>;
template struct ArrangeTask<SimpleArrangeItem>;
template struct FillBedTask<SimpleArrangeItem>;
template struct MultiplySelectionTask<SimpleArrangeItem>;
template class Arranger<SimpleArrangeItem>;
}} // namespace Slic3r::arr2

View File

@@ -0,0 +1,66 @@
#include <libslic3r/Model.hpp>
#include <utility>
#include <arrange-wrapper/ModelArrange.hpp>
#include <arrange-wrapper/Items/ArrangeItem.hpp>
#include <arrange-wrapper/Tasks/MultiplySelectionTask.hpp>
#include <arrange-wrapper/SceneBuilder.hpp>
#include <arrange-wrapper/ArrangeSettingsView.hpp>
#include <arrange-wrapper/Scene.hpp>
namespace Slic3r {
void duplicate_objects(Model &model, size_t copies_num)
{
for (ModelObject *o : model.objects) {
// make a copy of the pointers in order to avoid recursion when appending their copies
ModelInstancePtrs instances = o->instances;
for (const ModelInstance *i : instances)
for (size_t k = 2; k <= copies_num; ++ k)
o->add_instance(*i);
}
}
bool arrange_objects(Model &model,
const arr2::ArrangeBed &bed,
const arr2::ArrangeSettingsView &settings)
{
return arrange(arr2::SceneBuilder{}
.set_bed(bed)
.set_arrange_settings(settings)
.set_model(model));
}
void duplicate_objects(Model &model,
size_t copies_num,
const arr2::ArrangeBed &bed,
const arr2::ArrangeSettingsView &settings)
{
duplicate_objects(model, copies_num);
arrange_objects(model, bed, settings);
}
void duplicate(Model &model,
size_t copies_num,
const arr2::ArrangeBed &bed,
const arr2::ArrangeSettingsView &settings)
{
auto vbh = arr2::VirtualBedHandler::create(bed);
arr2::DuplicableModel dup_model{&model, std::move(vbh), bounding_box(bed)};
arr2::Scene scene{arr2::BasicSceneBuilder{}
.set_arrangeable_model(&dup_model)
.set_arrange_settings(&settings)
.set_bed(bed)};
if (copies_num >= 1)
copies_num -= 1;
auto task = arr2::MultiplySelectionTask<arr2::ArrangeItem>::create(scene, copies_num);
auto result = task->process_native(arr2::DummyCtl{});
if (result->apply_on(scene.model()))
dup_model.apply_duplicates();
}
} // namespace Slic3r

View File

@@ -0,0 +1,62 @@
#include <arrange-wrapper/Scene.hpp>
#include <arrange-wrapper/Items/ArrangeItem.hpp>
#include <arrange-wrapper/Tasks/ArrangeTask.hpp>
#include <arrange-wrapper/Tasks/FillBedTask.hpp>
namespace Slic3r { namespace arr2 {
std::vector<ObjectID> Scene::selected_ids() const
{
auto items = reserve_vector<ObjectID>(model().arrangeable_count());
model().for_each_arrangeable([ &items](auto &arrbl) mutable {
if (arrbl.is_selected())
items.emplace_back(arrbl.id());
});
return items;
}
using DefaultArrangeItem = ArrangeItem;
std::unique_ptr<ArrangeTaskBase> ArrangeTaskBase::create(Tasks task_type, const Scene &sc)
{
std::unique_ptr<ArrangeTaskBase> ret;
switch(task_type) {
case Tasks::Arrange:
ret = ArrangeTask<ArrangeItem>::create(sc);
break;
case Tasks::FillBed:
ret = FillBedTask<ArrangeItem>::create(sc);
break;
default:
;
}
return ret;
}
std::set<ObjectID> selected_geometry_ids(const Scene &sc)
{
std::set<ObjectID> result;
std::vector<ObjectID> selected_ids = sc.selected_ids();
for (const ObjectID &id : selected_ids) {
sc.model().visit_arrangeable(id, [&result](const Arrangeable &arrbl) {
auto id = arrbl.geometry_id();
if (id.valid())
result.insert(arrbl.geometry_id());
});
}
return result;
}
bool arrange(Scene &scene, ArrangeTaskCtl &ctl)
{
auto task = ArrangeTaskBase::create(Tasks::Arrange, scene);
auto result = task->process(ctl);
return result->apply_on(scene.model());
}
}} // namespace Slic3r::arr2

View File

@@ -0,0 +1,986 @@
#ifndef SCENEBUILDER_CPP
#define SCENEBUILDER_CPP
#include <cmath>
#include <limits>
#include <numeric>
#include <cstdlib>
#include <iterator>
#include <libslic3r/Model.hpp>
#include <libslic3r/MultipleBeds.hpp>
#include <libslic3r/Print.hpp>
#include <libslic3r/SLAPrint.hpp>
#include <libslic3r/Geometry/ConvexHull.hpp>
#include <libslic3r/ClipperUtils.hpp>
#include <libslic3r/Geometry.hpp>
#include <libslic3r/PrintConfig.hpp>
#include <libslic3r/SLA/Pad.hpp>
#include <libslic3r/TriangleMesh.hpp>
#include <libslic3r/TriangleMeshSlicer.hpp>
#include <arrange/Beds.hpp>
#include <arrange/ArrangeItemTraits.hpp>
#include <arrange-wrapper/SceneBuilder.hpp>
#include <arrange-wrapper/Scene.hpp>
namespace Slic3r { namespace arr2 {
coord_t get_skirt_inset(const Print &fffprint)
{
float skirt_inset = 0.f;
if (fffprint.has_skirt()) {
float skirtflow = fffprint.objects().empty()
? 0
: fffprint.skirt_flow().width();
skirt_inset = fffprint.config().skirts.value * skirtflow
+ fffprint.config().skirt_distance.value;
}
return scaled(skirt_inset);
}
coord_t brim_offset(const PrintObject &po)
{
const BrimType brim_type = po.config().brim_type.value;
const float brim_separation = po.config().brim_separation.getFloat();
const float brim_width = po.config().brim_width.getFloat();
const bool has_outer_brim = brim_type == BrimType::btOuterOnly ||
brim_type == BrimType::btOuterAndInner;
// How wide is the brim? (in scaled units)
return has_outer_brim ? scaled(brim_width + brim_separation) : 0;
}
size_t model_instance_count (const Model &m)
{
return std::accumulate(m.objects.begin(),
m.objects.end(),
size_t(0),
[](size_t s, const Slic3r::ModelObject *mo) {
return s + mo->instances.size();
});
}
void transform_instance(ModelInstance &mi,
const Vec2d &transl_unscaled,
double rot,
const Transform3d &physical_tr)
{
auto trafo = mi.get_transformation().get_matrix();
auto tr = Transform3d::Identity();
tr.translate(to_3d(transl_unscaled, 0.));
trafo = physical_tr.inverse() * tr * Eigen::AngleAxisd(rot, Vec3d::UnitZ()) * physical_tr * trafo;
mi.set_transformation(Geometry::Transformation{trafo});
mi.invalidate_object_bounding_box();
}
BoundingBoxf3 instance_bounding_box(const ModelInstance &mi,
const Transform3d &tr,
bool dont_translate)
{
BoundingBoxf3 bb;
const Transform3d inst_matrix
= dont_translate ? mi.get_transformation().get_matrix_no_offset()
: mi.get_transformation().get_matrix();
for (ModelVolume *v : mi.get_object()->volumes) {
if (v->is_model_part()) {
bb.merge(v->mesh().transformed_bounding_box(tr * inst_matrix
* v->get_matrix()));
}
}
return bb;
}
BoundingBoxf3 instance_bounding_box(const ModelInstance &mi, bool dont_translate)
{
return instance_bounding_box(mi, Transform3d::Identity(), dont_translate);
}
bool check_coord_bounds(const BoundingBoxf &bb)
{
return std::abs(bb.min.x()) < UnscaledCoordLimit &&
std::abs(bb.min.y()) < UnscaledCoordLimit &&
std::abs(bb.max.x()) < UnscaledCoordLimit &&
std::abs(bb.max.y()) < UnscaledCoordLimit;
}
ExPolygons extract_full_outline(const ModelInstance &inst, const Transform3d &tr)
{
ExPolygons outline;
if (check_coord_bounds(to_2d(instance_bounding_box(inst, tr)))) {
for (const ModelVolume *v : inst.get_object()->volumes) {
Polygons vol_outline;
vol_outline = project_mesh(v->mesh().its,
tr * inst.get_matrix() * v->get_matrix(),
[] {});
switch (v->type()) {
case ModelVolumeType::MODEL_PART:
outline = union_ex(outline, vol_outline);
break;
case ModelVolumeType::NEGATIVE_VOLUME:
outline = diff_ex(outline, vol_outline);
break;
default:;
}
}
}
return outline;
}
Polygon extract_convex_outline(const ModelInstance &inst, const Transform3d &tr)
{
auto bb = to_2d(instance_bounding_box(inst, tr));
Polygon ret;
if (check_coord_bounds(bb)) {
ret = inst.get_object()->convex_hull_2d(tr * inst.get_matrix());
}
return ret;
}
inline static bool is_infinite_bed(const ExtendedBed &ebed) noexcept
{
bool ret = false;
visit_bed(
[&ret](auto &rawbed) {
ret = std::is_convertible_v<decltype(rawbed), InfiniteBed>;
},
ebed);
return ret;
}
void SceneBuilder::set_brim_and_skirt()
{
if (!m_fff_print)
return;
m_brims_offs = 0;
for (const PrintObject *po : m_fff_print->objects()) {
if (po) {
m_brims_offs = std::max(m_brims_offs, brim_offset(*po));
}
}
m_skirt_offs = get_skirt_inset(*m_fff_print);
}
void SceneBuilder::build_scene(Scene &sc) &&
{
if (m_sla_print && !m_fff_print) {
m_arrangeable_model = std::make_unique<ArrangeableSLAPrint>(m_sla_print.get(), *this);
} else {
m_arrangeable_model = std::make_unique<ArrangeableSlicerModel>(*this);
}
if (m_fff_print && !m_sla_print) {
if (is_infinite_bed(m_bed)) {
set_bed(*m_fff_print, Vec2crd::Zero());
} else {
set_brim_and_skirt();
}
}
// Call the parent class implementation of build_scene to finish constructing of the scene
std::move(*this).SceneBuilderBase<SceneBuilder>::build_scene(sc);
}
void SceneBuilder::build_arrangeable_slicer_model(ArrangeableSlicerModel &amodel)
{
if (!m_model)
m_model = std::make_unique<Model>();
if (!m_selection)
m_selection = std::make_unique<FixedSelection>(*m_model);
if (!m_vbed_handler) {
m_vbed_handler = VirtualBedHandler::create(m_bed);
}
if (m_fff_print && !m_xl_printer)
m_xl_printer = is_XL_printer(m_fff_print->config());
const bool has_wipe_tower{std::any_of(
m_wipetower_handlers.begin(),
m_wipetower_handlers.end(),
[](const AnyPtr<WipeTowerHandler> &handler){
bool is_on_current_bed{false};
handler->visit([&](const Arrangeable &arrangeable){
is_on_current_bed = arrangeable.get_bed_index() == s_multiple_beds.get_active_bed();
});
return is_on_current_bed;
}
)};
if (m_xl_printer && !has_wipe_tower) {
m_bed = XLBed{bounding_box(m_bed), bed_gap(m_bed)};
}
amodel.m_vbed_handler = std::move(m_vbed_handler);
amodel.m_model = std::move(m_model);
amodel.m_selmask = std::move(m_selection);
amodel.m_wths = std::move(m_wipetower_handlers);
amodel.m_bed_constraints = std::move(m_bed_constraints);
amodel.m_considered_instances = std::move(m_considered_instances);
for (auto &wth : amodel.m_wths) {
wth->set_selection_predicate(
[&amodel](int wipe_tower_index){
return amodel.m_selmask->is_wipe_tower_selected(wipe_tower_index);
}
);
}
}
int XStriderVBedHandler::get_bed_index(const VBedPlaceable &obj) const
{
int bedidx = 0;
auto stride_s = stride_scaled();
if (stride_s > 0) {
double bedx = unscaled(m_start);
auto instance_bb = obj.bounding_box();
auto reference_pos_x = (instance_bb.min.x() - bedx);
auto stride = unscaled(stride_s);
auto bedidx_d = std::floor(reference_pos_x / stride);
if (bedidx_d < std::numeric_limits<int>::min())
bedidx = std::numeric_limits<int>::min();
else if (bedidx_d > std::numeric_limits<int>::max())
bedidx = std::numeric_limits<int>::max();
else
bedidx = static_cast<int>(bedidx_d);
}
return bedidx;
}
bool XStriderVBedHandler::assign_bed(VBedPlaceable &obj, int bed_index)
{
bool ret = false;
auto stride_s = stride_scaled();
if (bed_index == 0 || (bed_index > 0 && stride_s > 0)) {
auto current_bed_index = get_bed_index(obj);
auto stride = unscaled(stride_s);
auto transl = Vec2d{(bed_index - current_bed_index) * stride, 0.};
obj.displace(transl, 0.);
ret = true;
}
return ret;
}
Transform3d XStriderVBedHandler::get_physical_bed_trafo(int bed_index) const
{
auto stride_s = stride_scaled();
auto tr = Transform3d::Identity();
tr.translate(Vec3d{-bed_index * unscaled(stride_s), 0., 0.});
return tr;
}
int YStriderVBedHandler::get_bed_index(const VBedPlaceable &obj) const
{
int bedidx = 0;
auto stride_s = stride_scaled();
if (stride_s > 0) {
double ystart = unscaled(m_start);
auto instance_bb = obj.bounding_box();
auto reference_pos_y = (instance_bb.min.y() - ystart);
auto stride = unscaled(stride_s);
auto bedidx_d = std::floor(reference_pos_y / stride);
if (bedidx_d < std::numeric_limits<int>::min())
bedidx = std::numeric_limits<int>::min();
else if (bedidx_d > std::numeric_limits<int>::max())
bedidx = std::numeric_limits<int>::max();
else
bedidx = static_cast<int>(bedidx_d);
}
return bedidx;
}
bool YStriderVBedHandler::assign_bed(VBedPlaceable &obj, int bed_index)
{
bool ret = false;
auto stride_s = stride_scaled();
if (bed_index == 0 || (bed_index > 0 && stride_s > 0)) {
auto current_bed_index = get_bed_index(obj);
auto stride = unscaled(stride_s);
auto transl = Vec2d{0., (bed_index - current_bed_index) * stride};
obj.displace(transl, 0.);
ret = true;
}
return ret;
}
Transform3d YStriderVBedHandler::get_physical_bed_trafo(int bed_index) const
{
auto stride_s = stride_scaled();
auto tr = Transform3d::Identity();
tr.translate(Vec3d{0., -bed_index * unscaled(stride_s), 0.});
return tr;
}
int GridStriderVBedHandler::get_bed_index(const VBedPlaceable &obj) const
{
Vec2i crd = {m_xstrider.get_bed_index(obj), m_ystrider.get_bed_index(obj)};
return BedsGrid::grid_coords2index(crd);
}
bool GridStriderVBedHandler::assign_bed(VBedPlaceable &inst, int bed_idx)
{
if (bed_idx < 0) {
return false;
}
Vec2i crd = BedsGrid::index2grid_coords(bed_idx);
bool retx = m_xstrider.assign_bed(inst, crd.x());
bool rety = m_ystrider.assign_bed(inst, crd.y());
return retx && rety;
}
Transform3d GridStriderVBedHandler::get_physical_bed_trafo(int bed_idx) const
{
Vec2i crd = BedsGrid::index2grid_coords(bed_idx);
Transform3d ret = m_xstrider.get_physical_bed_trafo(crd.x()) *
m_ystrider.get_physical_bed_trafo(crd.y());
return ret;
}
FixedSelection::FixedSelection(const Model &m) : m_wp{true}
{
m_seldata.resize(m.objects.size());
for (size_t i = 0; i < m.objects.size(); ++i) {
m_seldata[i].resize(m.objects[i]->instances.size(), true);
}
}
FixedSelection::FixedSelection(const SelectionMask &other)
{
auto obj_sel = other.selected_objects();
m_seldata.reserve(obj_sel.size());
for (int oidx = 0; oidx < static_cast<int>(obj_sel.size()); ++oidx)
m_seldata.emplace_back(other.selected_instances(oidx));
}
std::vector<bool> FixedSelection::selected_objects() const
{
auto ret = Slic3r::reserve_vector<bool>(m_seldata.size());
std::transform(m_seldata.begin(),
m_seldata.end(),
std::back_inserter(ret),
[](auto &a) {
return std::any_of(a.begin(), a.end(), [](bool b) {
return b;
});
});
return ret;
}
static std::vector<size_t> find_true_indices(const std::vector<bool> &v)
{
auto ret = reserve_vector<size_t>(v.size());
for (size_t i = 0; i < v.size(); ++i)
if (v[i])
ret.emplace_back(i);
return ret;
}
std::vector<size_t> selected_object_indices(const SelectionMask &sm)
{
auto sel = sm.selected_objects();
return find_true_indices(sel);
}
std::vector<size_t> selected_instance_indices(int obj_idx, const SelectionMask &sm)
{
auto sel = sm.selected_instances(obj_idx);
return find_true_indices(sel);
}
SceneBuilder::SceneBuilder() = default;
SceneBuilder::~SceneBuilder() = default;
SceneBuilder::SceneBuilder(SceneBuilder &&) = default;
SceneBuilder& SceneBuilder::operator=(SceneBuilder&&) = default;
SceneBuilder &&SceneBuilder::set_model(AnyPtr<Model> mdl)
{
m_model = std::move(mdl);
return std::move(*this);
}
SceneBuilder &&SceneBuilder::set_model(Model &mdl)
{
m_model = &mdl;
return std::move(*this);
}
SceneBuilder &&SceneBuilder::set_fff_print(AnyPtr<const Print> mdl_print)
{
m_fff_print = std::move(mdl_print);
return std::move(*this);
}
SceneBuilder &&SceneBuilder::set_sla_print(AnyPtr<const SLAPrint> mdl_print)
{
m_sla_print = std::move(mdl_print);
return std::move(*this);
}
SceneBuilder &&SceneBuilder::set_bed(const DynamicPrintConfig &cfg, const Vec2crd &gap)
{
Points bedpts = get_bed_shape(cfg);
if (is_XL_printer(cfg)) {
m_xl_printer = true;
}
m_bed = arr2::to_arrange_bed(bedpts, gap);
return std::move(*this);
}
SceneBuilder &&SceneBuilder::set_bed(const Print &print, const Vec2crd &gap)
{
Points bedpts = get_bed_shape(print.config());
if (is_XL_printer(print.config())) {
m_bed = XLBed{get_extents(bedpts), gap};
} else {
m_bed = arr2::to_arrange_bed(bedpts, gap);
}
set_brim_and_skirt();
return std::move(*this);
}
SceneBuilder &&SceneBuilder::set_sla_print(const SLAPrint *slaprint)
{
m_sla_print = slaprint;
return std::move(*this);
}
int ArrangeableWipeTowerBase::get_bed_index() const {
return this->bed_index;
}
bool ArrangeableWipeTowerBase::assign_bed(int bed_idx)
{
return bed_idx == this->bed_index;
}
bool PhysicalOnlyVBedHandler::assign_bed(VBedPlaceable &inst, int bed_idx)
{
return bed_idx == PhysicalBedId;
}
ArrangeableSlicerModel::ArrangeableSlicerModel(SceneBuilder &builder)
{
builder.build_arrangeable_slicer_model(*this);
}
ArrangeableSlicerModel::~ArrangeableSlicerModel() = default;
void ArrangeableSlicerModel::for_each_arrangeable(
std::function<void(Arrangeable &)> fn)
{
for_each_arrangeable_(*this, fn);
for (auto &wth : m_wths) {
wth->visit(fn);
}
}
void ArrangeableSlicerModel::for_each_arrangeable(
std::function<void(const Arrangeable &)> fn) const
{
for_each_arrangeable_(*this, fn);
for (auto &wth : m_wths) {
wth->visit(fn);
}
}
ObjectID ArrangeableSlicerModel::add_arrangeable(const ObjectID &prototype_id)
{
ObjectID ret;
auto [inst, pos] = find_instance_by_id(*m_model, prototype_id);
if (inst) {
auto new_inst = inst->get_object()->add_instance(*inst);
if (new_inst) {
ret = new_inst->id();
}
}
return ret;
}
std::optional<int> get_bed_constraint(
const ObjectID &id,
const BedConstraints &bed_constraints
) {
const auto found_constraint{bed_constraints.find(id)};
if (found_constraint == bed_constraints.end()) {
return std::nullopt;
}
return found_constraint->second;
}
bool should_include_instance(
const ObjectID &instance_id,
const std::set<ObjectID> &considered_instances
) {
if (considered_instances.find(instance_id) == considered_instances.end()) {
return false;
}
return true;
}
template<class Self, class Fn>
void ArrangeableSlicerModel::for_each_arrangeable_(Self &&self, Fn &&fn)
{
InstPos pos;
for (auto *obj : self.m_model->objects) {
for (auto *inst : obj->instances) {
if (!self.m_considered_instances || should_include_instance(inst->id(), *self.m_considered_instances)) {
ArrangeableModelInstance ainst{
inst,
self.m_vbed_handler.get(),
self.m_selmask.get(),
pos,
get_bed_constraint(inst->id(), self.m_bed_constraints)
};
fn(ainst);
}
++pos.inst_idx;
}
pos.inst_idx = 0;
++pos.obj_idx;
}
}
template<class Self, class Fn>
void ArrangeableSlicerModel::visit_arrangeable_(Self &&self, const ObjectID &id, Fn &&fn)
{
for (auto &wth : self.m_wths) {
if (id == wth->get_id()) {
wth->visit(fn);
return;
}
}
auto [inst, pos] = find_instance_by_id(*self.m_model, id);
if (inst) {
ArrangeableModelInstance ainst{
inst,
self.m_vbed_handler.get(),
self.m_selmask.get(),
pos,
get_bed_constraint(id, self.m_bed_constraints)
};
fn(ainst);
}
}
void ArrangeableSlicerModel::visit_arrangeable(
const ObjectID &id, std::function<void(const Arrangeable &)> fn) const
{
visit_arrangeable_(*this, id, fn);
}
void ArrangeableSlicerModel::visit_arrangeable(
const ObjectID &id, std::function<void(Arrangeable &)> fn)
{
visit_arrangeable_(*this, id, fn);
}
template<class Self, class Fn>
void ArrangeableSLAPrint::for_each_arrangeable_(Self &&self, Fn &&fn)
{
InstPos pos;
for (auto *obj : self.m_model->objects) {
for (auto *inst : obj->instances) {
if (!self.m_considered_instances || should_include_instance(inst->id(), *self.m_considered_instances)) {
ArrangeableModelInstance ainst{inst, self.m_vbed_handler.get(),
self.m_selmask.get(), pos, get_bed_constraint(inst->id(), self.m_bed_constraints)};
auto obj_id = inst->get_object()->id();
const SLAPrintObject *po =
self.m_slaprint->get_print_object_by_model_object_id(obj_id);
if (po) {
auto &vbh = self.m_vbed_handler;
auto phtr = vbh->get_physical_bed_trafo(vbh->get_bed_index(VBedPlaceableMI{*inst}));
ArrangeableSLAPrintObject ainst_po{
po,
&ainst,
get_bed_constraint(inst->id(), self.m_bed_constraints),
phtr * inst->get_matrix()
};
fn(ainst_po);
} else {
fn(ainst);
}
}
++pos.inst_idx;
}
pos.inst_idx = 0;
++pos.obj_idx;
}
}
void ArrangeableSLAPrint::for_each_arrangeable(
std::function<void(Arrangeable &)> fn)
{
for_each_arrangeable_(*this, fn);
for (auto &wth : m_wths) {
wth->visit(fn);
}
}
void ArrangeableSLAPrint::for_each_arrangeable(
std::function<void(const Arrangeable &)> fn) const
{
for_each_arrangeable_(*this, fn);
for (auto &wth : m_wths) {
wth->visit(fn);
}
}
template<class Self, class Fn>
void ArrangeableSLAPrint::visit_arrangeable_(Self &&self, const ObjectID &id, Fn &&fn)
{
auto [inst, pos] = find_instance_by_id(*self.m_model, id);
if (inst) {
ArrangeableModelInstance ainst{inst, self.m_vbed_handler.get(),
self.m_selmask.get(), pos, std::nullopt};
auto obj_id = inst->get_object()->id();
const SLAPrintObject *po =
self.m_slaprint->get_print_object_by_model_object_id(obj_id);
if (po) {
auto &vbh = self.m_vbed_handler;
auto phtr = vbh->get_physical_bed_trafo(vbh->get_bed_index(VBedPlaceableMI{*inst}));
ArrangeableSLAPrintObject ainst_po{
po,
&ainst,
get_bed_constraint(inst->id(), self.m_bed_constraints),
phtr * inst->get_matrix()
};
fn(ainst_po);
} else {
fn(ainst);
}
}
}
void ArrangeableSLAPrint::visit_arrangeable(
const ObjectID &id, std::function<void(const Arrangeable &)> fn) const
{
visit_arrangeable_(*this, id, fn);
}
void ArrangeableSLAPrint::visit_arrangeable(
const ObjectID &id, std::function<void(Arrangeable &)> fn)
{
visit_arrangeable_(*this, id, fn);
}
template<class InstPtr, class VBedHPtr>
ExPolygons ArrangeableModelInstance<InstPtr, VBedHPtr>::full_outline() const
{
int bedidx = m_vbedh->get_bed_index(*this);
auto tr = m_vbedh->get_physical_bed_trafo(bedidx);
return extract_full_outline(*m_mi, tr);
}
template<class InstPtr, class VBedHPtr>
Polygon ArrangeableModelInstance<InstPtr, VBedHPtr>::convex_outline() const
{
int bedidx = m_vbedh->get_bed_index(*this);
auto tr = m_vbedh->get_physical_bed_trafo(bedidx);
return extract_convex_outline(*m_mi, tr);
}
template<class InstPtr, class VBedHPtr>
bool ArrangeableModelInstance<InstPtr, VBedHPtr>::is_selected() const
{
bool ret = false;
if (m_selmask) {
auto sel = m_selmask->selected_instances(m_pos_within_model.obj_idx);
if (m_pos_within_model.inst_idx < sel.size() &&
sel[m_pos_within_model.inst_idx])
ret = true;
}
return ret;
}
template<class InstPtr, class VBedHPtr>
void ArrangeableModelInstance<InstPtr, VBedHPtr>::transform(const Vec2d &transl, double rot)
{
if constexpr (!std::is_const_v<InstPtr> && !std::is_const_v<VBedHPtr>) {
int bedidx = m_vbedh->get_bed_index(*this);
auto physical_trafo = m_vbedh->get_physical_bed_trafo(bedidx);
transform_instance(*m_mi, transl, rot, physical_trafo);
}
}
template<class InstPtr, class VBedHPtr>
bool ArrangeableModelInstance<InstPtr, VBedHPtr>::assign_bed(int bed_idx)
{
bool ret = false;
if constexpr (!std::is_const_v<InstPtr> && !std::is_const_v<VBedHPtr>)
ret = m_vbedh->assign_bed(*this, bed_idx);
return ret;
}
template class ArrangeableModelInstance<ModelInstance, VirtualBedHandler>;
template class ArrangeableModelInstance<const ModelInstance, const VirtualBedHandler>;
ExPolygons ArrangeableSLAPrintObject::full_outline() const
{
ExPolygons ret;
auto laststep = m_po->last_completed_step();
if (laststep < slaposCount && laststep > slaposSupportTree) {
Polygons polys;
auto omesh = m_po->get_mesh_to_print();
auto &smesh = m_po->support_mesh();
Transform3d trafo_instance = m_inst_trafo * m_po->trafo().inverse();
if (omesh) {
Polygons ptmp = project_mesh(*omesh, trafo_instance, [] {});
std::move(ptmp.begin(), ptmp.end(), std::back_inserter(polys));
}
Polygons ptmp = project_mesh(smesh.its, trafo_instance, [] {});
std::move(ptmp.begin(), ptmp.end(), std::back_inserter(polys));
ret = union_ex(polys);
} else {
ret = m_arrbl->full_outline();
}
return ret;
}
ExPolygons ArrangeableSLAPrintObject::full_envelope() const
{
ExPolygons ret = full_outline();
auto laststep = m_po->last_completed_step();
if (laststep < slaposCount && laststep > slaposSupportTree) {
auto &pmesh = m_po->pad_mesh();
if (!pmesh.empty()) {
Transform3d trafo_instance = m_inst_trafo * m_po->trafo().inverse();
Polygons ptmp = project_mesh(pmesh.its, trafo_instance, [] {});
ret = union_ex(ret, ptmp);
}
}
return ret;
}
Polygon ArrangeableSLAPrintObject::convex_outline() const
{
Polygons polys;
polys.emplace_back(m_arrbl->convex_outline());
auto laststep = m_po->last_completed_step();
if (laststep < slaposCount && laststep > slaposSupportTree) {
auto omesh = m_po->get_mesh_to_print();
auto &smesh = m_po->support_mesh();
Transform3f trafo_instance = m_inst_trafo.cast<float>();
trafo_instance = trafo_instance * m_po->trafo().cast<float>().inverse();
Polygons polys;
polys.reserve(3);
auto zlvl = -m_po->get_elevation();
if (omesh) {
polys.emplace_back(
its_convex_hull_2d_above(*omesh, trafo_instance, zlvl));
}
polys.emplace_back(
its_convex_hull_2d_above(smesh.its, trafo_instance, zlvl));
}
return Geometry::convex_hull(polys);
}
Polygon ArrangeableSLAPrintObject::convex_envelope() const
{
Polygons polys;
polys.emplace_back(convex_outline());
auto laststep = m_po->last_completed_step();
if (laststep < slaposCount && laststep > slaposSupportTree) {
auto &pmesh = m_po->pad_mesh();
if (!pmesh.empty()) {
Transform3f trafo_instance = m_inst_trafo.cast<float>();
trafo_instance = trafo_instance * m_po->trafo().cast<float>().inverse();
auto zlvl = -m_po->get_elevation();
polys.emplace_back(
its_convex_hull_2d_above(pmesh.its, trafo_instance, zlvl));
}
}
return Geometry::convex_hull(polys);
}
DuplicableModel::DuplicableModel(AnyPtr<Model> mdl, AnyPtr<VirtualBedHandler> vbh, const BoundingBox &bedbb)
: m_model{std::move(mdl)}, m_vbh{std::move(vbh)}, m_duplicates(1), m_bedbb{bedbb}
{
}
DuplicableModel::~DuplicableModel() = default;
ObjectID DuplicableModel::add_arrangeable(const ObjectID &prototype_id)
{
ObjectID ret;
if (prototype_id.valid()) {
size_t idx = prototype_id.id - 1;
if (idx < m_duplicates.size()) {
ModelDuplicate md = m_duplicates[idx];
md.id = m_duplicates.size();
ret = md.id.id + 1;
m_duplicates.emplace_back(std::move(md));
}
}
return ret;
}
void DuplicableModel::apply_duplicates()
{
for (ModelObject *o : m_model->objects) {
// make a copy of the pointers in order to avoid recursion
// when appending their copies
ModelInstancePtrs instances = o->instances;
o->instances.clear();
for (const ModelInstance *i : instances) {
for (const ModelDuplicate &md : m_duplicates) {
ModelInstance *instance = o->add_instance(*i);
arr2::transform_instance(*instance, md.tr, md.rot);
}
}
for (auto *i : instances)
delete i;
instances.clear();
o->invalidate_bounding_box();
}
}
template<class Mdl, class Dup, class VBH>
ObjectID ArrangeableFullModel<Mdl, Dup, VBH>::geometry_id() const { return m_mdl->id(); }
template<class Mdl, class Dup, class VBH>
ExPolygons ArrangeableFullModel<Mdl, Dup, VBH>::full_outline() const
{
auto ret = reserve_vector<ExPolygon>(arr2::model_instance_count(*m_mdl));
auto transl = Transform3d::Identity();
transl.translate(to_3d(m_dup->tr, 0.));
Transform3d trafo = transl* Eigen::AngleAxisd(m_dup->rot, Vec3d::UnitZ());
for (auto *mo : m_mdl->objects) {
for (auto *mi : mo->instances) {
auto expolys = arr2::extract_full_outline(*mi, trafo);
std::move(expolys.begin(), expolys.end(), std::back_inserter(ret));
}
}
return ret;
}
template<class Mdl, class Dup, class VBH>
Polygon ArrangeableFullModel<Mdl, Dup, VBH>::convex_outline() const
{
auto ret = reserve_polygons(arr2::model_instance_count(*m_mdl));
auto transl = Transform3d::Identity();
transl.translate(to_3d(m_dup->tr, 0.));
Transform3d trafo = transl* Eigen::AngleAxisd(m_dup->rot, Vec3d::UnitZ());
for (auto *mo : m_mdl->objects) {
for (auto *mi : mo->instances) {
ret.emplace_back(arr2::extract_convex_outline(*mi, trafo));
}
}
return Geometry::convex_hull(ret);
}
template class ArrangeableFullModel<Model, ModelDuplicate, VirtualBedHandler>;
template class ArrangeableFullModel<const Model, const ModelDuplicate, const VirtualBedHandler>;
std::unique_ptr<VirtualBedHandler> VirtualBedHandler::create(const ExtendedBed &bed)
{
std::unique_ptr<VirtualBedHandler> ret;
if (is_infinite_bed(bed)) {
ret = std::make_unique<PhysicalOnlyVBedHandler>();
} else {
Vec2crd gap;
visit_bed([&gap](auto &rawbed) { gap = bed_gap(rawbed); }, bed);
BoundingBox bedbb;
visit_bed([&bedbb](auto &rawbed) { bedbb = bounding_box(rawbed); }, bed);
ret = std::make_unique<GridStriderVBedHandler>(bedbb, gap);
}
return ret;
}
}} // namespace Slic3r::arr2
#endif // SCENEBUILDER_CPP

View File

@@ -0,0 +1,147 @@
#ifndef ARRANGETASK_IMPL_HPP
#define ARRANGETASK_IMPL_HPP
#include <random>
#include <boost/log/trivial.hpp>
#include <libslic3r/SVG.hpp>
#include <arrange-wrapper/Tasks/ArrangeTask.hpp>
#include <arrange-wrapper/Items/ArrangeItem.hpp>
namespace Slic3r { namespace arr2 {
// Prepare the selected and unselected items separately. If nothing is
// selected, behaves as if everything would be selected.
template<class ArrItem>
void extract_selected(ArrangeTask<ArrItem> &task,
const ArrangeableModel &mdl,
const ArrangeableToItemConverter<ArrItem> &itm_conv)
{
// Go through the objects and check if inside the selection
mdl.for_each_arrangeable(
[&task, &itm_conv](const Arrangeable &arrbl) {
bool selected = arrbl.is_selected();
bool printable = arrbl.is_printable();
try {
auto itm = itm_conv.convert(arrbl, selected ? 0 : -SCALED_EPSILON);
auto &container_parent = printable ? task.printable :
task.unprintable;
auto &container = selected ?
container_parent.selected :
container_parent.unselected;
container.emplace_back(std::move(itm));
} catch (const EmptyItemOutlineError &ex) {
BOOST_LOG_TRIVIAL(error)
<< "ObjectID " << std::to_string(arrbl.id().id) << ": " << ex.what();
}
});
}
template<class ArrItem>
std::unique_ptr<ArrangeTask<ArrItem>> ArrangeTask<ArrItem>::create(
const Scene &sc, const ArrangeableToItemConverter<ArrItem> &converter)
{
auto task = std::make_unique<ArrangeTask<ArrItem>>();
task->settings.set_from(sc.settings());
task->bed = get_corrected_bed(sc.bed(), converter);
extract_selected(*task, sc.model(), converter);
return task;
}
// Remove all items on the physical bed (not occupyable for unprintable items)
// and shift all items to the next lower bed index, so that arrange will think
// that logical bed no. 1 is the physical one
template<class ItemCont>
void prepare_fixed_unselected(ItemCont &items, int shift)
{
for (auto &itm : items)
set_bed_index(itm, get_bed_index(itm) - shift);
items.erase(std::remove_if(items.begin(), items.end(),
[](auto &itm) { return !is_arranged(itm); }),
items.end());
}
inline int find_first_empty_bed(const std::vector<int>& bed_indices,
int starting_from = 0) {
int ret = starting_from;
for (int idx : bed_indices) {
if (idx == ret) {
ret++;
} else if (idx > ret) {
break;
}
}
return ret;
}
template<class ArrItem>
std::unique_ptr<ArrangeTaskResult>
ArrangeTask<ArrItem>::process_native(Ctl &ctl)
{
auto result = std::make_unique<ArrangeTaskResult>();
auto arranger = Arranger<ArrItem>::create(settings);
class TwoStepArrangeCtl: public Ctl
{
Ctl &parent;
ArrangeTask &self;
public:
TwoStepArrangeCtl(Ctl &p, ArrangeTask &slf) : parent{p}, self{slf} {}
void update_status(int remaining) override
{
parent.update_status(remaining + self.unprintable.selected.size());
}
bool was_canceled() const override { return parent.was_canceled(); }
} subctl{ctl, *this};
arranger->arrange(printable.selected, printable.unselected, bed, subctl);
std::vector<int> printable_bed_indices =
get_bed_indices(crange(printable.selected), crange(printable.unselected));
// If there are no printables, leave the physical bed empty
static constexpr int SearchFrom = 1;
// Unprintable items should go to the first logical (!) bed not containing
// any printable items
int first_empty_bed = find_first_empty_bed(printable_bed_indices, SearchFrom);
prepare_fixed_unselected(unprintable.unselected, first_empty_bed);
arranger->arrange(unprintable.selected, unprintable.unselected, bed, ctl);
result->add_items(crange(printable.selected));
for (auto &itm : unprintable.selected) {
if (is_arranged(itm)) {
int bedidx = get_bed_index(itm) + first_empty_bed;
arr2::set_bed_index(itm, bedidx);
}
result->add_item(itm);
}
return result;
}
} // namespace arr2
} // namespace Slic3r
#endif //ARRANGETASK_IMPL_HPP

View File

@@ -0,0 +1,215 @@
#ifndef FILLBEDTASKIMPL_HPP
#define FILLBEDTASKIMPL_HPP
#include <boost/log/trivial.hpp>
#include <arrange/NFP/NFPArrangeItemTraits.hpp>
#include <arrange-wrapper/Tasks/FillBedTask.hpp>
namespace Slic3r { namespace arr2 {
template<class ArrItem>
int calculate_items_needed_to_fill_bed(const ExtendedBed &bed,
const ArrItem &prototype_item,
size_t prototype_count,
const std::vector<ArrItem> &fixed)
{
double poly_area = fixed_area(prototype_item);
auto area_sum_fn = [&](double s, const auto &itm) {
return s + (get_bed_index(itm) == get_bed_constraint(prototype_item)) * fixed_area(itm);
};
double unsel_area = std::accumulate(fixed.begin(),
fixed.end(),
0.,
area_sum_fn);
double fixed_area = unsel_area + prototype_count * poly_area;
double bed_area = 0.;
visit_bed([&bed_area] (auto &realbed) { bed_area = area(realbed); }, bed);
// This is the maximum number of items,
// the real number will always be close but less.
auto needed_items = static_cast<int>(
std::ceil((bed_area - fixed_area) / poly_area));
return needed_items;
}
template<class ArrItem>
void extract(FillBedTask<ArrItem> &task,
const Scene &scene,
const ArrangeableToItemConverter<ArrItem> &itm_conv)
{
task.prototype_item = {};
auto selected_ids = scene.selected_ids();
if (selected_ids.empty())
return;
std::set<ObjectID> selected_objects = selected_geometry_ids(scene);
if (selected_objects.size() != 1)
return;
ObjectID prototype_geometry_id = *(selected_objects.begin());
auto set_prototype_item = [&task, &itm_conv](const Arrangeable &arrbl) {
if (arrbl.is_printable())
task.prototype_item = itm_conv.convert(arrbl);
};
scene.model().visit_arrangeable(selected_ids.front(), set_prototype_item);
if (!task.prototype_item)
return;
// Workaround for missing items when arranging the same geometry only:
// Injecting a number of items but with slightly shrinked shape, so that
// they can fill the emerging holes.
ArrItem prototype_item_shrinked;
scene.model().visit_arrangeable(selected_ids.front(),
[&prototype_item_shrinked, &itm_conv](const Arrangeable &arrbl) {
if (arrbl.is_printable())
prototype_item_shrinked = itm_conv.convert(arrbl, -SCALED_EPSILON);
});
const int bed_constraint{*get_bed_constraint(*task.prototype_item)};
if (bed_constraint != get_bed_index(*task.prototype_item)) {
return;
}
set_bed_index(*task.prototype_item, Unarranged);
auto collect_task_items = [&prototype_geometry_id, &task,
&itm_conv, &bed_constraint](const Arrangeable &arrbl) {
try {
if (arrbl.bed_constraint() == bed_constraint) {
if (arrbl.geometry_id() == prototype_geometry_id) {
if (arrbl.is_printable()) {
auto itm = itm_conv.convert(arrbl);
raise_priority(itm);
task.selected.emplace_back(std::move(itm));
}
} else {
auto itm = itm_conv.convert(arrbl, -SCALED_EPSILON);
task.unselected.emplace_back(std::move(itm));
}
}
} catch (const EmptyItemOutlineError &ex) {
BOOST_LOG_TRIVIAL(error)
<< "ObjectID " << std::to_string(arrbl.id().id) << ": " << ex.what();
}
};
scene.model().for_each_arrangeable(collect_task_items);
int needed_items = calculate_items_needed_to_fill_bed(task.bed,
*task.prototype_item,
task.selected.size(),
task.unselected);
task.selected_existing_count = task.selected.size();
task.selected.reserve(task.selected.size() + needed_items);
std::fill_n(std::back_inserter(task.selected), needed_items,
*task.prototype_item);
// Add as many filler items as there are needed items. Most of them will
// be discarded anyways.
std::fill_n(std::back_inserter(task.selected_fillers), needed_items,
prototype_item_shrinked);
}
template<class ArrItem>
std::unique_ptr<FillBedTask<ArrItem>> FillBedTask<ArrItem>::create(
const Scene &sc, const ArrangeableToItemConverter<ArrItem> &converter)
{
auto task = std::make_unique<FillBedTask<ArrItem>>();
task->settings.set_from(sc.settings());
task->bed = get_corrected_bed(sc.bed(), converter);
extract(*task, sc, converter);
return task;
}
template<class ArrItem>
std::unique_ptr<FillBedTaskResult> FillBedTask<ArrItem>::process_native(
Ctl &ctl)
{
auto result = std::make_unique<FillBedTaskResult>();
if (!prototype_item)
return result;
result->prototype_id = retrieve_id(*prototype_item).value_or(ObjectID{});
class FillBedCtl: public ArrangerCtl<ArrItem>
{
ArrangeTaskCtl &parent;
FillBedTask &self;
bool do_stop = false;
public:
FillBedCtl(ArrangeTaskCtl &p, FillBedTask &slf) : parent{p}, self{slf} {}
void update_status(int remaining) override
{
parent.update_status(remaining);
}
bool was_canceled() const override
{
return parent.was_canceled() || do_stop;
}
void on_packed(ArrItem &itm) override
{
// Stop at the first filler that is not on the physical bed
do_stop = get_bed_index(itm) == -1 && get_priority(itm) == 0;
}
} subctl(ctl, *this);
auto arranger = Arranger<ArrItem>::create(settings);
arranger->arrange(selected, unselected, bed, subctl);
auto unsel_cpy = unselected;
for (const auto &itm : selected) {
unsel_cpy.emplace_back(itm);
}
arranger->arrange(selected_fillers, unsel_cpy, bed, FillBedCtl{ctl, *this});
auto arranged_range = Range{selected.begin(),
selected.begin() + selected_existing_count};
result->add_arranged_items(arranged_range);
auto to_add_range = Range{selected.begin() + selected_existing_count,
selected.end()};
for (auto &itm : to_add_range) {
if (get_bed_index(itm) == get_bed_constraint(itm))
result->add_new_item(itm);
}
for (auto &itm : selected_fillers)
if (get_bed_index(itm) == get_bed_constraint(itm))
result->add_new_item(itm);
return result;
}
} // namespace arr2
} // namespace Slic3r
#endif // FILLBEDTASKIMPL_HPP

View File

@@ -0,0 +1,127 @@
#ifndef MULTIPLYSELECTIONTASKIMPL_HPP
#define MULTIPLYSELECTIONTASKIMPL_HPP
#include <arrange-wrapper/Tasks/MultiplySelectionTask.hpp>
#include <boost/log/trivial.hpp>
namespace Slic3r { namespace arr2 {
template<class ArrItem>
std::unique_ptr<MultiplySelectionTask<ArrItem>> MultiplySelectionTask<ArrItem>::create(
const Scene &scene, size_t count, const ArrangeableToItemConverter<ArrItem> &itm_conv)
{
auto task_ptr = std::make_unique<MultiplySelectionTask<ArrItem>>();
auto &task = *task_ptr;
task.settings.set_from(scene.settings());
task.bed = get_corrected_bed(scene.bed(), itm_conv);
task.prototype_item = {};
auto selected_ids = scene.selected_ids();
if (selected_ids.empty())
return task_ptr;
std::set<ObjectID> selected_objects = selected_geometry_ids(scene);
if (selected_objects.size() != 1)
return task_ptr;
ObjectID prototype_geometry_id = *(selected_objects.begin());
auto set_prototype_item = [&task, &itm_conv](const Arrangeable &arrbl) {
if (arrbl.is_printable())
task.prototype_item = itm_conv.convert(arrbl);
};
scene.model().visit_arrangeable(selected_ids.front(), set_prototype_item);
if (!task.prototype_item)
return task_ptr;
set_bed_index(*task.prototype_item, Unarranged);
auto collect_task_items = [&prototype_geometry_id, &task,
&itm_conv](const Arrangeable &arrbl) {
try {
if (arrbl.geometry_id() == prototype_geometry_id) {
if (arrbl.is_printable()) {
auto itm = itm_conv.convert(arrbl);
raise_priority(itm);
task.selected.emplace_back(std::move(itm));
}
} else {
auto itm = itm_conv.convert(arrbl, -SCALED_EPSILON);
task.unselected.emplace_back(std::move(itm));
}
} catch (const EmptyItemOutlineError &ex) {
BOOST_LOG_TRIVIAL(error)
<< "ObjectID " << std::to_string(arrbl.id().id) << ": " << ex.what();
}
};
scene.model().for_each_arrangeable(collect_task_items);
task.selected_existing_count = task.selected.size();
task.selected.reserve(task.selected.size() + count);
std::fill_n(std::back_inserter(task.selected), count, *task.prototype_item);
return task_ptr;
}
template<class ArrItem>
std::unique_ptr<MultiplySelectionTaskResult>
MultiplySelectionTask<ArrItem>::process_native(Ctl &ctl)
{
auto result = std::make_unique<MultiplySelectionTaskResult>();
if (!prototype_item)
return result;
result->prototype_id = retrieve_id(*prototype_item).value_or(ObjectID{});
class MultiplySelectionCtl: public ArrangerCtl<ArrItem>
{
ArrangeTaskCtl &parent;
MultiplySelectionTask<ArrItem> &self;
public:
MultiplySelectionCtl(ArrangeTaskCtl &p, MultiplySelectionTask<ArrItem> &slf)
: parent{p}, self{slf} {}
void update_status(int remaining) override
{
parent.update_status(remaining);
}
bool was_canceled() const override
{
return parent.was_canceled();
}
} subctl(ctl, *this);
auto arranger = Arranger<ArrItem>::create(settings);
arranger->arrange(selected, unselected, bed, subctl);
auto arranged_range = Range{selected.begin(),
selected.begin() + selected_existing_count};
result->add_arranged_items(arranged_range);
auto to_add_range = Range{selected.begin() + selected_existing_count,
selected.end()};
result->add_new_items(to_add_range);
return result;
}
}} // namespace Slic3r::arr2
#endif // MULTIPLYSELECTIONTASKIMPL_HPP

View File

@@ -0,0 +1,5 @@
{
"files.associations": {
"string_view": "cpp"
}
}

View File

@@ -0,0 +1,34 @@
project(slic3r-arrange)
cmake_minimum_required(VERSION 3.13)
add_library(slic3r-arrange
include/arrange/Beds.hpp
include/arrange/ArrangeItemTraits.hpp
include/arrange/PackingContext.hpp
include/arrange/NFP/NFPArrangeItemTraits.hpp
include/arrange/NFP/NFP.hpp
include/arrange/ArrangeBase.hpp
include/arrange/DataStoreTraits.hpp
include/arrange/ArrangeFirstFit.hpp
include/arrange/NFP/PackStrategyNFP.hpp
include/arrange/NFP/Kernels/TMArrangeKernel.hpp
include/arrange/NFP/Kernels/GravityKernel.hpp
include/arrange/NFP/RectangleOverfitPackingStrategy.hpp
include/arrange/NFP/EdgeCache.hpp
include/arrange/NFP/Kernels/KernelTraits.hpp
include/arrange/NFP/NFPConcave_Tesselate.hpp
include/arrange/NFP/Kernels/KernelUtils.hpp
include/arrange/NFP/Kernels/CompactifyKernel.hpp
include/arrange/NFP/Kernels/RectangleOverfitKernelWrapper.hpp
include/arrange/NFP/Kernels/SVGDebugOutputKernelWrapper.hpp
src/Beds.cpp
src/NFP/NFP.cpp
src/NFP/NFPConcave_Tesselate.cpp
src/NFP/EdgeCache.cpp
src/NFP/CircularEdgeIterator.hpp
)
target_include_directories(slic3r-arrange PRIVATE src)
target_include_directories(slic3r-arrange PUBLIC include)
target_link_libraries(slic3r-arrange PUBLIC libslic3r)

View File

@@ -0,0 +1,294 @@
#ifndef ARRANGEBASE_HPP
#define ARRANGEBASE_HPP
#include <iterator>
#include <type_traits>
#include <libslic3r/Point.hpp>
#include <arrange/ArrangeItemTraits.hpp>
#include <arrange/PackingContext.hpp>
namespace Slic3r { namespace arr2 {
namespace detail_is_const_it {
template<class It, class En = void>
struct IsConstIt_ { static constexpr bool value = false; };
template<class It>
using iterator_category_t = typename std::iterator_traits<It>::iterator_category;
template<class It>
using iterator_reference_t = typename std::iterator_traits<It>::reference;
template<class It>
struct IsConstIt_ <It, std::enable_if_t<std::is_class_v<iterator_category_t<It>>> >
{
static constexpr bool value =
std::is_const_v<std::remove_reference_t<iterator_reference_t<It>>>;
};
} // namespace detail_is_const_it
template<class It>
static constexpr bool IsConstIterator = detail_is_const_it::IsConstIt_<It>::value;
template<class It>
constexpr bool is_const_iterator(const It &it) noexcept { return IsConstIterator<It>; }
// The pack() function will use tag dispatching, based on the given strategy
// object that is used as its first argument.
// This tag is derived for a packing strategy as default, and will be used
// to cast a compile error.
struct UnimplementedPacking {};
// PackStrategyTag_ needs to be specialized for any valid packing strategy class
template<class PackStrategy> struct PackStrategyTag_ {
using Tag = UnimplementedPacking;
};
// Helper metafunc to derive packing strategy tag from a strategy object.
template<class Strategy>
using PackStrategyTag =
typename PackStrategyTag_<remove_cvref_t<Strategy>>::Tag;
template<class PackStrategy, class En = void> struct PackStrategyTraits_ {
template<class ArrItem> using Context = DefaultPackingContext<ArrItem>;
template<class ArrItem, class Bed>
static Context<ArrItem> create_context(PackStrategy &ps,
const Bed &bed,
int bed_index)
{
return {};
}
};
template<class PS> using PackStrategyTraits = PackStrategyTraits_<StripCVRef<PS>>;
template<class PS, class ArrItem>
using PackStrategyContext =
typename PackStrategyTraits<PS>::template Context<StripCVRef<ArrItem>>;
template<class ArrItem, class PackStrategy, class Bed>
PackStrategyContext<PackStrategy, ArrItem> create_context(PackStrategy &&ps,
const Bed &bed,
int bed_index)
{
return PackStrategyTraits<PackStrategy>::template create_context<
StripCVRef<ArrItem>>(ps, bed, bed_index);
}
// Function to pack one item into a bed.
// strategy parameter holds clue to what packing strategy to use. This function
// needs to be overloaded for the strategy tag belonging to the given
// strategy.
// 'bed' parameter is the type of bed into which the new item should be packed.
// See beds.hpp for valid bed classes.
// 'item' parameter is the item to be packed. After succesful arrangement
// (see return value) the item will have it's translation and rotation
// set correctly. If the function returns false, the translation and
// rotation of the input item might be changed to arbitrary values.
// 'fixed_items' paramter holds a range of ArrItem type objects that are already
// on the bed and need to be avoided by the newly packed item.
// 'remaining_items' is a range of ArrItem type objects that are intended to be
// packed in the future. This information can be leveradged by
// the packing strategy to make more intelligent placement
// decisions for the input item.
template<class Strategy, class Bed, class ArrItem, class RemIt>
bool pack(Strategy &&strategy,
const Bed &bed,
ArrItem &item,
const PackStrategyContext<Strategy, ArrItem> &context,
const Range<RemIt> &remaining_items)
{
static_assert(IsConstIterator<RemIt>, "Remaining item iterator is not const!");
// Dispatch:
return pack(std::forward<Strategy>(strategy), bed, item, context,
remaining_items, PackStrategyTag<Strategy>{});
}
// Overload without fixed items:
template<class Strategy, class Bed, class ArrItem>
bool pack(Strategy &&strategy, const Bed &bed, ArrItem &item)
{
std::vector<ArrItem> dummy;
auto context = create_context<ArrItem>(strategy, bed, PhysicalBedId);
return pack(std::forward<Strategy>(strategy), bed, item, context,
crange(dummy));
}
// Overload when strategy is unkown, yields compile error:
template<class Strategy, class Bed, class ArrItem, class RemIt>
bool pack(Strategy &&strategy,
const Bed &bed,
ArrItem &item,
const PackStrategyContext<Strategy, ArrItem> &context,
const Range<RemIt> &remaining_items,
const UnimplementedPacking &)
{
static_assert(always_false<Strategy>::value,
"Packing unimplemented for this placement strategy");
return false;
}
// Helper function to remove unpackable items from the input container.
template<class PackStrategy, class Container, class Bed, class StopCond>
void remove_unpackable_items(PackStrategy &&ps,
Container &c,
const Bed &bed,
const StopCond &stopcond)
{
// Safety test: try to pack each item into an empty bed. If it fails
// then it should be removed from the list
auto it = c.begin();
while (it != c.end() && !stopcond()) {
StripCVRef<decltype(*it)> &itm = *it;
auto cpy{itm};
if (!pack(ps, bed, cpy)) {
set_bed_index(itm, Unarranged);
it = c.erase(it);
} else
it++;
}
}
// arrange() function will use tag dispatching based on the selection strategy
// given as its first argument.
// This tag is derived for a selection strategy as default, and will be used
// to cast a compile error.
struct UnimplementedSelection {};
// SelStrategyTag_ needs to be specialized for any valid selection strategy class
template<class SelStrategy> struct SelStrategyTag_ {
using Tag = UnimplementedSelection;
};
// Helper metafunc to derive the selection strategy tag from a strategy object.
template<class Strategy>
using SelStrategyTag = typename SelStrategyTag_<remove_cvref_t<Strategy>>::Tag;
// Main function to start the arrangement. Takes a selection and a packing
// strategy object as the first two parameters. An implementation
// (function overload) must exist for this function that takes the coresponding
// selection strategy tag belonging to the given selstrategy argument.
//
// items parameter is a range of arrange items to arrange.
// fixed parameter is a range of arrange items that have fixed position and will
// not move during the arrangement but need to be avoided by the
// moving items.
// bed parameter is the type of bed into which the items need to fit.
template<class It,
class ConstIt,
class TBed,
class SelectionStrategy,
class PackStrategy>
void arrange(SelectionStrategy &&selstrategy,
PackStrategy &&packingstrategy,
const Range<It> &items,
const Range<ConstIt> &fixed,
const TBed &bed)
{
static_assert(IsConstIterator<ConstIt>, "Fixed item iterator is not const!");
// Dispatch:
arrange(std::forward<SelectionStrategy>(selstrategy),
std::forward<PackStrategy>(packingstrategy), items, fixed, bed,
SelStrategyTag<SelectionStrategy>{});
}
template<class It, class TBed, class SelectionStrategy, class PackStrategy>
void arrange(SelectionStrategy &&selstrategy,
PackStrategy &&packingstrategy,
const Range<It> &items,
const TBed &bed)
{
std::vector<typename std::iterator_traits<It>::value_type> dummy;
arrange(std::forward<SelectionStrategy>(selstrategy),
std::forward<PackStrategy>(packingstrategy), items, crange(dummy),
bed);
}
// Overload for unimplemented selection strategy, yields compile error:
template<class It,
class ConstIt,
class TBed,
class SelectionStrategy,
class PackStrategy>
void arrange(SelectionStrategy &&selstrategy,
PackStrategy &&packingstrategy,
const Range<It> &items,
const Range<ConstIt> &fixed,
const TBed &bed,
const UnimplementedSelection &)
{
static_assert(always_false<SelectionStrategy>::value,
"Arrange unimplemented for this selection strategy");
}
template<class It>
std::vector<int> get_bed_indices(const Range<It> &items)
{
auto bed_indices = reserve_vector<int>(items.size());
for (auto &itm : items)
bed_indices.emplace_back(get_bed_index(itm));
std::sort(bed_indices.begin(), bed_indices.end());
auto endit = std::unique(bed_indices.begin(), bed_indices.end());
bed_indices.erase(endit, bed_indices.end());
return bed_indices;
}
template<class It, class CIt>
std::vector<int> get_bed_indices(const Range<It> &items, const Range<CIt> &fixed)
{
std::vector<int> ret;
auto iitems = get_bed_indices(items);
auto ifixed = get_bed_indices(fixed);
ret.reserve(std::max(iitems.size(), ifixed.size()));
std::set_union(iitems.begin(), iitems.end(),
ifixed.begin(), ifixed.end(),
std::back_inserter(ret));
return ret;
}
template<class It>
size_t get_bed_count(const Range<It> &items)
{
return get_bed_indices(items).size();
}
template<class It> int get_max_bed_index(const Range<It> &items)
{
auto it = std::max_element(items.begin(),
items.end(),
[](auto &i1, auto &i2) {
return get_bed_index(i1) < get_bed_index(i2);
});
int ret = Unarranged;
if (it != items.end())
ret = get_bed_index(*it);
return ret;
}
struct DefaultStopCondition {
constexpr bool operator()() const noexcept { return false; }
};
}} // namespace Slic3r::arr2
#endif // ARRANGEBASE_HPP

View File

@@ -0,0 +1,176 @@
#ifndef ARRANGEFIRSTFIT_HPP
#define ARRANGEFIRSTFIT_HPP
#include <iterator>
#include <map>
#include <arrange/ArrangeBase.hpp>
namespace Slic3r { namespace arr2 { namespace firstfit {
struct SelectionTag {};
// Can be specialized by Items
template<class ArrItem, class En = void>
struct ItemArrangedVisitor {
template<class Bed, class PIt, class RIt>
static void on_arranged(ArrItem &itm,
const Bed &bed,
const Range<PIt> &packed_items,
const Range<RIt> &remaining_items)
{}
};
// Use the the visitor baked into the ArrItem type by default
struct DefaultOnArrangedFn {
template<class ArrItem, class Bed, class PIt, class RIt>
void operator()(ArrItem &itm,
const Bed &bed,
const Range<PIt> &packed,
const Range<RIt> &remaining)
{
ItemArrangedVisitor<StripCVRef<ArrItem>>::on_arranged(itm, bed, packed,
remaining);
}
};
struct DefaultItemCompareFn {
template<class ArrItem>
bool operator() (const ArrItem &ia, const ArrItem &ib)
{
return get_priority(ia) > get_priority(ib);
}
};
template<class CompareFn = DefaultItemCompareFn,
class OnArrangedFn = DefaultOnArrangedFn,
class StopCondition = DefaultStopCondition>
struct SelectionStrategy
{
CompareFn cmpfn;
OnArrangedFn on_arranged_fn;
StopCondition cancel_fn;
SelectionStrategy(CompareFn cmp = {},
OnArrangedFn on_arranged = {},
StopCondition stopcond = {})
: cmpfn{cmp},
on_arranged_fn{std::move(on_arranged)},
cancel_fn{std::move(stopcond)}
{}
};
} // namespace firstfit
template<class... Args> struct SelStrategyTag_<firstfit::SelectionStrategy<Args...>> {
using Tag = firstfit::SelectionTag;
};
template<class It,
class ConstIt,
class TBed,
class SelStrategy,
class PackStrategy>
void arrange(
SelStrategy &&sel,
PackStrategy &&ps,
const Range<It> &items,
const Range<ConstIt> &fixed,
const TBed &bed,
const firstfit::SelectionTag &)
{
using ArrItem = typename std::iterator_traits<It>::value_type;
using ArrItemRef = std::reference_wrapper<ArrItem>;
auto sorted_items = reserve_vector<ArrItemRef>(items.size());
for (auto &itm : items) {
set_bed_index(itm, Unarranged);
sorted_items.emplace_back(itm);
}
using Context = PackStrategyContext<PackStrategy, ArrItem>;
std::map<int, Context> bed_contexts;
auto get_or_init_context = [&ps, &bed, &bed_contexts](int bedidx) -> Context& {
auto ctx_it = bed_contexts.find(bedidx);
if (ctx_it == bed_contexts.end()) {
auto res = bed_contexts.emplace(
bedidx, create_context<ArrItem>(ps, bed, bedidx));
assert(res.second);
ctx_it = res.first;
}
return ctx_it->second;
};
for (auto &itm : fixed) {
auto bedidx = get_bed_index(itm);
if (bedidx >= 0) {
Context &ctx = get_or_init_context(bedidx);
add_fixed_item(ctx, itm);
}
}
if constexpr (!std::is_null_pointer_v<decltype(sel.cmpfn)>) {
std::stable_sort(sorted_items.begin(), sorted_items.end(), sel.cmpfn);
}
auto is_cancelled = [&sel]() {
return sel.cancel_fn();
};
remove_unpackable_items(ps, sorted_items, bed, [&is_cancelled]() {
return is_cancelled();
});
auto it = sorted_items.begin();
using SConstIt = typename std::vector<ArrItemRef>::const_iterator;
while (it != sorted_items.end() && !is_cancelled()) {
bool was_packed = false;
int bedidx = 0;
while (!was_packed && !is_cancelled()) {
for (; !was_packed && !is_cancelled(); bedidx++) {
const std::optional<int> bed_constraint{get_bed_constraint(*it)};
if (bed_constraint && bedidx != *bed_constraint) {
continue;
}
set_bed_index(*it, bedidx);
auto remaining = Range{std::next(static_cast<SConstIt>(it)),
sorted_items.cend()};
Context &ctx = get_or_init_context(bedidx);
was_packed = pack(ps, bed, *it, ctx, remaining);
if(was_packed) {
add_packed_item(ctx, *it);
auto packed_range = Range{sorted_items.cbegin(),
static_cast<SConstIt>(it)};
sel.on_arranged_fn(*it, bed, packed_range, remaining);
} else {
set_bed_index(*it, Unarranged);
if (bed_constraint && bedidx == *bed_constraint) {
// Leave the item as is as it does not fit on the enforced bed.
auto packed_range = Range{sorted_items.cbegin(),
static_cast<SConstIt>(it)};
was_packed = true;
sel.on_arranged_fn(*it, bed, packed_range, remaining);
}
}
}
}
++it;
}
}
}} // namespace Slic3r::arr2
#endif // ARRANGEFIRSTFIT_HPP

View File

@@ -0,0 +1,133 @@
#ifndef ARRANGE_ITEM_TRAITS_HPP
#define ARRANGE_ITEM_TRAITS_HPP
#include <libslic3r/Point.hpp>
namespace Slic3r { namespace arr2 {
// A logical bed representing an object not being arranged. Either the arrange
// has not yet successfully run on this ArrangePolygon or it could not fit the
// object due to overly large size or invalid geometry.
const constexpr int Unarranged = -1;
const constexpr int PhysicalBedId = 0;
// Basic interface of an arrange item. This struct can be specialized for any
// type that is arrangeable.
template<class ArrItem, class En = void> struct ArrangeItemTraits_ {
static Vec2crd get_translation(const ArrItem &ap)
{
return ap.get_translation();
}
static double get_rotation(const ArrItem &ap)
{
return ap.get_rotation();
}
static int get_bed_index(const ArrItem &ap) { return ap.get_bed_index(); }
static std::optional<int> get_bed_constraint(const ArrItem &ap)
{
return ap.get_bed_constraint();
}
static int get_priority(const ArrItem &ap) { return ap.get_priority(); }
// Setters:
static void set_translation(ArrItem &ap, const Vec2crd &v)
{
ap.set_translation(v);
}
static void set_rotation(ArrItem &ap, double v) { ap.set_rotation(v); }
static void set_bed_index(ArrItem &ap, int v) { ap.set_bed_index(v); }
static void set_bed_constraint(ArrItem &ap, std::optional<int> v)
{
ap.set_bed_constraint(v);
}
};
template<class T> using ArrangeItemTraits = ArrangeItemTraits_<StripCVRef<T>>;
// Getters:
template<class T> Vec2crd get_translation(const T &itm)
{
return ArrangeItemTraits<T>::get_translation(itm);
}
template<class T> double get_rotation(const T &itm)
{
return ArrangeItemTraits<T>::get_rotation(itm);
}
template<class T> int get_bed_index(const T &itm)
{
return ArrangeItemTraits<T>::get_bed_index(itm);
}
template<class T> int get_priority(const T &itm)
{
return ArrangeItemTraits<T>::get_priority(itm);
}
template<class T> std::optional<int> get_bed_constraint(const T &itm)
{
return ArrangeItemTraits<T>::get_bed_constraint(itm);
}
// Setters:
template<class T> void set_translation(T &itm, const Vec2crd &v)
{
ArrangeItemTraits<T>::set_translation(itm, v);
}
template<class T> void set_rotation(T &itm, double v)
{
ArrangeItemTraits<T>::set_rotation(itm, v);
}
template<class T> void set_bed_index(T &itm, int v)
{
ArrangeItemTraits<T>::set_bed_index(itm, v);
}
template<class T> void set_bed_constraint(T &itm, std::optional<int> v)
{
ArrangeItemTraits<T>::set_bed_constraint(itm, v);
}
// Helper functions for arrange items
template<class ArrItem> bool is_arranged(const ArrItem &ap)
{
return get_bed_index(ap) > Unarranged;
}
template<class ArrItem> bool is_fixed(const ArrItem &ap)
{
return get_bed_index(ap) >= PhysicalBedId;
}
template<class ArrItem> bool is_on_physical_bed(const ArrItem &ap)
{
return get_bed_index(ap) == PhysicalBedId;
}
template<class ArrItem> void translate(ArrItem &ap, const Vec2crd &t)
{
set_translation(ap, get_translation(ap) + t);
}
template<class ArrItem> void rotate(ArrItem &ap, double rads)
{
set_rotation(ap, get_rotation(ap) + rads);
}
}} // namespace Slic3r::arr2
#endif // ARRANGE_ITEM_HPP

View File

@@ -0,0 +1,230 @@
#ifndef BEDS_HPP
#define BEDS_HPP
#include <libslic3r/Point.hpp>
#include <libslic3r/ExPolygon.hpp>
#include <libslic3r/BoundingBox.hpp>
#include <libslic3r/ClipperUtils.hpp>
#include <boost/variant.hpp>
#include <boost/variant/variant.hpp>
#include <numeric>
#include <cmath>
#include <limits>
#include <type_traits>
#include "libslic3r/Polygon.hpp"
#include "libslic3r/libslic3r.h"
namespace Slic3r { namespace arr2 {
// Bed types to be used with arrangement. Most generic bed is a simple polygon
// with holes, but other special bed types are also valid, like a bed without
// boundaries, or a special case of a rectangular or circular bed which leaves
// a lot of room for optimizations.
// Representing an unbounded bed.
struct InfiniteBed {
Point center;
explicit InfiniteBed(const Point &p = {0, 0}): center{p} {}
};
BoundingBox bounding_box(const InfiniteBed &bed);
inline InfiniteBed offset(const InfiniteBed &bed, coord_t) { return bed; }
inline Vec2crd bed_gap(const InfiniteBed &)
{
return Vec2crd::Zero();
}
struct RectangleBed {
BoundingBox bb;
Vec2crd gap;
explicit RectangleBed(const BoundingBox &bedbb, const Vec2crd &gap) : bb{bedbb}, gap{gap} {}
explicit RectangleBed(coord_t w, coord_t h, const Vec2crd &gap = Vec2crd::Zero(), Point c = {0, 0}):
bb{{c.x() - w / 2, c.y() - h / 2}, {c.x() + w / 2, c.y() + h / 2}}, gap{gap}
{}
coord_t width() const { return bb.size().x(); }
coord_t height() const { return bb.size().y(); }
};
inline BoundingBox bounding_box(const RectangleBed &bed) { return bed.bb; }
inline RectangleBed offset(RectangleBed bed, coord_t v)
{
bed.bb.offset(v);
return bed;
}
inline Vec2crd bed_gap(const RectangleBed &bed) {
return bed.gap;
}
Polygon to_rectangle(const BoundingBox &bb);
inline Polygon to_rectangle(const RectangleBed &bed)
{
return to_rectangle(bed.bb);
}
class CircleBed {
Point m_center;
double m_radius;
Vec2crd m_gap;
public:
CircleBed(): m_center(0, 0), m_radius(NaNd), m_gap(Vec2crd::Zero()) {}
explicit CircleBed(const Point& c, double r, const Vec2crd &g)
: m_center(c)
, m_radius(r)
, m_gap(g)
{}
double radius() const { return m_radius; }
const Point& center() const { return m_center; }
const Vec2crd &gap() const { return m_gap; }
};
// Function to approximate a circle with a convex polygon
Polygon approximate_circle_with_polygon(const CircleBed &bed, int nedges = 24);
inline BoundingBox bounding_box(const CircleBed &bed)
{
auto r = static_cast<coord_t>(std::round(bed.radius()));
Point R{r, r};
return {bed.center() - R, bed.center() + R};
}
inline CircleBed offset(const CircleBed &bed, coord_t v)
{
return CircleBed{bed.center(), bed.radius() + v, bed.gap()};
}
inline Vec2crd bed_gap(const CircleBed &bed)
{
return bed.gap();
}
struct IrregularBed { ExPolygons poly; Vec2crd gap; };
inline BoundingBox bounding_box(const IrregularBed &bed)
{
return get_extents(bed.poly);
}
inline IrregularBed offset(IrregularBed bed, coord_t v)
{
bed.poly = offset_ex(bed.poly, v);
return bed;
}
inline Vec2crd bed_gap(const IrregularBed &bed)
{
return bed.gap;
}
using ArrangeBed =
boost::variant<InfiniteBed, RectangleBed, CircleBed, IrregularBed>;
inline BoundingBox bounding_box(const ArrangeBed &bed)
{
BoundingBox ret;
auto visitor = [&ret](const auto &b) { ret = bounding_box(b); };
boost::apply_visitor(visitor, bed);
return ret;
}
inline ArrangeBed offset(ArrangeBed bed, coord_t v)
{
auto visitor = [v](auto &b) { b = offset(b, v); };
boost::apply_visitor(visitor, bed);
return bed;
}
inline Vec2crd bed_gap(const ArrangeBed &bed)
{
Vec2crd ret;
auto visitor = [&ret](const auto &b) { ret = bed_gap(b); };
boost::apply_visitor(visitor, bed);
return ret;
}
inline double area(const BoundingBox &bb)
{
auto bbsz = bb.size();
return double(bbsz.x()) * bbsz.y();
}
inline double area(const RectangleBed &bed)
{
auto bbsz = bed.bb.size();
return double(bbsz.x()) * bbsz.y();
}
inline double area(const InfiniteBed &bed)
{
return std::numeric_limits<double>::infinity();
}
inline double area(const IrregularBed &bed)
{
return std::accumulate(bed.poly.begin(), bed.poly.end(), 0.,
[](double s, auto &p) { return s + p.area(); });
}
inline double area(const CircleBed &bed)
{
return bed.radius() * bed.radius() * PI;
}
inline double area(const ArrangeBed &bed)
{
double ret = 0.;
auto visitor = [&ret](auto &b) { ret = area(b); };
boost::apply_visitor(visitor, bed);
return ret;
}
inline ExPolygons to_expolygons(const InfiniteBed &bed)
{
return {ExPolygon{to_rectangle(RectangleBed{scaled(1000.), scaled(1000.)})}};
}
inline ExPolygons to_expolygons(const RectangleBed &bed)
{
return {ExPolygon{to_rectangle(bed)}};
}
inline ExPolygons to_expolygons(const CircleBed &bed)
{
return {ExPolygon{approximate_circle_with_polygon(bed)}};
}
inline ExPolygons to_expolygons(const IrregularBed &bed) { return bed.poly; }
inline ExPolygons to_expolygons(const ArrangeBed &bed)
{
ExPolygons ret;
auto visitor = [&ret](const auto &b) { ret = to_expolygons(b); };
boost::apply_visitor(visitor, bed);
return ret;
}
ArrangeBed to_arrange_bed(const Points &bedpts, const Vec2crd &gap);
template<class Bed, class En = void> struct IsRectangular_ : public std::false_type {};
template<> struct IsRectangular_<RectangleBed>: public std::true_type {};
template<> struct IsRectangular_<BoundingBox>: public std::true_type {};
template<class Bed> static constexpr bool IsRectangular = IsRectangular_<Bed>::value;
} // namespace arr2
inline BoundingBox &bounding_box(BoundingBox &bb) { return bb; }
inline const BoundingBox &bounding_box(const BoundingBox &bb) { return bb; }
inline BoundingBox bounding_box(const Polygon &p) { return get_extents(p); }
} // namespace Slic3r
#endif // BEDS_HPP

View File

@@ -0,0 +1,78 @@
#ifndef DATASTORETRAITS_HPP
#define DATASTORETRAITS_HPP
#include <string_view>
#include "libslic3r/libslic3r.h"
namespace Slic3r { namespace arr2 {
// Some items can be containers of arbitrary data stored under string keys.
template<class ArrItem, class En = void> struct DataStoreTraits_
{
static constexpr bool Implemented = false;
template<class T> static const T *get(const ArrItem &, const std::string &key)
{
return nullptr;
}
// Same as above just not const.
template<class T> static T *get(ArrItem &, const std::string &key)
{
return nullptr;
}
static bool has_key(const ArrItem &itm, const std::string &key)
{
return false;
}
};
template<class ArrItem, class En = void> struct WritableDataStoreTraits_
{
static constexpr bool Implemented = false;
template<class T> static void set(ArrItem &, const std::string &key, T &&data)
{
}
};
template<class T> using DataStoreTraits = DataStoreTraits_<StripCVRef<T>>;
template<class T> constexpr bool IsDataStore = DataStoreTraits<StripCVRef<T>>::Implemented;
template<class T, class TT = T> using DataStoreOnly = std::enable_if_t<IsDataStore<T>, TT>;
template<class T, class ArrItem>
const T *get_data(const ArrItem &itm, const std::string &key)
{
return DataStoreTraits<ArrItem>::template get<T>(itm, key);
}
template<class ArrItem>
bool has_key(const ArrItem &itm, const std::string &key)
{
return DataStoreTraits<ArrItem>::has_key(itm, key);
}
template<class T, class ArrItem>
T *get_data(ArrItem &itm, const std::string &key)
{
return DataStoreTraits<ArrItem>::template get<T>(itm, key);
}
template<class T> using WritableDataStoreTraits = WritableDataStoreTraits_<StripCVRef<T>>;
template<class T> constexpr bool IsWritableDataStore = WritableDataStoreTraits<StripCVRef<T>>::Implemented;
template<class T, class TT = T> using WritableDataStoreOnly = std::enable_if_t<IsWritableDataStore<T>, TT>;
template<class T, class ArrItem>
void set_data(ArrItem &itm, const std::string &key, T &&data)
{
WritableDataStoreTraits<ArrItem>::template set(itm, key, std::forward<T>(data));
}
template<class T> constexpr bool IsReadWritableDataStore = IsDataStore<T> && IsWritableDataStore<T>;
template<class T, class TT = T> using ReadWritableDataStoreOnly = std::enable_if_t<IsReadWritableDataStore<T>, TT>;
}} // namespace Slic3r::arr2
#endif // DATASTORETRAITS_HPP

View File

@@ -0,0 +1,80 @@
#ifndef EDGECACHE_HPP
#define EDGECACHE_HPP
#include <libslic3r/ExPolygon.hpp>
#include <assert.h>
#include <stddef.h>
#include <vector>
#include <algorithm>
#include <cmath>
#include <cassert>
#include <cstddef>
#include "libslic3r/Point.hpp"
#include "libslic3r/Polygon.hpp"
#include "libslic3r/libslic3r.h"
namespace Slic3r { namespace arr2 {
// Position on the circumference of an ExPolygon.
// countour_id: 0th is contour, 1..N are holes
// dist: position given as a floating point number within <0., 1.>
struct ContourLocation { size_t contour_id; double dist; };
void fill_distances(const Polygon &poly, std::vector<double> &distances);
Vec2crd coords(const Polygon &poly, const std::vector<double>& distances, double distance);
// A class for getting a point on the circumference of the polygon (in log time)
//
// This is a transformation of the provided polygon to be able to pinpoint
// locations on the circumference. The optimizer will pass a floating point
// value e.g. within <0,1> and we have to transform this value quickly into a
// coordinate on the circumference. By definition 0 should yield the first
// vertex and 1.0 would be the last (which should coincide with first).
//
// We also have to make this work for the holes of the captured polygon.
class EdgeCache {
struct ContourCache {
const Polygon *poly;
std::vector<double> distances;
} m_contour;
std::vector<ContourCache> m_holes;
void create_cache(const ExPolygon& sh);
Vec2crd coords(const ContourCache& cache, double distance) const;
public:
explicit EdgeCache(const ExPolygon *sh)
{
create_cache(*sh);
}
// Given coeff for accuracy <0., 1.>, return the number of vertices to skip
// when fetching corners.
static inline size_t stride(const size_t N, double accuracy)
{
size_t n = std::max(size_t{1}, N);
return static_cast<coord_t>(
std::round(N / std::pow(n, std::pow(accuracy, 1./3.)))
);
}
void sample_contour(double accuracy, std::vector<ContourLocation> &samples);
Vec2crd coords(const ContourLocation &loc) const
{
assert(loc.contour_id <= m_holes.size());
return loc.contour_id > 0 ?
coords(m_holes[loc.contour_id - 1], loc.dist) :
coords(m_contour, loc.dist);
}
};
}} // namespace Slic3r::arr2
#endif // EDGECACHE_HPP

View File

@@ -0,0 +1,61 @@
#ifndef COMPACTIFYKERNEL_HPP
#define COMPACTIFYKERNEL_HPP
#include <numeric>
#include "libslic3r/Arrange/Core/NFP/NFPArrangeItemTraits.hpp"
#include "libslic3r/Arrange/Core/Beds.hpp"
#include <libslic3r/Geometry/ConvexHull.hpp>
#include <libslic3r/ClipperUtils.hpp>
#include "KernelUtils.hpp"
namespace Slic3r { namespace arr2 {
struct CompactifyKernel {
ExPolygons merged_pile;
template<class ArrItem>
double placement_fitness(const ArrItem &itm, const Vec2crd &transl) const
{
auto pile = merged_pile;
ExPolygons itm_tr = to_expolygons(envelope_outline(itm));
for (auto &p : itm_tr)
p.translate(transl);
append(pile, std::move(itm_tr));
pile = union_ex(pile);
Polygon chull = Geometry::convex_hull(pile);
return -(chull.area());
}
template<class ArrItem, class Bed, class Context, class RemIt>
bool on_start_packing(ArrItem &itm,
const Bed &bed,
const Context &packing_context,
const Range<RemIt> & /*remaining_items*/)
{
bool ret = find_initial_position(itm, bounding_box(bed).center(), bed,
packing_context);
merged_pile.clear();
for (const auto &gitm : all_items_range(packing_context)) {
append(merged_pile, to_expolygons(fixed_outline(gitm)));
}
merged_pile = union_ex(merged_pile);
return ret;
}
template<class ArrItem>
bool on_item_packed(ArrItem &itm) { return true; }
};
}} // namespace Slic3r::arr2
#endif // COMPACTIFYKERNEL_HPP

View File

@@ -0,0 +1,60 @@
#ifndef GRAVITYKERNEL_HPP
#define GRAVITYKERNEL_HPP
#include <arrange/NFP/NFPArrangeItemTraits.hpp>
#include <arrange/Beds.hpp>
#include "KernelUtils.hpp"
namespace Slic3r { namespace arr2 {
struct GravityKernel {
std::optional<Vec2crd> sink;
std::optional<Vec2crd> item_sink;
Vec2d active_sink;
GravityKernel(Vec2crd gravity_center) :
sink{gravity_center}, active_sink{unscaled(gravity_center)} {}
GravityKernel() = default;
template<class ArrItem>
double placement_fitness(const ArrItem &itm, const Vec2crd &transl) const
{
Vec2d center = unscaled(envelope_centroid(itm));
center += unscaled(transl);
return - (center - active_sink).squaredNorm();
}
template<class ArrItem, class Bed, class Ctx, class RemIt>
bool on_start_packing(ArrItem &itm,
const Bed &bed,
const Ctx &packing_context,
const Range<RemIt> & /*remaining_items*/)
{
bool ret = false;
item_sink = get_gravity_sink(itm);
if (!sink) {
sink = bounding_box(bed).center();
}
if (item_sink)
active_sink = unscaled(*item_sink);
else
active_sink = unscaled(*sink);
ret = find_initial_position(itm, scaled(active_sink), bed, packing_context);
return ret;
}
template<class ArrItem> bool on_item_packed(ArrItem &itm) { return true; }
};
}} // namespace Slic3r::arr2
#endif // GRAVITYKERNEL_HPP

View File

@@ -0,0 +1,57 @@
#ifndef KERNELTRAITS_HPP
#define KERNELTRAITS_HPP
#include <arrange/ArrangeItemTraits.hpp>
namespace Slic3r { namespace arr2 {
// An arrangement kernel that specifies the object function to the arrangement
// optimizer and additional callback functions to be able to track the state
// of the arranged pile during arrangement.
template<class Kernel, class En = void> struct KernelTraits_
{
// Has to return a score value marking the quality of the arrangement. The
// higher this value is, the better a particular placement of the item is.
// parameter transl is the translation needed for the item to be moved to
// the candidate position.
// To discard the item, return NaN as score for every translation.
template<class ArrItem>
static double placement_fitness(const Kernel &k,
const ArrItem &itm,
const Vec2crd &transl)
{
return k.placement_fitness(itm, transl);
}
// Called whenever a new item is about to be processed by the optimizer.
// The current state of the arrangement can be saved by the kernel: the
// already placed items and the remaining items that need to fit into a
// particular bed.
// Returns true if the item is can be packed immediately, false if it
// should be processed further. This way, a kernel have the power to
// choose an initial position for the item that is not on the NFP.
template<class ArrItem, class Bed, class Ctx, class RemIt>
static bool on_start_packing(Kernel &k,
ArrItem &itm,
const Bed &bed,
const Ctx &packing_context,
const Range<RemIt> &remaining_items)
{
return k.on_start_packing(itm, bed, packing_context, remaining_items);
}
// Called when an item has been succesfully packed. itm should have the
// final translation and rotation already set.
// Can return false to discard the item after the optimization.
template<class ArrItem>
static bool on_item_packed(Kernel &k, ArrItem &itm)
{
return k.on_item_packed(itm);
}
};
template<class K> using KernelTraits = KernelTraits_<StripCVRef<K>>;
}} // namespace Slic3r::arr2
#endif // KERNELTRAITS_HPP

View File

@@ -0,0 +1,76 @@
#ifndef ARRANGEKERNELUTILS_HPP
#define ARRANGEKERNELUTILS_HPP
#include <type_traits>
#include <arrange/NFP/NFPArrangeItemTraits.hpp>
#include <arrange/Beds.hpp>
#include <arrange/DataStoreTraits.hpp>
namespace Slic3r { namespace arr2 {
template<class Itm, class Bed, class Context>
bool find_initial_position(Itm &itm,
const Vec2crd &sink,
const Bed &bed,
const Context &packing_context)
{
bool ret = false;
if constexpr (std::is_convertible_v<Bed, RectangleBed> ||
std::is_convertible_v<Bed, InfiniteBed> ||
std::is_convertible_v<Bed, CircleBed>)
{
if (all_items_range(packing_context).empty()) {
auto rotations = allowed_rotations(itm);
set_rotation(itm, 0.);
auto chull = envelope_convex_hull(itm);
for (double rot : rotations) {
auto chullcpy = chull;
chullcpy.rotate(rot);
auto bbitm = bounding_box(chullcpy);
Vec2crd cb = sink;
Vec2crd ci = bbitm.center();
Vec2crd d = cb - ci;
bbitm.translate(d);
if (bounding_box(bed).contains(bbitm)) {
rotate(itm, rot);
translate(itm, d);
ret = true;
break;
}
}
}
}
return ret;
}
template<class ArrItem> std::optional<Vec2crd> get_gravity_sink(const ArrItem &itm)
{
constexpr const char * SinkKey = "sink";
std::optional<Vec2crd> ret;
auto ptr = get_data<Vec2crd>(itm, SinkKey);
if (ptr)
ret = *ptr;
return ret;
}
template<class ArrItem> bool is_wipe_tower(const ArrItem &itm)
{
constexpr const char * Key = "is_wipe_tower";
return has_key(itm, Key);
}
}} // namespace Slic3r::arr2
#endif // ARRANGEKERNELUTILS_HPP

View File

@@ -0,0 +1,94 @@
#ifndef RECTANGLEOVERFITKERNELWRAPPER_HPP
#define RECTANGLEOVERFITKERNELWRAPPER_HPP
#include "KernelTraits.hpp"
#include <arrange/NFP/NFPArrangeItemTraits.hpp>
#include <arrange/Beds.hpp>
namespace Slic3r { namespace arr2 {
// This is a kernel wrapper that will apply a penality to the object function
// if the result cannot fit into the given rectangular bounds. This can be used
// to arrange into rectangular boundaries without calculating the IFP of the
// rectangle bed. Note that after the arrangement, what is garanteed is that
// the resulting pile will fit into the rectangular boundaries, but it will not
// be within the given rectangle. The items need to be moved afterwards manually.
// Use RectangeOverfitPackingStrategy to automate this post process step.
template<class Kernel>
struct RectangleOverfitKernelWrapper {
Kernel &k;
BoundingBox binbb;
BoundingBox pilebb;
RectangleOverfitKernelWrapper(Kernel &kern, const BoundingBox &limits)
: k{kern}
, binbb{limits}
{}
double overfit(const BoundingBox &itmbb) const
{
auto fullbb = pilebb;
fullbb.merge(itmbb);
auto fullbbsz = fullbb.size();
auto binbbsz = binbb.size();
auto wdiff = fullbbsz.x() - binbbsz.x() - SCALED_EPSILON;
auto hdiff = fullbbsz.y() - binbbsz.y() - SCALED_EPSILON;
double miss = .0;
if (wdiff > 0)
miss += double(wdiff);
if (hdiff > 0)
miss += double(hdiff);
miss = miss > 0? miss : 0;
return miss;
}
template<class ArrItem>
double placement_fitness(const ArrItem &item, const Vec2crd &transl) const
{
double score = KernelTraits<Kernel>::placement_fitness(k, item, transl);
auto itmbb = envelope_bounding_box(item);
itmbb.translate(transl);
double miss = overfit(itmbb);
score -= miss * miss;
return score;
}
template<class ArrItem, class Bed, class Ctx, class RemIt>
bool on_start_packing(ArrItem &itm,
const Bed &bed,
const Ctx &packing_context,
const Range<RemIt> &remaining_items)
{
pilebb = BoundingBox{};
for (auto &fitm : all_items_range(packing_context))
pilebb.merge(fixed_bounding_box(fitm));
return KernelTraits<Kernel>::on_start_packing(k, itm, RectangleBed{binbb, Vec2crd::Zero()},
packing_context,
remaining_items);
}
template<class ArrItem>
bool on_item_packed(ArrItem &itm)
{
bool ret = KernelTraits<Kernel>::on_item_packed(k, itm);
double miss = overfit(envelope_bounding_box(itm));
if (miss > 0.)
ret = false;
return ret;
}
};
}} // namespace Slic3r::arr2
#endif // RECTANGLEOVERFITKERNELWRAPPER_H

View File

@@ -0,0 +1,96 @@
#ifndef SVGDEBUGOUTPUTKERNELWRAPPER_HPP
#define SVGDEBUGOUTPUTKERNELWRAPPER_HPP
#include <memory>
#include "KernelTraits.hpp"
#include "arrange/PackingContext.hpp"
#include "arrange/NFP/NFPArrangeItemTraits.hpp"
#include "arrange/Beds.hpp"
#include <libslic3r/SVG.hpp>
namespace Slic3r { namespace arr2 {
template<class Kernel>
struct SVGDebugOutputKernelWrapper {
Kernel &k;
std::unique_ptr<Slic3r::SVG> svg;
BoundingBox drawbounds;
template<class... Args>
SVGDebugOutputKernelWrapper(const BoundingBox &bounds, Kernel &kern)
: k{kern}, drawbounds{bounds}
{}
template<class ArrItem, class Bed, class Context, class RemIt>
bool on_start_packing(ArrItem &itm,
const Bed &bed,
const Context &packing_context,
const Range<RemIt> &rem)
{
using namespace Slic3r;
bool ret = KernelTraits<Kernel>::on_start_packing(k, itm, bed,
packing_context,
rem);
if (arr2::get_bed_index(itm) < 0)
return ret;
svg.reset();
auto bounds = drawbounds;
auto fixed = all_items_range(packing_context);
svg = std::make_unique<SVG>(std::string("arrange_bed") +
std::to_string(
arr2::get_bed_index(itm)) +
"_" + std::to_string(fixed.size()) +
".svg",
bounds, 0, false);
svg->draw(ExPolygon{arr2::to_rectangle(drawbounds)}, "blue", .2f);
auto nfp = calculate_nfp(itm, packing_context, bed);
svg->draw_outline(nfp);
svg->draw(nfp, "green", 0.2f);
for (const auto &fixeditm : fixed) {
ExPolygons fixeditm_outline = to_expolygons(fixed_outline(fixeditm));
svg->draw_outline(fixeditm_outline);
svg->draw(fixeditm_outline, "yellow", 0.5f);
}
return ret;
}
template<class ArrItem>
double placement_fitness(const ArrItem &item, const Vec2crd &transl) const
{
return KernelTraits<Kernel>::placement_fitness(k, item, transl);
}
template<class ArrItem>
bool on_item_packed(ArrItem &itm)
{
using namespace Slic3r;
using namespace Slic3r::arr2;
bool ret = KernelTraits<Kernel>::on_item_packed(k, itm);
if (svg) {
ExPolygons itm_outline = to_expolygons(fixed_outline(itm));
svg->draw_outline(itm_outline);
svg->draw(itm_outline, "grey");
svg->Close();
}
return ret;
}
};
}} // namespace Slic3r::arr2
#endif // SVGDEBUGOUTPUTKERNELWRAPPER_HPP

View File

@@ -0,0 +1,244 @@
#ifndef TMARRANGEKERNEL_HPP
#define TMARRANGEKERNEL_HPP
#include <arrange/NFP/NFPArrangeItemTraits.hpp>
#include <arrange/Beds.hpp>
#include <arrange/NFP/Kernels/KernelUtils.hpp>
#include <boost/geometry/index/rtree.hpp>
#include <libslic3r/BoostAdapter.hpp>
namespace Slic3r { namespace arr2 {
// Summon the spatial indexing facilities from boost
namespace bgi = boost::geometry::index;
using SpatElement = std::pair<BoundingBox, unsigned>;
using SpatIndex = bgi::rtree<SpatElement, bgi::rstar<16, 4> >;
class TMArrangeKernel {
SpatIndex m_rtree; // spatial index for the normal (bigger) objects
SpatIndex m_smallsrtree; // spatial index for only the smaller items
BoundingBox m_pilebb;
double m_bin_area = NaNd;
double m_norm;
size_t m_rem_cnt = 0;
size_t m_item_cnt = 0;
struct ItemStats { double area = 0.; BoundingBox bb; };
std::vector<ItemStats> m_itemstats;
// A coefficient used in separating bigger items and smaller items.
static constexpr double BigItemTreshold = 0.02;
template<class T> ArithmeticOnly<T, double> norm(T val) const
{
return double(val) / m_norm;
}
// Treat big items (compared to the print bed) differently
bool is_big(double a) const { return a / m_bin_area > BigItemTreshold; }
protected:
std::optional<Point> sink;
std::optional<Point> item_sink;
Point active_sink;
const BoundingBox & pilebb() const { return m_pilebb; }
public:
TMArrangeKernel() = default;
TMArrangeKernel(Vec2crd gravity_center, size_t itm_cnt, double bedarea = NaNd)
: m_bin_area(bedarea)
, m_item_cnt{itm_cnt}
, sink{gravity_center}
{}
TMArrangeKernel(size_t itm_cnt, double bedarea = NaNd)
: m_bin_area(bedarea), m_item_cnt{itm_cnt}
{}
template<class ArrItem>
double placement_fitness(const ArrItem &item, const Vec2crd &transl) const
{
// Candidate item bounding box
auto ibb = envelope_bounding_box(item);
ibb.translate(transl);
auto itmcntr = envelope_centroid(item);
itmcntr += transl;
// Calculate the full bounding box of the pile with the candidate item
auto fullbb = m_pilebb;
fullbb.merge(ibb);
// The bounding box of the big items (they will accumulate in the center
// of the pile
BoundingBox bigbb;
if(m_rtree.empty()) {
bigbb = fullbb;
}
else {
auto boostbb = m_rtree.bounds();
boost::geometry::convert(boostbb, bigbb);
}
// Will hold the resulting score
double score = 0;
// Distinction of cases for the arrangement scene
enum e_cases {
// This branch is for big items in a mixed (big and small) scene
// OR for all items in a small-only scene.
BIG_ITEM,
// For small items in a mixed scene.
SMALL_ITEM,
WIPE_TOWER,
} compute_case;
bool is_wt = is_wipe_tower(item);
bool bigitems = is_big(envelope_area(item)) || m_rtree.empty();
if (is_wt)
compute_case = WIPE_TOWER;
else if (bigitems)
compute_case = BIG_ITEM;
else
compute_case = SMALL_ITEM;
switch (compute_case) {
case WIPE_TOWER: {
score = (unscaled(itmcntr) - unscaled(active_sink)).squaredNorm();
break;
}
case BIG_ITEM: {
const Point& minc = ibb.min; // bottom left corner
const Point& maxc = ibb.max; // top right corner
// top left and bottom right corners
Point top_left{minc.x(), maxc.y()};
Point bottom_right{maxc.x(), minc.y()};
// The smallest distance from the arranged pile center:
double dist = norm((itmcntr - m_pilebb.center()).template cast<double>().norm());
// Prepare a variable for the alignment score.
// This will indicate: how well is the candidate item
// aligned with its neighbors. We will check the alignment
// with all neighbors and return the score for the best
// alignment. So it is enough for the candidate to be
// aligned with only one item.
auto alignment_score = 1.;
auto query = bgi::intersects(ibb);
auto& index = is_big(envelope_area(item)) ? m_rtree : m_smallsrtree;
// Query the spatial index for the neighbors
std::vector<SpatElement> result;
result.reserve(index.size());
index.query(query, std::back_inserter(result));
// now get the score for the best alignment
for(auto& e : result) {
auto idx = e.second;
const ItemStats& p = m_itemstats[idx];
auto parea = p.area;
if(std::abs(1.0 - parea / fixed_area(item)) < 1e-6) {
auto bb = p.bb;
bb.merge(ibb);
auto bbarea = area(bb);
auto ascore = 1.0 - (area(fixed_bounding_box(item)) + area(p.bb)) / bbarea;
if(ascore < alignment_score)
alignment_score = ascore;
}
}
double R = double(m_rem_cnt) / (m_item_cnt);
R = std::pow(R, 1./3.);
// The final mix of the score is the balance between the
// distance from the full pile center, the pack density and
// the alignment with the neighbors
// Let the density matter more when fewer objects remain
score = 0.6 * dist + 0.1 * alignment_score + (1.0 - R) * (0.3 * dist) + R * 0.3 * alignment_score;
break;
}
case SMALL_ITEM: {
// Here there are the small items that should be placed around the
// already processed bigger items.
// No need to play around with the anchor points, the center will be
// just fine for small items
score = norm((itmcntr - bigbb.center()).template cast<double>().norm());
break;
}
}
return -score;
}
template<class ArrItem, class Bed, class Context, class RemIt>
bool on_start_packing(ArrItem &itm,
const Bed &bed,
const Context &packing_context,
const Range<RemIt> &remaining_items)
{
item_sink = get_gravity_sink(itm);
if (!sink) {
sink = bounding_box(bed).center();
}
if (item_sink)
active_sink = *item_sink;
else
active_sink = *sink;
auto fixed = all_items_range(packing_context);
bool ret = find_initial_position(itm, active_sink, bed, packing_context);
m_rem_cnt = remaining_items.size();
if (m_item_cnt == 0)
m_item_cnt = m_rem_cnt + fixed.size() + 1;
if (std::isnan(m_bin_area)) {
auto sz = bounding_box(bed).size();
m_bin_area = scaled<double>(unscaled(sz.x()) * unscaled(sz.y()));
}
m_norm = std::sqrt(m_bin_area);
m_itemstats.clear();
m_itemstats.reserve(fixed.size());
m_rtree.clear();
m_smallsrtree.clear();
m_pilebb = {active_sink, active_sink};
unsigned idx = 0;
for (auto &fixitem : fixed) {
auto fixitmbb = fixed_bounding_box(fixitem);
m_itemstats.emplace_back(ItemStats{fixed_area(fixitem), fixitmbb});
m_pilebb.merge(fixitmbb);
if(is_big(fixed_area(fixitem)))
m_rtree.insert({fixitmbb, idx});
m_smallsrtree.insert({fixitmbb, idx});
idx++;
}
return ret;
}
template<class ArrItem>
bool on_item_packed(ArrItem &itm) { return true; }
};
}} // namespace Slic3r::arr2
#endif // TMARRANGEKERNEL_HPP

View File

@@ -0,0 +1,57 @@
#ifndef NFP_HPP
#define NFP_HPP
#include <stdint.h>
#include <boost/variant.hpp>
#include <cinttypes>
#include <libslic3r/ExPolygon.hpp>
#include <libslic3r/Point.hpp>
#include <libslic3r/Polygon.hpp>
#include <arrange/Beds.hpp>
namespace Slic3r {
template<class Unit = int64_t, class T>
Unit dotperp(const Vec<2, T> &a, const Vec<2, T> &b)
{
return Unit(a.x()) * Unit(b.y()) - Unit(a.y()) * Unit(b.x());
}
// Convex-Convex nfp in linear time (fixed.size() + movable.size()),
// no memory allocations (if out param is used).
// FIXME: Currently broken for very sharp triangles.
Polygon nfp_convex_convex(const Polygon &fixed, const Polygon &movable);
void nfp_convex_convex(const Polygon &fixed, const Polygon &movable, Polygon &out);
Polygon nfp_convex_convex_legacy(const Polygon &fixed, const Polygon &movable);
Polygon ifp_convex_convex(const Polygon &fixed, const Polygon &movable);
ExPolygons ifp_convex(const arr2::RectangleBed &bed, const Polygon &convexpoly);
ExPolygons ifp_convex(const arr2::CircleBed &bed, const Polygon &convexpoly);
ExPolygons ifp_convex(const arr2::IrregularBed &bed, const Polygon &convexpoly);
inline ExPolygons ifp_convex(const arr2::InfiniteBed &bed, const Polygon &convexpoly)
{
return {};
}
inline ExPolygons ifp_convex(const arr2::ArrangeBed &bed, const Polygon &convexpoly)
{
ExPolygons ret;
auto visitor = [&ret, &convexpoly](const auto &b) { ret = ifp_convex(b, convexpoly); };
boost::apply_visitor(visitor, bed);
return ret;
}
Vec2crd reference_vertex(const Polygon &outline);
Vec2crd reference_vertex(const ExPolygon &outline);
Vec2crd reference_vertex(const Polygons &outline);
Vec2crd reference_vertex(const ExPolygons &outline);
Vec2crd min_vertex(const Polygon &outline);
} // namespace Slic3r
#endif // NFP_HPP

View File

@@ -0,0 +1,197 @@
#ifndef NFPARRANGEITEMTRAITS_HPP
#define NFPARRANGEITEMTRAITS_HPP
#include <numeric>
#include <libslic3r/ExPolygon.hpp>
#include <libslic3r/BoundingBox.hpp>
#include <arrange/ArrangeBase.hpp>
namespace Slic3r { namespace arr2 {
// Additional methods that an ArrangeItem object has to implement in order
// to be usable with PackStrategyNFP.
template<class ArrItem, class En = void> struct NFPArrangeItemTraits_
{
template<class Context, class Bed, class StopCond = DefaultStopCondition>
static ExPolygons calculate_nfp(const ArrItem &item,
const Context &packing_context,
const Bed &bed,
StopCond stop_condition = {})
{
static_assert(always_false<ArrItem>::value,
"NFP unimplemented for this item type.");
return {};
}
static Vec2crd reference_vertex(const ArrItem &item)
{
return item.reference_vertex();
}
static BoundingBox envelope_bounding_box(const ArrItem &itm)
{
return itm.envelope_bounding_box();
}
static BoundingBox fixed_bounding_box(const ArrItem &itm)
{
return itm.fixed_bounding_box();
}
static const Polygons & envelope_outline(const ArrItem &itm)
{
return itm.envelope_outline();
}
static const Polygons & fixed_outline(const ArrItem &itm)
{
return itm.fixed_outline();
}
static const Polygon & envelope_convex_hull(const ArrItem &itm)
{
return itm.envelope_convex_hull();
}
static const Polygon & fixed_convex_hull(const ArrItem &itm)
{
return itm.fixed_convex_hull();
}
static double envelope_area(const ArrItem &itm)
{
return itm.envelope_area();
}
static double fixed_area(const ArrItem &itm)
{
return itm.fixed_area();
}
static auto allowed_rotations(const ArrItem &)
{
return std::array{0.};
}
static Vec2crd fixed_centroid(const ArrItem &itm)
{
return fixed_bounding_box(itm).center();
}
static Vec2crd envelope_centroid(const ArrItem &itm)
{
return envelope_bounding_box(itm).center();
}
};
template<class T>
using NFPArrangeItemTraits = NFPArrangeItemTraits_<StripCVRef<T>>;
template<class ArrItem,
class Context,
class Bed,
class StopCond = DefaultStopCondition>
ExPolygons calculate_nfp(const ArrItem &itm,
const Context &context,
const Bed &bed,
StopCond stopcond = {})
{
return NFPArrangeItemTraits<ArrItem>::calculate_nfp(itm, context, bed,
std::move(stopcond));
}
template<class ArrItem> Vec2crd reference_vertex(const ArrItem &itm)
{
return NFPArrangeItemTraits<ArrItem>::reference_vertex(itm);
}
template<class ArrItem> BoundingBox envelope_bounding_box(const ArrItem &itm)
{
return NFPArrangeItemTraits<ArrItem>::envelope_bounding_box(itm);
}
template<class ArrItem> BoundingBox fixed_bounding_box(const ArrItem &itm)
{
return NFPArrangeItemTraits<ArrItem>::fixed_bounding_box(itm);
}
template<class ArrItem> decltype(auto) envelope_convex_hull(const ArrItem &itm)
{
return NFPArrangeItemTraits<ArrItem>::envelope_convex_hull(itm);
}
template<class ArrItem> decltype(auto) fixed_convex_hull(const ArrItem &itm)
{
return NFPArrangeItemTraits<ArrItem>::fixed_convex_hull(itm);
}
template<class ArrItem> decltype(auto) envelope_outline(const ArrItem &itm)
{
return NFPArrangeItemTraits<ArrItem>::envelope_outline(itm);
}
template<class ArrItem> decltype(auto) fixed_outline(const ArrItem &itm)
{
return NFPArrangeItemTraits<ArrItem>::fixed_outline(itm);
}
template<class ArrItem> double envelope_area(const ArrItem &itm)
{
return NFPArrangeItemTraits<ArrItem>::envelope_area(itm);
}
template<class ArrItem> double fixed_area(const ArrItem &itm)
{
return NFPArrangeItemTraits<ArrItem>::fixed_area(itm);
}
template<class ArrItem> Vec2crd fixed_centroid(const ArrItem &itm)
{
return NFPArrangeItemTraits<ArrItem>::fixed_centroid(itm);
}
template<class ArrItem> Vec2crd envelope_centroid(const ArrItem &itm)
{
return NFPArrangeItemTraits<ArrItem>::envelope_centroid(itm);
}
template<class ArrItem>
auto allowed_rotations(const ArrItem &itm)
{
return NFPArrangeItemTraits<ArrItem>::allowed_rotations(itm);
}
template<class It>
BoundingBox bounding_box(const Range<It> &itms) noexcept
{
auto pilebb =
std::accumulate(itms.begin(), itms.end(), BoundingBox{},
[](BoundingBox bb, const auto &itm) {
bb.merge(fixed_bounding_box(itm));
return bb;
});
return pilebb;
}
template<class It>
BoundingBox bounding_box_on_bedidx(const Range<It> &itms, int bed_index) noexcept
{
auto pilebb =
std::accumulate(itms.begin(), itms.end(), BoundingBox{},
[bed_index](BoundingBox bb, const auto &itm) {
if (bed_index == get_bed_index(itm))
bb.merge(fixed_bounding_box(itm));
return bb;
});
return pilebb;
}
}} // namespace Slic3r::arr2
#endif // ARRANGEITEMTRAITSNFP_HPP

View File

@@ -0,0 +1,17 @@
#ifndef NFPCONCAVE_TESSELATE_HPP
#define NFPCONCAVE_TESSELATE_HPP
#include <libslic3r/ExPolygon.hpp>
#include "libslic3r/Polygon.hpp"
namespace Slic3r {
Polygons convex_decomposition_tess(const Polygon &expoly);
Polygons convex_decomposition_tess(const ExPolygon &expoly);
Polygons convex_decomposition_tess(const ExPolygons &expolys);
ExPolygons nfp_concave_concave_tess(const ExPolygon &fixed, const ExPolygon &movable);
} // namespace Slic3r
#endif // NFPCONCAVE_TESSELATE_HPP

View File

@@ -0,0 +1,284 @@
#ifndef PACKSTRATEGYNFP_HPP
#define PACKSTRATEGYNFP_HPP
#include <arrange/ArrangeBase.hpp>
#include <arrange/NFP/EdgeCache.hpp>
#include <arrange/NFP/Kernels/KernelTraits.hpp>
#include <arrange/NFP/NFPArrangeItemTraits.hpp>
#include "libslic3r/Optimize/NLoptOptimizer.hpp"
#include "libslic3r/Execution/ExecutionSeq.hpp"
namespace Slic3r { namespace arr2 {
struct NFPPackingTag{};
struct DummyArrangeKernel
{
template<class ArrItem>
double placement_fitness(const ArrItem &itm, const Vec2crd &dest_pos) const
{
return NaNd;
}
template<class ArrItem, class Bed, class Context, class RemIt>
bool on_start_packing(ArrItem &itm,
const Bed &bed,
const Context &packing_context,
const Range<RemIt> &remaining_items)
{
return true;
}
template<class ArrItem> bool on_item_packed(ArrItem &itm) { return true; }
};
template<class Strategy> using OptAlg = typename Strategy::OptAlg;
template<class ArrangeKernel = DummyArrangeKernel,
class ExecPolicy = ExecutionSeq,
class OptMethod = opt::AlgNLoptSubplex,
class StopCond = DefaultStopCondition>
struct PackStrategyNFP {
using OptAlg = OptMethod;
ArrangeKernel kernel;
ExecPolicy ep;
double accuracy = 1.;
opt::Optimizer<OptMethod> solver;
StopCond stop_condition;
PackStrategyNFP(opt::Optimizer<OptMethod> slv,
ArrangeKernel k = {},
ExecPolicy execpolicy = {},
double accur = 1.,
StopCond stop_cond = {})
: kernel{std::move(k)},
ep{std::move(execpolicy)},
accuracy{accur},
solver{std::move(slv)},
stop_condition{std::move(stop_cond)}
{}
PackStrategyNFP(ArrangeKernel k = {},
ExecPolicy execpolicy = {},
double accur = 1.,
StopCond stop_cond = {})
: PackStrategyNFP{opt::Optimizer<OptMethod>{}, std::move(k),
std::move(execpolicy), accur, std::move(stop_cond)}
{
// Defaults for AlgNLoptSubplex
auto iters = static_cast<unsigned>(std::floor(1000 * accuracy));
auto optparams =
opt::StopCriteria{}.max_iterations(iters).rel_score_diff(
1e-20) /*.abs_score_diff(1e-20)*/;
solver.set_criteria(optparams);
}
};
template<class...Args>
struct PackStrategyTag_<PackStrategyNFP<Args...>>
{
using Tag = NFPPackingTag;
};
template<class ArrItem, class Bed, class PStrategy>
double pick_best_spot_on_nfp_verts_only(ArrItem &item,
const ExPolygons &nfp,
const Bed &bed,
const PStrategy &strategy)
{
using KernelT = KernelTraits<decltype(strategy.kernel)>;
auto score = -std::numeric_limits<double>::infinity();
Vec2crd orig_tr = get_translation(item);
Vec2crd translation{0, 0};
auto eval_fitness = [&score, &strategy, &item, &translation,
&orig_tr](const Vec2crd &p) {
set_translation(item, orig_tr);
Vec2crd ref_v = reference_vertex(item);
Vec2crd tr = p - ref_v;
double fitness = KernelT::placement_fitness(strategy.kernel, item, tr);
if (fitness > score) {
score = fitness;
translation = tr;
}
};
for (const ExPolygon &expoly : nfp) {
for (const Point &p : expoly.contour) {
eval_fitness(p);
}
for (const Polygon &h : expoly.holes)
for (const Point &p : h.points)
eval_fitness(p);
}
set_translation(item, orig_tr + translation);
return score;
}
struct CornerResult
{
size_t contour_id;
opt::Result<1> oresult;
};
template<class ArrItem, class Bed, class... Args>
double pick_best_spot_on_nfp(ArrItem &item,
const ExPolygons &nfp,
const Bed &bed,
const PackStrategyNFP<Args...> &strategy)
{
auto &ex_policy = strategy.ep;
using KernelT = KernelTraits<decltype(strategy.kernel)>;
auto score = -std::numeric_limits<double>::infinity();
Vec2crd orig_tr = get_translation(item);
Vec2crd translation{0, 0};
Vec2crd ref_v = reference_vertex(item);
auto edge_caches = reserve_vector<EdgeCache>(nfp.size());
auto sample_sets = reserve_vector<std::vector<ContourLocation>>(
nfp.size());
for (const ExPolygon &expoly : nfp) {
edge_caches.emplace_back(EdgeCache{&expoly});
edge_caches.back().sample_contour(strategy.accuracy,
sample_sets.emplace_back());
}
auto nthreads = execution::max_concurrency(ex_policy);
std::vector<CornerResult> gresults(edge_caches.size());
auto resultcmp = [](auto &a, auto &b) {
return a.oresult.score < b.oresult.score;
};
execution::for_each(
ex_policy, size_t(0), edge_caches.size(),
[&](size_t edge_cache_idx) {
auto &ec_contour = edge_caches[edge_cache_idx];
auto &corners = sample_sets[edge_cache_idx];
std::vector<CornerResult> results(corners.size());
auto cornerfn = [&](size_t i) {
ContourLocation cr = corners[i];
auto objfn = [&](opt::Input<1> &in) {
Vec2crd p = ec_contour.coords(ContourLocation{cr.contour_id, in[0]});
Vec2crd tr = p - ref_v;
return KernelT::placement_fitness(strategy.kernel, item, tr);
};
// Assuming that solver is a lightweight object
auto solver = strategy.solver;
solver.to_max();
auto oresult = solver.optimize(objfn,
opt::initvals({cr.dist}),
opt::bounds({{0., 1.}}));
results[i] = CornerResult{cr.contour_id, oresult};
};
execution::for_each(ex_policy, size_t(0), results.size(),
cornerfn, nthreads);
auto it = std::max_element(results.begin(), results.end(),
resultcmp);
if (it != results.end())
gresults[edge_cache_idx] = *it;
},
nthreads);
auto it = std::max_element(gresults.begin(), gresults.end(), resultcmp);
if (it != gresults.end()) {
score = it->oresult.score;
size_t path_id = std::distance(gresults.begin(), it);
size_t contour_id = it->contour_id;
double dist = it->oresult.optimum[0];
Vec2crd pos = edge_caches[path_id].coords(ContourLocation{contour_id, dist});
Vec2crd tr = pos - ref_v;
set_translation(item, orig_tr + tr);
}
return score;
}
template<class Strategy, class ArrItem, class Bed, class RemIt>
bool pack(Strategy &strategy,
const Bed &bed,
ArrItem &item,
const PackStrategyContext<Strategy, ArrItem> &packing_context,
const Range<RemIt> &remaining_items,
const NFPPackingTag &)
{
using KernelT = KernelTraits<decltype(strategy.kernel)>;
// The kernel might pack the item immediately
bool packed = KernelT::on_start_packing(strategy.kernel, item, bed,
packing_context, remaining_items);
double orig_rot = get_rotation(item);
double final_rot = 0.;
double final_score = -std::numeric_limits<double>::infinity();
Vec2crd orig_tr = get_translation(item);
Vec2crd final_tr = orig_tr;
bool cancelled = strategy.stop_condition();
const auto & rotations = allowed_rotations(item);
// Check all rotations but only if item is not already packed
for (auto rot_it = rotations.begin();
!cancelled && !packed && rot_it != rotations.end(); ++rot_it) {
double rot = *rot_it;
set_rotation(item, orig_rot + rot);
set_translation(item, orig_tr);
auto nfp = calculate_nfp(item, packing_context, bed,
strategy.stop_condition);
double score = NaNd;
if (!nfp.empty()) {
score = pick_best_spot_on_nfp(item, nfp, bed, strategy);
cancelled = strategy.stop_condition();
if (score > final_score) {
final_score = score;
final_rot = rot;
final_tr = get_translation(item);
}
}
}
// If the score is not valid, and the item is not already packed, or
// the packing was cancelled asynchronously by stop condition, then
// discard the packing
bool is_score_valid = !std::isnan(final_score) && !std::isinf(final_score);
packed = !cancelled && (packed || is_score_valid);
if (packed) {
set_translation(item, final_tr);
set_rotation(item, orig_rot + final_rot);
// Finally, consult the kernel if the packing is sane
packed = KernelT::on_item_packed(strategy.kernel, item);
}
return packed;
}
}} // namespace Slic3r::arr2
#endif // PACKSTRATEGYNFP_HPP

View File

@@ -0,0 +1,141 @@
#ifndef RECTANGLEOVERFITPACKINGSTRATEGY_HPP
#define RECTANGLEOVERFITPACKINGSTRATEGY_HPP
#include <arrange/Beds.hpp>
#include "Kernels/RectangleOverfitKernelWrapper.hpp"
#include "PackStrategyNFP.hpp"
namespace Slic3r { namespace arr2 {
using PostAlignmentFn = std::function<Vec2crd(const BoundingBox &bedbb,
const BoundingBox &pilebb)>;
struct CenterAlignmentFn {
Vec2crd operator() (const BoundingBox &bedbb,
const BoundingBox &pilebb)
{
return bedbb.center() - pilebb.center();
}
};
template<class ArrItem>
struct RectangleOverfitPackingContext : public DefaultPackingContext<ArrItem>
{
BoundingBox limits;
int bed_index;
PostAlignmentFn post_alignment_fn;
explicit RectangleOverfitPackingContext(const BoundingBox limits,
int bedidx,
PostAlignmentFn alignfn = CenterAlignmentFn{})
: limits{limits}, bed_index{bedidx}, post_alignment_fn{alignfn}
{}
void align_pile()
{
// Here, the post alignment can be safely done. No throwing
// functions are called!
if (fixed_items_range(*this).empty()) {
auto itms = packed_items_range(*this);
auto pilebb = bounding_box(itms);
for (auto &itm : itms) {
translate(itm, post_alignment_fn(limits, pilebb));
}
}
}
~RectangleOverfitPackingContext() { align_pile(); }
};
// With rectange bed, and no fixed items, an infinite bed with
// RectangleOverfitKernelWrapper can produce better results than a pure
// RectangleBed with inner-fit polygon calculation.
template<class ...Args>
struct RectangleOverfitPackingStrategy {
PackStrategyNFP<Args...> base_strategy;
PostAlignmentFn post_alignment_fn = CenterAlignmentFn{};
template<class ArrItem>
using Context = RectangleOverfitPackingContext<ArrItem>;
RectangleOverfitPackingStrategy(PackStrategyNFP<Args...> s,
PostAlignmentFn post_align_fn)
: base_strategy{std::move(s)}, post_alignment_fn{post_align_fn}
{}
RectangleOverfitPackingStrategy(PackStrategyNFP<Args...> s)
: base_strategy{std::move(s)}
{}
};
struct RectangleOverfitPackingStrategyTag {};
template<class... Args>
struct PackStrategyTag_<RectangleOverfitPackingStrategy<Args...>> {
using Tag = RectangleOverfitPackingStrategyTag;
};
template<class... Args>
struct PackStrategyTraits_<RectangleOverfitPackingStrategy<Args...>> {
template<class ArrItem>
using Context = typename RectangleOverfitPackingStrategy<
Args...>::template Context<StripCVRef<ArrItem>>;
template<class ArrItem, class Bed>
static Context<ArrItem> create_context(
RectangleOverfitPackingStrategy<Args...> &ps,
const Bed &bed,
int bed_index)
{
return Context<ArrItem>{bounding_box(bed), bed_index,
ps.post_alignment_fn};
}
};
template<class ArrItem>
struct PackingContextTraits_<RectangleOverfitPackingContext<ArrItem>>
: public PackingContextTraits_<DefaultPackingContext<ArrItem>>
{
static void add_packed_item(RectangleOverfitPackingContext<ArrItem> &ctx, ArrItem &itm)
{
ctx.add_packed_item(itm);
// to prevent coords going out of range
ctx.align_pile();
}
};
template<class Strategy, class ArrItem, class Bed, class RemIt>
bool pack(Strategy &strategy,
const Bed &bed,
ArrItem &item,
const PackStrategyContext<Strategy, ArrItem> &packing_context,
const Range<RemIt> &remaining_items,
const RectangleOverfitPackingStrategyTag &)
{
bool ret = false;
if (fixed_items_range(packing_context).empty()) {
auto &base = strategy.base_strategy;
PackStrategyNFP modded_strategy{
base.solver,
RectangleOverfitKernelWrapper{base.kernel, packing_context.limits},
base.ep, base.accuracy};
ret = pack(modded_strategy,
InfiniteBed{packing_context.limits.center()}, item,
packing_context, remaining_items, NFPPackingTag{});
} else {
ret = pack(strategy.base_strategy, bed, item, packing_context,
remaining_items, NFPPackingTag{});
}
return ret;
}
}} // namespace Slic3r::arr2
#endif // RECTANGLEOVERFITPACKINGSTRATEGY_HPP

View File

@@ -0,0 +1,124 @@
#ifndef PACKINGCONTEXT_HPP
#define PACKINGCONTEXT_HPP
#include "ArrangeItemTraits.hpp"
namespace Slic3r { namespace arr2 {
template<class Ctx, class En = void>
struct PackingContextTraits_ {
template<class ArrItem>
static void add_fixed_item(Ctx &ctx, const ArrItem &itm)
{
ctx.add_fixed_item(itm);
}
template<class ArrItem>
static void add_packed_item(Ctx &ctx, ArrItem &itm)
{
ctx.add_packed_item(itm);
}
// returns a range of all packed items in the context ctx
static auto all_items_range(const Ctx &ctx)
{
return ctx.all_items_range();
}
static auto fixed_items_range(const Ctx &ctx)
{
return ctx.fixed_items_range();
}
static auto packed_items_range(const Ctx &ctx)
{
return ctx.packed_items_range();
}
static auto packed_items_range(Ctx &ctx)
{
return ctx.packed_items_range();
}
};
template<class Ctx, class ArrItem>
void add_fixed_item(Ctx &ctx, const ArrItem &itm)
{
PackingContextTraits_<StripCVRef<Ctx>>::add_fixed_item(ctx, itm);
}
template<class Ctx, class ArrItem>
void add_packed_item(Ctx &ctx, ArrItem &itm)
{
PackingContextTraits_<StripCVRef<Ctx>>::add_packed_item(ctx, itm);
}
template<class Ctx>
auto all_items_range(const Ctx &ctx)
{
return PackingContextTraits_<StripCVRef<Ctx>>::all_items_range(ctx);
}
template<class Ctx>
auto fixed_items_range(const Ctx &ctx)
{
return PackingContextTraits_<StripCVRef<Ctx>>::fixed_items_range(ctx);
}
template<class Ctx>
auto packed_items_range(Ctx &&ctx)
{
return PackingContextTraits_<StripCVRef<Ctx>>::packed_items_range(ctx);
}
template<class ArrItem>
class DefaultPackingContext {
using ArrItemRaw = StripCVRef<ArrItem>;
std::vector<std::reference_wrapper<const ArrItemRaw>> m_fixed;
std::vector<std::reference_wrapper<ArrItemRaw>> m_packed;
std::vector<std::reference_wrapper<const ArrItemRaw>> m_items;
public:
DefaultPackingContext() = default;
template<class It>
explicit DefaultPackingContext(const Range<It> &fixed_items)
{
std::copy(fixed_items.begin(), fixed_items.end(), std::back_inserter(m_fixed));
std::copy(fixed_items.begin(), fixed_items.end(), std::back_inserter(m_items));
}
auto all_items_range() const noexcept { return crange(m_items); }
auto fixed_items_range() const noexcept { return crange(m_fixed); }
auto packed_items_range() const noexcept { return crange(m_packed); }
auto packed_items_range() noexcept { return range(m_packed); }
void add_fixed_item(const ArrItem &itm)
{
m_fixed.emplace_back(itm);
m_items.emplace_back(itm);
}
void add_packed_item(ArrItem &itm)
{
m_packed.emplace_back(itm);
m_items.emplace_back(itm);
}
};
template<class It>
auto default_context(const Range<It> &items)
{
using ArrItem = StripCVRef<typename std::iterator_traits<It>::value_type>;
return DefaultPackingContext<ArrItem>{items};
}
template<class Cont, class ArrItem = typename Cont::value_type>
auto default_context(const Cont &container)
{
return DefaultPackingContext<ArrItem>{crange(container)};
}
}} // namespace Slic3r::arr2
#endif // PACKINGCONTEXT_HPP

View File

@@ -0,0 +1,135 @@
#include <cstdlib>
#include <arrange/Beds.hpp>
#include "libslic3r/BoundingBox.hpp"
#include "libslic3r/ExPolygon.hpp"
#include "libslic3r/Point.hpp"
namespace Slic3r { namespace arr2 {
BoundingBox bounding_box(const InfiniteBed &bed)
{
BoundingBox ret;
using C = coord_t;
// It is important for Mx and My to be strictly less than half of the
// range of type C. width(), height() and area() will not overflow this way.
C Mx = C((std::numeric_limits<C>::lowest() + 2 * bed.center.x()) / 4.01);
C My = C((std::numeric_limits<C>::lowest() + 2 * bed.center.y()) / 4.01);
ret.max = bed.center - Point{Mx, My};
ret.min = bed.center + Point{Mx, My};
return ret;
}
Polygon to_rectangle(const BoundingBox &bb)
{
Polygon ret;
ret.points = {
bb.min,
Point{bb.max.x(), bb.min.y()},
bb.max,
Point{bb.min.x(), bb.max.y()}
};
return ret;
}
Polygon approximate_circle_with_polygon(const arr2::CircleBed &bed, int nedges)
{
Polygon ret;
double angle_incr = (2 * M_PI) / nedges; // Angle increment for each edge
double angle = 0; // Starting angle
// Loop to generate vertices for each edge
for (int i = 0; i < nedges; i++) {
// Calculate coordinates of the vertices using trigonometry
auto x = bed.center().x() + static_cast<coord_t>(bed.radius() * std::cos(angle));
auto y = bed.center().y() + static_cast<coord_t>(bed.radius() * std::sin(angle));
// Add vertex to the vector
ret.points.emplace_back(x, y);
// Update the angle for the next iteration
angle += angle_incr;
}
return ret;
}
inline coord_t width(const BoundingBox &box)
{
return box.max.x() - box.min.x();
}
inline coord_t height(const BoundingBox &box)
{
return box.max.y() - box.min.y();
}
inline double poly_area(const Points &pts)
{
return std::abs(Polygon::area(pts));
}
inline double distance_to(const Point &p1, const Point &p2)
{
double dx = p2.x() - p1.x();
double dy = p2.y() - p1.y();
return std::sqrt(dx * dx + dy * dy);
}
static CircleBed to_circle(const Point &center, const Points &points, const Vec2crd &gap)
{
std::vector<double> vertex_distances;
double avg_dist = 0;
for (const Point &pt : points) {
double distance = distance_to(center, pt);
vertex_distances.push_back(distance);
avg_dist += distance;
}
avg_dist /= vertex_distances.size();
CircleBed ret(center, avg_dist, gap);
for (auto el : vertex_distances) {
if (std::abs(el - avg_dist) > 10 * SCALED_EPSILON) {
ret = {};
break;
}
}
return ret;
}
template<class Fn> auto call_with_bed(const Points &bed, const Vec2crd &gap, Fn &&fn)
{
if (bed.empty())
return fn(InfiniteBed{});
else if (bed.size() == 1)
return fn(InfiniteBed{bed.front()});
else {
auto bb = BoundingBox(bed);
CircleBed circ = to_circle(bb.center(), bed, gap);
auto parea = poly_area(bed);
if ((1.0 - parea / area(bb)) < 1e-3) {
return fn(RectangleBed{bb, gap});
} else if (!std::isnan(circ.radius()) && (1.0 - parea / area(circ)) < 1e-2)
return fn(circ);
else
return fn(IrregularBed{{ExPolygon(bed)}, gap});
}
}
ArrangeBed to_arrange_bed(const Points &bedpts, const Vec2crd &gap)
{
ArrangeBed ret;
call_with_bed(bedpts, gap, [&](const auto &bed) { ret = bed; });
return ret;
}
}} // namespace Slic3r::arr2

View File

@@ -0,0 +1,110 @@
#ifndef CIRCULAR_EDGEITERATOR_HPP
#define CIRCULAR_EDGEITERATOR_HPP
#include <libslic3r/Polygon.hpp>
#include <libslic3r/Line.hpp>
namespace Slic3r {
// Circular iterator over a polygon yielding individual edges as Line objects
// if flip_lines is true, the orientation of each line is flipped (not the
// direction of traversal)
template<bool flip_lines = false>
class CircularEdgeIterator_ {
const Polygon *m_poly = nullptr;
size_t m_i = 0;
size_t m_c = 0; // counting how many times the iterator has circled over
public:
// i: vertex position of first line's starting vertex
// poly: target polygon
CircularEdgeIterator_(size_t i, const Polygon &poly)
: m_poly{&poly}
, m_i{!poly.empty() ? i % poly.size() : 0}
, m_c{!poly.empty() ? i / poly.size() : 0}
{}
explicit CircularEdgeIterator_ (const Polygon &poly)
: CircularEdgeIterator_(0, poly) {}
using iterator_category = std::forward_iterator_tag;
using difference_type = std::ptrdiff_t;
using value_type = Line;
using pointer = Line*;
using reference = Line&;
CircularEdgeIterator_ & operator++()
{
assert (m_poly);
++m_i;
if (m_i == m_poly->size()) { // faster than modulo (?)
m_i = 0;
++m_c;
}
return *this;
}
CircularEdgeIterator_ operator++(int)
{
auto cpy = *this; ++(*this); return cpy;
}
Line operator*() const
{
size_t nx = m_i == m_poly->size() - 1 ? 0 : m_i + 1;
Line ret;
if constexpr (flip_lines)
ret = Line((*m_poly)[nx], (*m_poly)[m_i]);
else
ret = Line((*m_poly)[m_i], (*m_poly)[nx]);
return ret;
}
Line operator->() const { return *(*this); }
bool operator==(const CircularEdgeIterator_& other) const
{
return m_i == other.m_i && m_c == other.m_c;
}
bool operator!=(const CircularEdgeIterator_& other) const
{
return !(*this == other);
}
CircularEdgeIterator_& operator +=(size_t dist)
{
m_i = (m_i + dist) % m_poly->size();
m_c = (m_i + (m_c * m_poly->size()) + dist) / m_poly->size();
return *this;
}
CircularEdgeIterator_ operator +(size_t dist)
{
auto cpy = *this;
cpy += dist;
return cpy;
}
};
using CircularEdgeIterator = CircularEdgeIterator_<>;
using CircularReverseEdgeIterator = CircularEdgeIterator_<true>;
inline Range<CircularEdgeIterator> line_range(const Polygon &poly)
{
return Range{CircularEdgeIterator{0, poly}, CircularEdgeIterator{poly.size(), poly}};
}
inline Range<CircularReverseEdgeIterator> line_range_flp(const Polygon &poly)
{
return Range{CircularReverseEdgeIterator{0, poly}, CircularReverseEdgeIterator{poly.size(), poly}};
}
} // namespace Slic3r
#endif // CIRCULAR_EDGEITERATOR_HPP

View File

@@ -0,0 +1,104 @@
#include <arrange/NFP/EdgeCache.hpp>
#include <iterator>
#include "CircularEdgeIterator.hpp"
#include "libslic3r/ExPolygon.hpp"
#include "libslic3r/Line.hpp"
namespace Slic3r { namespace arr2 {
void EdgeCache::create_cache(const ExPolygon &sh)
{
m_contour.distances.reserve(sh.contour.size());
m_holes.reserve(sh.holes.size());
m_contour.poly = &sh.contour;
fill_distances(sh.contour, m_contour.distances);
for (const Polygon &hole : sh.holes) {
auto &hc = m_holes.emplace_back();
hc.poly = &hole;
fill_distances(hole, hc.distances);
}
}
Vec2crd EdgeCache::coords(const ContourCache &cache, double distance) const
{
assert(cache.poly);
return arr2::coords(*cache.poly, cache.distances, distance);
}
void EdgeCache::sample_contour(double accuracy, std::vector<ContourLocation> &samples)
{
const auto N = m_contour.distances.size();
const auto S = stride(N, accuracy);
if (N == 0 || S == 0)
return;
samples.reserve(N / S + 1);
for(size_t i = 0; i < N; i += S) {
samples.emplace_back(
ContourLocation{0, m_contour.distances[i] / m_contour.distances.back()});
}
for (size_t hidx = 1; hidx <= m_holes.size(); ++hidx) {
auto& hc = m_holes[hidx - 1];
const auto NH = hc.distances.size();
const auto SH = stride(NH, accuracy);
if (NH == 0 || SH == 0)
continue;
samples.reserve(samples.size() + NH / SH + 1);
for (size_t i = 0; i < NH; i += SH) {
samples.emplace_back(
ContourLocation{hidx, hc.distances[i] / hc.distances.back()});
}
}
}
Vec2crd coords(const Polygon &poly, const std::vector<double> &distances, double distance)
{
assert(poly.size() > 1 && distance >= .0 && distance <= 1.0);
// distance is from 0.0 to 1.0, we scale it up to the full length of
// the circumference
double d = distance * distances.back();
// Magic: we find the right edge in log time
auto it = std::lower_bound(distances.begin(), distances.end(), d);
assert(it != distances.end());
auto idx = it - distances.begin(); // get the index of the edge
auto &pts = poly.points;
auto edge = idx == long(pts.size() - 1) ? Line(pts.back(), pts.front()) :
Line(pts[idx], pts[idx + 1]);
// Get the remaining distance on the target edge
auto ed = d - (idx > 0 ? *std::prev(it) : 0 );
double t = ed / edge.length();
Vec2d n {double(edge.b.x()) - edge.a.x(), double(edge.b.y()) - edge.a.y()};
Vec2crd ret = (edge.a.cast<double>() + t * n).cast<coord_t>();
return ret;
}
void fill_distances(const Polygon &poly, std::vector<double> &distances)
{
distances.reserve(poly.size());
double dist = 0.;
auto lrange = line_range(poly);
for (const Line l : lrange) {
dist += l.length();
distances.emplace_back(dist);
}
}
}} // namespace Slic3r::arr2

View File

@@ -0,0 +1,434 @@
#ifndef NFP_CPP
#define NFP_CPP
#include <arrange/NFP/NFP.hpp>
#include <arrange/NFP/NFPConcave_Tesselate.hpp>
#include "CircularEdgeIterator.hpp"
#include <libslic3r/ClipperUtils.hpp>
#include <libslic3r/ExPolygon.hpp>
#include <libslic3r/Line.hpp>
#include <libslic3r/libslic3r.h>
#include <arrange/Beds.hpp>
#if !defined(_MSC_VER) && defined(__SIZEOF_INT128__) && !defined(__APPLE__)
namespace Slic3r { using LargeInt = __int128; }
#else
#include <boost/multiprecision/integer.hpp>
namespace Slic3r { using LargeInt = boost::multiprecision::int128_t; }
#endif
#include <boost/rational.hpp>
#include <algorithm>
#include <array>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <limits>
#include <utility>
#include <vector>
#include <cassert>
namespace Slic3r {
static bool line_cmp(const Line& e1, const Line& e2)
{
using Ratio = boost::rational<LargeInt>;
const Vec<2, int64_t> ax(1, 0); // Unit vector for the X axis
Vec<2, int64_t> p1 = (e1.b - e1.a).cast<int64_t>();
Vec<2, int64_t> p2 = (e2.b - e2.a).cast<int64_t>();
// Quadrant mapping array. The quadrant of a vector can be determined
// from the dot product of the vector and its perpendicular pair
// with the unit vector X axis. The products will carry the values
// lcos = dot(p, ax) = l * cos(phi) and
// lsin = -dotperp(p, ax) = l * sin(phi) where
// l is the length of vector p. From the signs of these values we can
// construct an index which has the sign of lcos as MSB and the
// sign of lsin as LSB. This index can be used to retrieve the actual
// quadrant where vector p resides using the following map:
// (+ is 0, - is 1)
// cos | sin | decimal | quadrant
// + | + | 0 | 0
// + | - | 1 | 3
// - | + | 2 | 1
// - | - | 3 | 2
std::array<int, 4> quadrants {0, 3, 1, 2 };
std::array<int, 2> q {0, 0}; // Quadrant indices for p1 and p2
using TDots = std::array<int64_t, 2>;
TDots lcos { p1.dot(ax), p2.dot(ax) };
TDots lsin { -dotperp(p1, ax), -dotperp(p2, ax) };
// Construct the quadrant indices for p1 and p2
for(size_t i = 0; i < 2; ++i) {
if (lcos[i] == 0)
q[i] = lsin[i] > 0 ? 1 : 3;
else if (lsin[i] == 0)
q[i] = lcos[i] > 0 ? 0 : 2;
else
q[i] = quadrants[((lcos[i] < 0) << 1) + (lsin[i] < 0)];
}
if (q[0] == q[1]) { // only bother if p1 and p2 are in the same quadrant
auto lsq1 = p1.squaredNorm(); // squared magnitudes, avoid sqrt
auto lsq2 = p2.squaredNorm(); // squared magnitudes, avoid sqrt
// We will actually compare l^2 * cos^2(phi) which saturates the
// cos function. But with the quadrant info we can get the sign back
int sign = q[0] == 1 || q[0] == 2 ? -1 : 1;
// If Ratio is an actual rational type, there is no precision loss
auto pcos1 = Ratio(lcos[0]) / lsq1 * sign * lcos[0];
auto pcos2 = Ratio(lcos[1]) / lsq2 * sign * lcos[1];
return q[0] < 2 ? pcos1 > pcos2 : pcos1 < pcos2;
}
// If in different quadrants, compare the quadrant indices only.
return q[0] < q[1];
}
static inline bool vsort(const Vec2crd& v1, const Vec2crd& v2)
{
return v1.y() == v2.y() ? v1.x() < v2.x() : v1.y() < v2.y();
}
ExPolygons ifp_convex(const arr2::RectangleBed &obed, const Polygon &convexpoly)
{
ExPolygon ret;
auto sbox = bounding_box(convexpoly);
auto sboxsize = sbox.size();
coord_t sheight = sboxsize.y();
coord_t swidth = sboxsize.x();
Point sliding_top = reference_vertex(convexpoly);
auto leftOffset = sliding_top.x() - sbox.min.x();
auto rightOffset = sliding_top.x() - sbox.max.x();
coord_t topOffset = 0;
auto bottomOffset = sheight;
auto bedbb = obed.bb;
// bedbb.offset(1);
auto bedsz = bedbb.size();
auto boxWidth = bedsz.x();
auto boxHeight = bedsz.y();
auto bedMinx = bedbb.min.x();
auto bedMiny = bedbb.min.y();
auto bedMaxx = bedbb.max.x();
auto bedMaxy = bedbb.max.y();
Polygon innerNfp{ Point{bedMinx + leftOffset, bedMaxy + topOffset},
Point{bedMaxx + rightOffset, bedMaxy + topOffset},
Point{bedMaxx + rightOffset, bedMiny + bottomOffset},
Point{bedMinx + leftOffset, bedMiny + bottomOffset},
Point{bedMinx + leftOffset, bedMaxy + topOffset} };
if (sheight <= boxHeight && swidth <= boxWidth)
ret.contour = std::move(innerNfp);
return {ret};
}
Polygon ifp_convex_convex(const Polygon &fixed, const Polygon &movable)
{
auto subnfps = reserve_polygons(fixed.size());
// For each edge of the bed polygon, determine the nfp of convexpoly and
// the zero area polygon formed by the edge. The union of all these sub-nfps
// will contain a hole that is the actual ifp.
auto lrange = line_range(fixed);
for (const Line l : lrange) { // Older mac compilers generate warnging if line_range is called in-place
Polygon fixed = {l.a, l.b};
subnfps.emplace_back(nfp_convex_convex_legacy(fixed, movable));
}
// Do the union and then keep only the holes (should be only one or zero, if
// the convexpoly cannot fit into the bed)
Polygons ifp = union_(subnfps);
Polygon ret;
// find the first hole
auto it = std::find_if(ifp.begin(), ifp.end(), [](const Polygon &subifp){
return subifp.is_clockwise();
});
if (it != ifp.end()) {
ret = std::move(*it);
std::reverse(ret.begin(), ret.end());
}
return ret;
}
ExPolygons ifp_convex(const arr2::CircleBed &bed, const Polygon &convexpoly)
{
Polygon circle = approximate_circle_with_polygon(bed);
return {ExPolygon{ifp_convex_convex(circle, convexpoly)}};
}
ExPolygons ifp_convex(const arr2::IrregularBed &bed, const Polygon &convexpoly)
{
auto bb = get_extents(bed.poly);
bb.offset(scaled(1.));
Polygon rect = arr2::to_rectangle(bb);
ExPolygons blueprint = diff_ex(rect, bed.poly);
Polygons ifp;
for (const ExPolygon &part : blueprint) {
Polygons triangles = Slic3r::convex_decomposition_tess(part);
for (const Polygon &tr : triangles) {
Polygon subifp = nfp_convex_convex_legacy(tr, convexpoly);
ifp.emplace_back(std::move(subifp));
}
}
ifp = union_(ifp);
Polygons ret;
std::copy_if(ifp.begin(), ifp.end(), std::back_inserter(ret),
[](const Polygon &p) { return p.is_clockwise(); });
for (Polygon &p : ret)
std::reverse(p.begin(), p.end());
return to_expolygons(ret);
}
Vec2crd reference_vertex(const Polygon &poly)
{
Vec2crd ret{std::numeric_limits<coord_t>::min(),
std::numeric_limits<coord_t>::min()};
auto it = std::max_element(poly.points.begin(), poly.points.end(), vsort);
if (it != poly.points.end())
ret = std::max(ret, static_cast<const Vec2crd &>(*it), vsort);
return ret;
}
Vec2crd reference_vertex(const ExPolygon &expoly)
{
return reference_vertex(expoly.contour);
}
Vec2crd reference_vertex(const Polygons &outline)
{
Vec2crd ret{std::numeric_limits<coord_t>::min(),
std::numeric_limits<coord_t>::min()};
for (const Polygon &poly : outline)
ret = std::max(ret, reference_vertex(poly), vsort);
return ret;
}
Vec2crd reference_vertex(const ExPolygons &outline)
{
Vec2crd ret{std::numeric_limits<coord_t>::min(),
std::numeric_limits<coord_t>::min()};
for (const ExPolygon &expoly : outline)
ret = std::max(ret, reference_vertex(expoly), vsort);
return ret;
}
Vec2crd min_vertex(const Polygon &poly)
{
Vec2crd ret{std::numeric_limits<coord_t>::max(),
std::numeric_limits<coord_t>::max()};
auto it = std::min_element(poly.points.begin(), poly.points.end(), vsort);
if (it != poly.points.end())
ret = std::min(ret, static_cast<const Vec2crd&>(*it), vsort);
return ret;
}
// Find the vertex corresponding to the edge with minimum angle to X axis.
// Only usable with CircularEdgeIterator<> template.
template<class It> It find_min_anglex_edge(It from)
{
bool found = false;
auto it = from;
while (!found ) {
found = !line_cmp(*it, *std::next(it));
++it;
}
return it;
}
// Only usable if both fixed and movable polygon is convex. In that case,
// their edges are already sorted by angle to X axis, only the starting
// (lowest X axis) edge needs to be found first.
void nfp_convex_convex(const Polygon &fixed, const Polygon &movable, Polygon &poly)
{
if (fixed.empty() || movable.empty())
return;
// Clear poly and adjust its capacity. Nothing happens if poly is
// already sufficiently large and and empty.
poly.clear();
poly.points.reserve(fixed.size() + movable.size());
// Find starting positions on the fixed and moving polygons
auto it_fx = find_min_anglex_edge(CircularEdgeIterator{fixed});
auto it_mv = find_min_anglex_edge(CircularReverseEdgeIterator{movable});
// End positions are at the same vertex after completing one full circle
auto end_fx = it_fx + fixed.size();
auto end_mv = it_mv + movable.size();
// Pos zero is just fine as starting point:
poly.points.emplace_back(0, 0);
// Output iterator adapter for std::merge
struct OutItAdaptor {
using value_type [[maybe_unused]] = Line;
using difference_type [[maybe_unused]] = std::ptrdiff_t;
using pointer [[maybe_unused]] = Line*;
using reference [[maybe_unused]] = Line& ;
using iterator_category [[maybe_unused]] = std::output_iterator_tag;
Polygon *outpoly;
OutItAdaptor(Polygon &out) : outpoly{&out} {}
OutItAdaptor &operator *() { return *this; }
void operator=(const Line &l)
{
// Yielding l.b, offsetted so that l.a touches the last vertex in
// in outpoly
outpoly->points.emplace_back(l.b + outpoly->back() - l.a);
}
OutItAdaptor& operator++() { return *this; };
};
// Use std algo to merge the edges from the two polygons
std::merge(it_fx, end_fx, it_mv, end_mv, OutItAdaptor{poly}, line_cmp);
}
Polygon nfp_convex_convex(const Polygon &fixed, const Polygon &movable)
{
Polygon ret;
nfp_convex_convex(fixed, movable, ret);
return ret;
}
static void buildPolygon(const std::vector<Line>& edgelist,
Polygon& rpoly,
Point& top_nfp)
{
auto& rsh = rpoly.points;
rsh.reserve(2 * edgelist.size());
// Add the two vertices from the first edge into the final polygon.
rsh.emplace_back(edgelist.front().a);
rsh.emplace_back(edgelist.front().b);
// Sorting function for the nfp reference vertex search
// the reference (rightmost top) vertex so far
top_nfp = *std::max_element(std::cbegin(rsh), std::cend(rsh), vsort);
auto tmp = std::next(std::begin(rsh));
// Construct final nfp by placing each edge to the end of the previous
for(auto eit = std::next(edgelist.begin()); eit != edgelist.end(); ++eit) {
auto d = *tmp - eit->a;
Vec2crd p = eit->b + d;
rsh.emplace_back(p);
// Set the new reference vertex
if (vsort(top_nfp, p))
top_nfp = p;
tmp = std::next(tmp);
}
}
Polygon nfp_convex_convex_legacy(const Polygon &fixed, const Polygon &movable)
{
assert (!fixed.empty());
assert (!movable.empty());
Polygon rsh; // Final nfp placeholder
Point max_nfp;
std::vector<Line> edgelist;
auto cap = fixed.points.size() + movable.points.size();
// Reserve the needed memory
edgelist.reserve(cap);
rsh.points.reserve(cap);
auto add_edge = [&edgelist](const Point &v1, const Point &v2) {
Line e{v1, v2};
if ((e.b - e.a).cast<int64_t>().squaredNorm() > 0)
edgelist.emplace_back(e);
};
Point max_fixed = fixed.points.front();
{ // place all edges from fixed into edgelist
auto first = std::cbegin(fixed);
auto next = std::next(first);
while(next != std::cend(fixed)) {
add_edge(*(first), *(next));
max_fixed = std::max(max_fixed, *first, vsort);
++first; ++next;
}
add_edge(*std::crbegin(fixed), *std::cbegin(fixed));
max_fixed = std::max(max_fixed, *std::crbegin(fixed), vsort);
}
Point max_movable = movable.points.front();
Point min_movable = movable.points.front();
{ // place all edges from movable into edgelist
auto first = std::cbegin(movable);
auto next = std::next(first);
while(next != std::cend(movable)) {
add_edge(*(next), *(first));
min_movable = std::min(min_movable, *first, vsort);
max_movable = std::max(max_movable, *first, vsort);
++first; ++next;
}
add_edge(*std::cbegin(movable), *std::crbegin(movable));
min_movable = std::min(min_movable, *std::crbegin(movable), vsort);
max_movable = std::max(max_movable, *std::crbegin(movable), vsort);
}
std::sort(edgelist.begin(), edgelist.end(), line_cmp);
buildPolygon(edgelist, rsh, max_nfp);
auto dtouch = max_fixed - min_movable;
auto top_other = max_movable + dtouch;
auto dnfp = top_other - max_nfp;
rsh.translate(dnfp);
return rsh;
}
} // namespace Slic3r
#endif // NFP_CPP

View File

@@ -0,0 +1,77 @@
#include <libslic3r/ClipperUtils.hpp>
#include <libslic3r/Tesselate.hpp>
#include <algorithm>
#include <iterator>
#include <vector>
#include <cstddef>
#include <arrange//NFP/NFPConcave_Tesselate.hpp>
#include <arrange/NFP/NFP.hpp>
#include "libslic3r/ExPolygon.hpp"
#include "libslic3r/Point.hpp"
#include "libslic3r/libslic3r.h"
namespace Slic3r {
Polygons convex_decomposition_tess(const Polygon &expoly)
{
return convex_decomposition_tess(ExPolygon{expoly});
}
Polygons convex_decomposition_tess(const ExPolygon &expoly)
{
std::vector<Vec2d> tr = Slic3r::triangulate_expolygon_2d(expoly);
auto ret = Slic3r::reserve_polygons(tr.size() / 3);
for (size_t i = 0; i < tr.size(); i += 3) {
ret.emplace_back(
Polygon{scaled(tr[i]), scaled(tr[i + 1]), scaled(tr[i + 2])});
}
return ret;
}
Polygons convex_decomposition_tess(const ExPolygons &expolys)
{
constexpr size_t AvgTriangleCountGuess = 50;
auto ret = reserve_polygons(AvgTriangleCountGuess * expolys.size());
for (const ExPolygon &expoly : expolys) {
Polygons convparts = convex_decomposition_tess(expoly);
std::move(convparts.begin(), convparts.end(), std::back_inserter(ret));
}
return ret;
}
ExPolygons nfp_concave_concave_tess(const ExPolygon &fixed,
const ExPolygon &movable)
{
Polygons fixed_decomp = convex_decomposition_tess(fixed);
Polygons movable_decomp = convex_decomposition_tess(movable);
auto refs_mv = reserve_vector<Vec2crd>(movable_decomp.size());
for (const Polygon &p : movable_decomp)
refs_mv.emplace_back(reference_vertex(p));
auto nfps = reserve_polygons(fixed_decomp.size() * movable_decomp.size());
Vec2crd ref_whole = reference_vertex(movable);
for (const Polygon &fixed_part : fixed_decomp) {
size_t mvi = 0;
for (const Polygon &movable_part : movable_decomp) {
Polygon subnfp = nfp_convex_convex(fixed_part, movable_part);
const Vec2crd &ref_mp = refs_mv[mvi];
auto d = ref_whole - ref_mp;
subnfp.translate(d);
nfps.emplace_back(subnfp);
mvi++;
}
}
return union_ex(nfps);
}
} // namespace Slic3r

View File

@@ -5,7 +5,7 @@ add_executable(${_TEST_NAME}_tests ${_TEST_NAME}_tests_main.cpp
../data/qidiparts.cpp
)
target_link_libraries(${_TEST_NAME}_tests test_common libslic3r)
target_link_libraries(${_TEST_NAME}_tests test_common slic3r-arrange-wrapper)
set_property(TARGET ${_TEST_NAME}_tests PROPERTY FOLDER "tests")
if (WIN32)

View File

@@ -3,21 +3,17 @@
#include <libslic3r/Execution/ExecutionSeq.hpp>
#include <libslic3r/Arrange/Core/ArrangeBase.hpp>
#include <libslic3r/Arrange/Core/ArrangeFirstFit.hpp>
#include <libslic3r/Arrange/Core/NFP/PackStrategyNFP.hpp>
#include <libslic3r/Arrange/Core/NFP/RectangleOverfitPackingStrategy.hpp>
#include <arrange/ArrangeBase.hpp>
#include <arrange/ArrangeFirstFit.hpp>
#include <arrange/NFP/PackStrategyNFP.hpp>
#include <arrange/NFP/RectangleOverfitPackingStrategy.hpp>
#include <arrange/NFP/Kernels/GravityKernel.hpp>
#include <arrange/NFP/Kernels/TMArrangeKernel.hpp>
#include <arrange/NFP/NFPConcave_Tesselate.hpp>
#include <libslic3r/Arrange/Core/NFP/Kernels/GravityKernel.hpp>
#include <libslic3r/Arrange/Core/NFP/Kernels/TMArrangeKernel.hpp>
#include <libslic3r/Arrange/Core/NFP/NFPConcave_CGAL.hpp>
#include <libslic3r/Arrange/Core/NFP/NFPConcave_Tesselate.hpp>
#include <libslic3r/Arrange/Core/NFP/CircularEdgeIterator.hpp>
#include <libslic3r/Arrange/Items/SimpleArrangeItem.hpp>
#include <libslic3r/Arrange/Items/ArrangeItem.hpp>
#include <libslic3r/Arrange/Items/TrafoOnlyArrangeItem.hpp>
#include <arrange-wrapper/Items/SimpleArrangeItem.hpp>
#include <arrange-wrapper/Items/ArrangeItem.hpp>
#include <arrange-wrapper/Items/TrafoOnlyArrangeItem.hpp>
#include <libslic3r/Model.hpp>
@@ -386,7 +382,7 @@ template<> inline Slic3r::arr2::RectangleBed init_bed<Slic3r::arr2::RectangleBed
template<> inline Slic3r::arr2::CircleBed init_bed<Slic3r::arr2::CircleBed>()
{
return Slic3r::arr2::CircleBed{Slic3r::Point::Zero(), scaled(300.)};
return Slic3r::arr2::CircleBed{Slic3r::Point::Zero(), scaled(300.), Slic3r::Vec2crd{0, 0}};
}
template<> inline Slic3r::arr2::IrregularBed init_bed<Slic3r::arr2::IrregularBed>()
@@ -640,6 +636,7 @@ struct RectangleItem {
void set_bed_index(int idx) { bed_index = idx; }
int get_bed_index() const noexcept { return bed_index; }
std::optional<int> get_bed_constraint() const { return std::nullopt; }
void set_translation(const Vec2crd &tr) { translation = tr; }
const Vec2crd & get_translation() const noexcept { return translation; }

View File

@@ -1,16 +1,15 @@
#include <catch2/catch.hpp>
#include "test_utils.hpp"
#include <libslic3r/Arrange/Arrange.hpp>
#include <libslic3r/Arrange/Items/ArrangeItem.hpp>
#include <libslic3r/Arrange/Tasks/ArrangeTask.hpp>
#include <libslic3r/Arrange/SceneBuilder.hpp>
#include <arrange-wrapper/Arrange.hpp>
#include <arrange-wrapper/Items/ArrangeItem.hpp>
#include <arrange-wrapper/Tasks/ArrangeTask.hpp>
#include <arrange-wrapper/SceneBuilder.hpp>
#include <arrange-wrapper/ModelArrange.hpp>
#include "libslic3r/Model.hpp"
#include "libslic3r/Geometry/ConvexHull.hpp"
#include "libslic3r/Format/3mf.hpp"
#include "libslic3r/ModelArrange.hpp"
static Slic3r::Model get_example_model_with_20mm_cube()
{
@@ -135,7 +134,7 @@ TEST_CASE("ModelInstance should be retrievable when imbued into ArrangeItem",
arr2::ArrangeItem itm;
arr2::PhysicalOnlyVBedHandler vbedh;
auto vbedh_ptr = static_cast<arr2::VirtualBedHandler *>(&vbedh);
auto arrbl = arr2::ArrangeableModelInstance{mi, vbedh_ptr, nullptr, {0, 0}};
auto arrbl = arr2::ArrangeableModelInstance{mi, vbedh_ptr, nullptr, {0, 0}, std::nullopt};
arr2::imbue_id(itm, arrbl.id());
std::optional<ObjectID> id_returned = arr2::retrieve_id(itm);
@@ -330,7 +329,7 @@ auto create_vbed_handler<Slic3r::arr2::YStriderVBedHandler>(const Slic3r::Boundi
template<>
auto create_vbed_handler<Slic3r::arr2::GridStriderVBedHandler>(const Slic3r::BoundingBox &bedbb, coord_t gap)
{
return Slic3r::arr2::GridStriderVBedHandler{bedbb, gap};
return Slic3r::arr2::GridStriderVBedHandler{bedbb, {gap, gap}};
}
TEMPLATE_TEST_CASE("Common virtual bed handlers",
@@ -628,7 +627,7 @@ TEMPLATE_TEST_CASE("Bed needs to be completely filled with 1cm cubes",
ModelObject* new_object = m.add_object();
new_object->name = "10mm_box";
new_object->add_instance();
ModelInstance *instance = new_object->add_instance();
TriangleMesh mesh = make_cube(10., 10., 10.);
ModelVolume* new_volume = new_object->add_volume(mesh);
new_volume->name = new_object->name;
@@ -641,11 +640,15 @@ TEMPLATE_TEST_CASE("Bed needs to be completely filled with 1cm cubes",
arr2::FixedSelection sel({{true}});
arr2::BedConstraints constraints;
constraints.insert({instance->id(), 0});
arr2::Scene scene{arr2::SceneBuilder{}
.set_model(m)
.set_arrange_settings(settings)
.set_selection(&sel)
.set_bed(cfg)};
.set_bed_constraints(std::move(constraints))
.set_bed(cfg, Point::new_scale(10, 10))};
auto task = arr2::FillBedTask<ArrItem>::create(scene);
auto result = task->process_native(arr2::DummyCtl{});
@@ -654,7 +657,7 @@ TEMPLATE_TEST_CASE("Bed needs to be completely filled with 1cm cubes",
store_3mf("fillbed_10mm_result.3mf", &m, &cfg, false);
Points bedpts = get_bed_shape(cfg);
arr2::ArrangeBed bed = arr2::to_arrange_bed(bedpts);
arr2::ArrangeBed bed = arr2::to_arrange_bed(bedpts, Point::new_scale(10, 10));
REQUIRE(bed.which() == 1); // Rectangle bed
@@ -799,7 +802,7 @@ TEST_CASE("Testing arrangement involving virtual beds", "[arrange2][integration]
DynamicPrintConfig cfg;
cfg.load_from_ini(std::string(TEST_DATA_DIR PATH_SEPARATOR) + "default_fff.ini",
ForwardCompatibilitySubstitutionRule::Enable);
auto bed = arr2::to_arrange_bed(get_bed_shape(cfg));
auto bed = arr2::to_arrange_bed(get_bed_shape(cfg), Point::new_scale(10, 10));
auto bedbb = bounding_box(bed);
auto bedsz = unscaled(bedbb.size());
@@ -815,7 +818,7 @@ TEST_CASE("Testing arrangement involving virtual beds", "[arrange2][integration]
arr2::Scene scene{arr2::SceneBuilder{}
.set_model(model)
.set_arrange_settings(settings)
.set_bed(cfg)};
.set_bed(cfg, Point::new_scale(10, 10))};
auto itm_conv = arr2::ArrangeableToItemConverter<arr2::ArrangeItem>::create(scene);
@@ -883,7 +886,7 @@ public:
};
class MocWTH : public WipeTowerHandler {
std::function<bool()> m_sel_pred;
std::function<bool(int)> m_sel_pred;
ObjectID m_id;
public:
@@ -891,18 +894,22 @@ public:
void visit(std::function<void(Arrangeable &)> fn) override
{
MocWT wt{m_id, Polygon{}, m_sel_pred};
MocWT wt{m_id, Polygon{}, 0, m_sel_pred};
fn(wt);
}
void visit(std::function<void(const Arrangeable &)> fn) const override
{
MocWT wt{m_id, Polygon{}, m_sel_pred};
MocWT wt{m_id, Polygon{}, 0, m_sel_pred};
fn(wt);
}
void set_selection_predicate(std::function<bool()> pred) override
void set_selection_predicate(std::function<bool(int)> pred) override
{
m_sel_pred = std::move(pred);
}
ObjectID get_id() const override {
return m_id;
}
};
}} // namespace Slic3r::arr2
@@ -974,7 +981,7 @@ TEST_CASE("Test SceneBuilder", "[arrange2][integration]")
WHEN("a scene is built with a bed initialized from this DynamicPrintConfig")
{
arr2::Scene scene(arr2::SceneBuilder{}.set_bed(cfg));
arr2::Scene scene(arr2::SceneBuilder{}.set_bed(cfg, Point::new_scale(10, 10)));
auto bedbb = bounding_box(get_bed_shape(cfg));
@@ -1001,7 +1008,10 @@ TEST_CASE("Test SceneBuilder", "[arrange2][integration]")
arr2::SceneBuilder bld;
Model mdl;
bld.set_model(mdl);
bld.set_wipe_tower_handler(std::make_unique<arr2::MocWTH>(mdl.wipe_tower.id()));
std::vector<AnyPtr<arr2::WipeTowerHandler>> handlers;
handlers.push_back(std::make_unique<arr2::MocWTH>(wipe_tower_instance_id(0)));
bld.set_wipe_tower_handlers(std::move(handlers));
WHEN("the selection mask is initialized as a fallback default in the created scene")
{
@@ -1014,7 +1024,7 @@ TEST_CASE("Test SceneBuilder", "[arrange2][integration]")
bool wt_selected = false;
scene.model()
.visit_arrangeable(mdl.wipe_tower.id(),
.visit_arrangeable(wipe_tower_instance_id(0),
[&wt_selected](
const arr2::Arrangeable &arrbl) {
wt_selected = arrbl.is_selected();

View File

@@ -20,6 +20,7 @@ add_executable(${_TEST_NAME}_tests
test_seam_aligned.cpp
test_seam_rear.cpp
test_seam_random.cpp
test_seam_scarf.cpp
benchmark_seams.cpp
test_gcodefindreplace.cpp
test_gcodewriter.cpp
@@ -38,7 +39,7 @@ add_executable(${_TEST_NAME}_tests
test_thin_walls.cpp
test_trianglemesh.cpp
)
target_link_libraries(${_TEST_NAME}_tests test_common libslic3r)
target_link_libraries(${_TEST_NAME}_tests test_common slic3r-arrange-wrapper)
set_property(TARGET ${_TEST_NAME}_tests PROPERTY FOLDER "tests")
target_compile_definitions(${_TEST_NAME}_tests PUBLIC CATCH_CONFIG_ENABLE_BENCHMARKING)

View File

@@ -105,13 +105,14 @@ TEST_CASE_METHOD(Slic3r::Test::SeamsFixture, "Seam benchmarks", "[Seams][.Benchm
using namespace Slic3r;
Placer placer;
placer.init(print->objects(), params, [](){});
std::vector<std::pair<const Layer*, const ExtrusionLoop*>> loops;
std::vector<std::tuple<const Layer*, const ExtrusionLoop*, const PrintRegion *>> loops;
const PrintObject* object{print->objects().front()};
for (const Layer* layer :object->layers()) {
for (const LayerSlice& lslice : layer->lslices_ex) {
for (const LayerIsland &island : lslice.islands) {
const LayerRegion &layer_region = *layer->get_region(island.perimeters.region());
const PrintRegion &region = print->get_print_region(layer_region.region().print_region_id());
for (uint32_t perimeter_id : island.perimeters) {
const auto *entity_collection{static_cast<const ExtrusionEntityCollection*>(layer_region.perimeters().entities[perimeter_id])};
if (entity_collection != nullptr) {
@@ -120,7 +121,7 @@ TEST_CASE_METHOD(Slic3r::Test::SeamsFixture, "Seam benchmarks", "[Seams][.Benchm
if (loop == nullptr) {
continue;
}
loops.emplace_back(layer, loop);
loops.emplace_back(layer, loop, &region);
}
}
}
@@ -129,8 +130,8 @@ TEST_CASE_METHOD(Slic3r::Test::SeamsFixture, "Seam benchmarks", "[Seams][.Benchm
}
BENCHMARK_ADVANCED("Place seam benchy")(Catch::Benchmark::Chronometer meter) {
meter.measure([&] {
for (const auto &[layer, loop] : loops) {
placer.place_seam(layer, *loop, {0, 0});
for (const auto &[layer, loop, region] : loops) {
placer.place_seam(layer, region, *loop, false, {0, 0});
}
});
};

View File

@@ -7,6 +7,8 @@
#include "libslic3r/Format/OBJ.hpp"
#include "libslic3r/Format/STL.hpp"
#include <arrange-wrapper/ModelArrange.hpp>
#include <cstdlib>
#include <string>
@@ -14,7 +16,6 @@
#include <boost/nowide/fstream.hpp>
#include <boost/filesystem.hpp>
#include <boost/regex.hpp>
#include <libslic3r/ModelArrange.hpp>
using namespace std;
@@ -254,7 +255,7 @@ void init_print(std::vector<TriangleMesh> &&meshes, Slic3r::Print &print, Slic3r
double distance = min_object_distance(config);
arr2::ArrangeSettings arrange_settings{};
arrange_settings.set_distance_from_objects(distance);
arr2::ArrangeBed bed{arr2::to_arrange_bed(get_bed_shape(config))};
arr2::ArrangeBed bed{arr2::to_arrange_bed(get_bed_shape(config), Vec2crd{0, 0})};
if (duplicate_count > 1) {
duplicate(model, duplicate_count, bed, arrange_settings);
}

View File

@@ -165,7 +165,8 @@ inline std::unique_ptr<Print> process_3mf(const std::filesystem::path &path) {
Model model;
ConfigSubstitutionContext context{ForwardCompatibilitySubstitutionRule::Disable};
load_3mf(path.string().c_str(), config, context, &model, false);
boost::optional<Semver> version;
load_3mf(path.string().c_str(), config, context, &model, false, version);
Slic3r::Test::init_print(std::vector<TriangleMesh>{}, *print, model, config);
print->process();

View File

@@ -6,7 +6,6 @@
#include "libslic3r/GCode.hpp"
#include "libslic3r/Geometry/ConvexHull.hpp"
#include "libslic3r/ModelArrange.hpp"
#include "test_data.hpp"
using namespace Slic3r;

View File

@@ -2,7 +2,7 @@
#include "libslic3r/libslic3r.h"
#include "libslic3r/Model.hpp"
#include "libslic3r/ModelArrange.hpp"
#include <arrange-wrapper/ModelArrange.hpp>
#include <boost/nowide/cstdio.hpp>
#include <boost/filesystem.hpp>
@@ -43,7 +43,7 @@ SCENARIO("Model construction", "[Model]") {
}
model_object->add_instance();
arrange_objects(model,
arr2::to_arrange_bed(get_bed_shape(config)),
arr2::to_arrange_bed(get_bed_shape(config), Point::new_scale(10, 10)),
arr2::ArrangeSettings{}.set_distance_from_objects(
min_object_distance(config)));

View File

@@ -48,6 +48,7 @@ SCENARIO("Perimeter nesting", "[Perimeters]")
//B56
ExPolygons fill_expolygons_no_overlap;
Flow flow(1., 1., 1.);
PerimeterRegions perimeter_regions;
PerimeterGenerator::Parameters perimeter_generator_params(
1., // layer height
-1, // layer ID
@@ -55,6 +56,7 @@ SCENARIO("Perimeter nesting", "[Perimeters]")
static_cast<const PrintRegionConfig&>(config),
static_cast<const PrintObjectConfig&>(config),
static_cast<const PrintConfig&>(config),
perimeter_regions,
false); // spiral_vase
Polygons lower_layer_polygons_cache;
Polygons upper_layer_polygons_cache;

View File

@@ -143,3 +143,30 @@ TEST_CASE("Calculate overhangs", "[Seams][SeamGeometry]") {
0.0, M_PI / 4.0, M_PI / 4.0, 0.0
}));
}
const Linesf lines{to_unscaled_linesf({ExPolygon{
scaled(Vec2d{0.0, 0.0}),
scaled(Vec2d{1.0, 0.0}),
scaled(Vec2d{1.0, 1.0}),
scaled(Vec2d{0.0, 1.0})
}})};
TEST_CASE("Offset along loop lines forward", "[Seams][SeamGeometry]") {
const std::optional<Seams::Geometry::PointOnLine> result{Seams::Geometry::offset_along_lines(
{0.5, 0.0}, 0, lines, 3.9, Seams::Geometry::Direction1D::forward
)};
REQUIRE(result);
const auto &[point, line_index] = *result;
CHECK((scaled(point) - Point::new_scale(0.4, 0.0)).norm() < scaled(EPSILON));
CHECK(line_index == 0);
}
TEST_CASE("Offset along loop lines backward", "[Seams][SeamGeometry]") {
const std::optional<Seams::Geometry::PointOnLine> result{Seams::Geometry::offset_along_lines(
{1.0, 0.5}, 1, lines, 1.8, Seams::Geometry::Direction1D::backward
)};
REQUIRE(result);
const auto &[point, line_index] = *result;
CHECK((scaled(point) - Point::new_scale(0.0, 0.3)).norm() < scaled(EPSILON));
CHECK(line_index == 3);
}

View File

@@ -124,44 +124,48 @@ constexpr const char *to_string(Perimeters::AngleType angle_type) {
throw std::runtime_error("Unreachable");
}
void serialize_shell(std::ostream &output, const Shells::Shell<Perimeters::Perimeter> &shell) {
void serialize_shells(std::ostream &output, const Shells::Shells<> &shells) {
output << "x,y,z,point_type,point_classification,angle_type,layer_index,"
"point_index,distance,distance_to_previous,is_degenerate"
"point_index,distance,distance_to_previous,is_degenerate,shell_index"
<< std::endl;
for (std::size_t perimeter_index{0}; perimeter_index < shell.size(); ++perimeter_index) {
const Shells::Slice<> &slice{shell[perimeter_index]};
const Perimeters::Perimeter &perimeter{slice.boundary};
const std::vector<Vec2d> &points{perimeter.positions};
for (std::size_t shell_index{0}; shell_index < shells.size(); ++shell_index) {
const Shells::Shell<> &shell{shells[shell_index]};
for (std::size_t perimeter_index{0}; perimeter_index < shell.size(); ++perimeter_index) {
const Shells::Slice<> &slice{shell[perimeter_index]};
const Perimeters::Perimeter &perimeter{slice.boundary};
const std::vector<Vec2d> &points{perimeter.positions};
double total_distance{0.0};
for (std::size_t point_index{0}; point_index < perimeter.point_types.size(); ++point_index) {
const Vec3d point{to_3d(points[point_index], perimeter.slice_z)};
const Perimeters::PointType point_type{perimeter.point_types[point_index]};
const Perimeters::PointClassification point_classification{
perimeter.point_classifications[point_index]};
const Perimeters::AngleType angle_type{perimeter.angle_types[point_index]};
const std::size_t layer_index{slice.layer_index};
const std::size_t previous_index{point_index == 0 ? points.size() - 1 : point_index - 1};
const double distance_to_previous{(points[point_index] - points[previous_index]).norm()};
total_distance += point_index == 0 ? 0.0 : distance_to_previous;
const double distance{total_distance};
const bool is_degenerate{perimeter.is_degenerate};
double total_distance{0.0};
for (std::size_t point_index{0}; point_index < perimeter.point_types.size(); ++point_index) {
const Vec3d point{to_3d(points[point_index], perimeter.slice_z)};
const Perimeters::PointType point_type{perimeter.point_types[point_index]};
const Perimeters::PointClassification point_classification{
perimeter.point_classifications[point_index]};
const Perimeters::AngleType angle_type{perimeter.angle_types[point_index]};
const std::size_t layer_index{slice.layer_index};
const std::size_t previous_index{point_index == 0 ? points.size() - 1 : point_index - 1};
const double distance_to_previous{(points[point_index] - points[previous_index]).norm()};
total_distance += point_index == 0 ? 0.0 : distance_to_previous;
const double distance{total_distance};
const bool is_degenerate{perimeter.is_degenerate};
// clang-format off
output
<< point.x() << ","
<< point.y() << ","
<< point.z() << ","
<< to_string(point_type) << ","
<< to_string(point_classification) << ","
<< to_string(angle_type) << ","
<< layer_index << ","
<< point_index << ","
<< distance << ","
<< distance_to_previous << ","
<< is_degenerate << std::endl;
// clang-format on
// clang-format off
output
<< point.x() << ","
<< point.y() << ","
<< point.z() << ","
<< to_string(point_type) << ","
<< to_string(point_classification) << ","
<< to_string(angle_type) << ","
<< layer_index << ","
<< point_index << ","
<< distance << ","
<< distance_to_previous << ","
<< is_degenerate << ","
<< shell_index << std::endl;
// clang-format on
}
}
}
}
@@ -175,6 +179,6 @@ TEST_CASE_METHOD(Test::SeamsFixture, "Create perimeters", "[Seams][SeamPerimeter
if constexpr (debug_files) {
std::ofstream csv{"perimeters.csv"};
serialize_shell(csv, shells[0]);
serialize_shells(csv, shells);
}
}

View File

@@ -0,0 +1,320 @@
#include <catch2/catch.hpp>
#include <libslic3r/GCode/SeamScarf.hpp>
#include <libslic3r/GCode/SmoothPath.hpp>
using namespace Slic3r;
using Seams::Scarf::Impl::PathPoint;
TEST_CASE("Get path point", "[Seams][Scarf]") {
using Seams::Scarf::Impl::get_path_point;
const Points points{
Point::new_scale(0, 0),
Point::new_scale(0, 1),
Point::new_scale(0, 2),
Point::new_scale(0, 3),
Point::new_scale(0, 4),
};
const ExtrusionPaths paths{
{{points[0], points[1]}, {}},
{{points[1], points[2]}, {}},
{{points[2], points[3], points[4]}, {}},
};
const std::size_t global_index{5}; // Index if paths are flattened.
const Point point{Point::new_scale(0, 3.5)};
const PathPoint path_point{get_path_point(paths, point, global_index)};
CHECK(path_point.path_index == 2);
CHECK(path_point.previous_point_on_path_index == 1);
CHECK(path_point.point == point);
}
TEST_CASE("Split path", "[Seams][Scarf]") {
using Seams::Scarf::Impl::split_path;
const Points points{
Point::new_scale(0, 0),
Point::new_scale(1, 0),
Point::new_scale(2, 0),
};
const auto split_point{Point::new_scale(1.5, 0)};
const ExtrusionPath path{Polyline{points}, {}};
const auto[path_before, path_after]{split_path(
path, split_point, 1
)};
REQUIRE(path_before.size() == 3);
CHECK(path_before.first_point() == points.front());
CHECK(path_before.last_point() == split_point);
REQUIRE(path_after.size() == 2);
CHECK(path_after.first_point() == split_point);
CHECK(path_after.last_point() == points.back());
}
TEST_CASE("Split paths", "[Seams][Scarf]") {
using Seams::Scarf::Impl::split_paths;
const Points points{
Point::new_scale(0, 0),
Point::new_scale(0, 1),
Point::new_scale(0, 2),
};
ExtrusionPaths paths{
{{points[0], points[1]}, {}},
{{points[1], points[2]}, {}},
};
const auto split_point{Point::new_scale(0, 1.5)};
PathPoint path_point{};
path_point.point = split_point;
path_point.previous_point_on_path_index = 0;
path_point.path_index = 1;
const ExtrusionPaths result{split_paths(std::move(paths), path_point)};
REQUIRE(result.size() == 3);
CHECK(result[1].last_point() == split_point);
CHECK(result[2].first_point() == split_point);
}
TEST_CASE("Get length", "[Seams][Scarf]") {
using Seams::Scarf::Impl::get_length;
using Seams::Scarf::Impl::convert_to_smooth;
const Points points{
Point::new_scale(0, 0),
Point::new_scale(0, 1),
Point::new_scale(0, 2.2),
};
ExtrusionPaths paths{
{{points[0], points[1]}, {}},
{{points[1], points[2]}, {}},
};
CHECK(get_length(convert_to_smooth(paths)) == scaled(2.2));
}
TEST_CASE("Linspace", "[Seams][Scarf]") {
using Seams::Scarf::Impl::linspace;
const auto from{Point::new_scale(1, 0)};
const auto to{Point::new_scale(3, 0)};
Points points{linspace(from, to, 3)};
REQUIRE(points.size() == 3);
CHECK(points[1] == Point::new_scale(2, 0));
points = linspace(from, to, 5);
REQUIRE(points.size() == 5);
CHECK(points[1] == Point::new_scale(1.5, 0));
CHECK(points[2] == Point::new_scale(2.0, 0));
CHECK(points[3] == Point::new_scale(2.5, 0));
}
TEST_CASE("Ensure max distance", "[Seams][Scarf]") {
using Seams::Scarf::Impl::ensure_max_distance;
const Points points{
Point::new_scale(0, 0),
Point::new_scale(0, 1),
};
Points result{ensure_max_distance(points, scaled(0.5))};
REQUIRE(result.size() == 3);
CHECK(result[1] == Point::new_scale(0, 0.5));
result = ensure_max_distance(points, scaled(0.49));
REQUIRE(result.size() == 4);
}
TEST_CASE("Lineary increase extrusion height", "[Seams][Scarf]") {
using Seams::Scarf::Impl::lineary_increase_extrusion_height;
using GCode::SmoothPath, GCode::SmoothPathElement;
SmoothPath path{
{{}, {{Point::new_scale(0, 0)}, {Point::new_scale(1, 0)}}},
{{}, {{Point::new_scale(1, 0)}, {Point::new_scale(2, 0)}}},
};
SmoothPath result{lineary_increase_extrusion_height(std::move(path), 0.5)};
CHECK(result[0].path[0].height_fraction == Approx(0.5));
CHECK(result[0].path[0].e_fraction == Approx(0.0));
CHECK(result[0].path[1].height_fraction == Approx(0.75));
CHECK(result[0].path[1].e_fraction == Approx(0.5));
CHECK(result[1].path[0].height_fraction == Approx(0.75));
CHECK(result[1].path[0].e_fraction == Approx(0.5));
CHECK(result[1].path[1].height_fraction == Approx(1.0));
CHECK(result[1].path[1].e_fraction == Approx(1.0));
}
TEST_CASE("Lineary reduce extrusion amount", "[Seams][Scarf]") {
using Seams::Scarf::Impl::lineary_readuce_extrusion_amount;
using GCode::SmoothPath, GCode::SmoothPathElement;
SmoothPath path{
{{}, {{Point::new_scale(0, 0)}, {Point::new_scale(1, 0)}}},
{{}, {{Point::new_scale(1, 0)}, {Point::new_scale(2, 0)}}},
};
SmoothPath result{lineary_readuce_extrusion_amount(std::move(path))};
CHECK(result[0].path[0].e_fraction == Approx(1.0));
CHECK(result[0].path[1].e_fraction == Approx(0.5));
CHECK(result[1].path[0].e_fraction == Approx(0.5));
CHECK(result[1].path[1].e_fraction == Approx(0.0));
}
TEST_CASE("Elevate scarf", "[Seams][Scarf]") {
using Seams::Scarf::Impl::elevate_scarf;
using Seams::Scarf::Impl::convert_to_smooth;
const Points points{
Point::new_scale(0, 0),
Point::new_scale(1, 0),
Point::new_scale(2, 0),
Point::new_scale(3, 0),
};
const ExtrusionPaths paths{
{{points[0], points[1]}, {}},
{{points[1], points[2]}, {}},
{{points[2], points[3]}, {}},
};
const GCode::SmoothPath result{elevate_scarf(
paths,
1,
convert_to_smooth,
0.5
)};
REQUIRE(result.size() == 3);
REQUIRE(result[0].path.size() == 2);
CHECK(result[0].path[0].e_fraction == Approx(0.0));
CHECK(result[0].path[0].height_fraction == Approx(0.5));
CHECK(result[0].path[1].e_fraction == Approx(1.0));
CHECK(result[0].path[1].height_fraction == Approx(1.0));
REQUIRE(result[1].path.size() == 2);
CHECK(result[1].path[0].e_fraction == Approx(1.0));
CHECK(result[1].path[0].height_fraction == Approx(1.0));
CHECK(result[1].path[1].e_fraction == Approx(1.0));
CHECK(result[1].path[1].height_fraction == Approx(1.0));
REQUIRE(result[2].path.size() == 2);
CHECK(result[2].path[0].e_fraction == Approx(1.0));
CHECK(result[2].path[0].height_fraction == Approx(1.0));
CHECK(result[2].path[1].e_fraction == Approx(0.0));
CHECK(result[2].path[1].height_fraction == Approx(1.0));
}
TEST_CASE("Get point offset from the path end", "[Seams][Scarf]") {
using Seams::Scarf::Impl::get_point_offset_from_end;
const Points points{
Point::new_scale(0, 0),
Point::new_scale(1, 0),
Point::new_scale(2, 0),
Point::new_scale(3, 0),
};
const ExtrusionPaths paths{
{{points[0], points[1]}, {}},
{{points[1], points[2]}, {}},
{{points[2], points[3]}, {}},
};
std::optional<PathPoint> result{get_point_offset_from_end(paths, scaled(1.6))};
REQUIRE(result);
CHECK(result->point == Point::new_scale(1.4, 0));
CHECK(result->previous_point_on_path_index == 0);
CHECK(result->path_index == 1);
}
TEST_CASE("Find point on path from the path end", "[Seams][Scarf]") {
using Seams::Scarf::Impl::get_point_offset_from_end;
const Points points{
Point::new_scale(0, 0),
Point::new_scale(1, 0),
Point::new_scale(2, 0),
Point::new_scale(3, 0),
Point::new_scale(4, 0),
};
const ExtrusionPaths paths{
{{points[0], points[1]}, {}},
{{points[1], points[2]}, {}},
{{points[2], points[3], points[4]}, {}},
};
const auto point{Point::new_scale(3.4, 0)};
std::optional<PathPoint> result{Seams::Scarf::Impl::find_path_point_from_end(paths, point, scaled(1e-2))};
REQUIRE(result);
CHECK(result->point == point);
CHECK(result->previous_point_on_path_index == 1);
CHECK(result->path_index == 2);
}
TEST_CASE("Add scarf seam", "[Seams][Scarf]") {
using Seams::Scarf::add_scarf_seam;
using Seams::Scarf::Impl::convert_to_smooth;
using Seams::Scarf::Impl::get_length;
using Seams::Scarf::Scarf;
const Points points{
Point::new_scale(0, 0),
Point::new_scale(1, 0),
Point::new_scale(1, 1),
Point::new_scale(0, 1),
Point::new_scale(0, 0),
};
const ExtrusionPaths paths{
{Polyline{points}, {}},
};
Scarf scarf{};
scarf.start_point = Point::new_scale(0.5, 0);
scarf.end_point = Point::new_scale(1, 0.5);
scarf.start_height = 0.2;
scarf.max_segment_length = 0.1;
scarf.end_point_previous_index = 1;
scarf.entire_loop = false;
const auto [path, wipe_offset]{add_scarf_seam(ExtrusionPaths{paths}, scarf, convert_to_smooth, false)};
REQUIRE(path.size() == 4);
CHECK(wipe_offset == 1);
REQUIRE(path.back().path.size() >= 1.0 / scarf.max_segment_length);
CHECK(path.back().path.back().point == scarf.end_point);
CHECK(path.back().path.front().point == scarf.start_point);
CHECK(path.back().path.back().e_fraction == Approx(0));
REQUIRE(path.front().path.size() >= 1.0 / scarf.max_segment_length);
CHECK(path.front().path.back().point == scarf.end_point);
CHECK(path.front().path.front().point == scarf.start_point);
CHECK(path.front().path.front().e_fraction == Approx(0));
CHECK(path.front().path.front().height_fraction == Approx(scarf.start_height));
CHECK(path.front().path[5].point == points[1]);
CHECK(path.front().path[5].e_fraction == Approx(0.5));
CHECK(path.front().path[5].height_fraction == Approx(0.6));
CHECK(path.back().path[5].e_fraction == Approx(0.5));
CHECK(path.back().path[5].height_fraction == Approx(1.0));
scarf.entire_loop = true;
const auto [loop_path, _]{add_scarf_seam(ExtrusionPaths{paths}, scarf, convert_to_smooth, false)};
CHECK(get_length(loop_path) == scaled(8.0));
REQUIRE(!loop_path.empty());
REQUIRE(!loop_path.front().path.empty());
CHECK(loop_path.front().path.front().point == scarf.end_point);
CHECK(loop_path.front().path.front().e_fraction == Approx(0));
REQUIRE(!loop_path.back().path.empty());
CHECK(loop_path.back().path.back().point == scarf.end_point);
CHECK(loop_path.front().path.at(20).e_fraction == Approx(0.5));
CHECK(loop_path.front().path.at(20).point == Point::new_scale(0, 0.5));
}

View File

@@ -10,8 +10,6 @@
using namespace Slic3r;
using namespace Slic3r::Seams;
constexpr bool debug_files{false};
struct ProjectionFixture
{
Polygon extrusion_path{

View File

@@ -26,6 +26,7 @@ add_executable(${_TEST_NAME}_tests
test_stl.cpp
test_meshboolean.cpp
test_marchingsquares.cpp
test_multiple_beds.cpp
test_region_expansion.cpp
test_timeutils.cpp
test_utils.cpp

View File

@@ -15,7 +15,8 @@ SCENARIO("Reading 3mf file", "[3mf]") {
std::string path = std::string(TEST_DATA_DIR) + "/test_3mf/Geräte/Büchse.3mf";
DynamicPrintConfig config;
ConfigSubstitutionContext ctxt{ ForwardCompatibilitySubstitutionRule::Disable };
bool ret = load_3mf(path.c_str(), config, ctxt, &model, false);
boost::optional<Semver> version;
bool ret = load_3mf(path.c_str(), config, ctxt, &model, false, version);
THEN("load should succeed") {
REQUIRE(ret);
}
@@ -59,7 +60,8 @@ SCENARIO("Export+Import geometry to/from 3mf file cycle", "[3mf]") {
DynamicPrintConfig dst_config;
{
ConfigSubstitutionContext ctxt{ ForwardCompatibilitySubstitutionRule::Disable };
load_3mf(test_file.c_str(), dst_config, ctxt, &dst_model, false);
boost::optional<Semver> version;
load_3mf(test_file.c_str(), dst_config, ctxt, &dst_model, false, version);
}
boost::filesystem::remove(test_file);

View File

@@ -3,6 +3,9 @@
#include <random>
#include <libslic3r/ExtrusionEntity.hpp>
#include <libslic3r/GCode/ExtrusionOrder.hpp>
#include <libslic3r/GCode/SmoothPath.hpp>
#include <libslic3r/Geometry/ArcWelder.hpp>
#include <libslic3r/Geometry/Circle.hpp>
#include <libslic3r/SVG.hpp>
@@ -398,6 +401,122 @@ TEST_CASE("arc wedge test", "[ArcWelder]") {
}
}
// Distilled a test case for failing assert(p != prev) inside GCodeGenerator::_extrude() that is caused
// by performing simplification of each ExtrusionPath in ExtrusionMultiPath one by one and not
// simplifying ExtrusionMultiPath as a whole.
TEST_CASE("ExtrusionMultiPath simplification", "[ArcWelderMultiPathSimplify][!mayfail]")
{
using namespace Slic3r::Geometry;
using namespace Slic3r::GCode;
ExtrusionMultiPath multi_path;
multi_path.paths.emplace_back(Polyline({Point(3615254, 8843476), Point(5301926, 8703627), Point(5503271, 8717959),
Point(5787717, 8834837), Point(7465587, 10084995), Point(7565376, 10117372)}),
ExtrusionAttributes(ExtrusionRole::SolidInfill, ExtrusionFlow(0.0626713, 0.449999f, 0.15f), false));
multi_path.paths.emplace_back(Polyline({Point(7565376, 10117372), Point(7751661, 10097239)}),
ExtrusionAttributes(ExtrusionRole::SolidInfill, ExtrusionFlow(0.0604367, 0.435101f, 0.15f), false));
multi_path.paths.emplace_back(Polyline({Point(7751661, 10097239), Point(11289346, 8638614), Point(11412324, 8600432)}),
ExtrusionAttributes(ExtrusionRole::SolidInfill, ExtrusionFlow(0.0547566, 0.397234f, 0.15f), false));
multi_path.paths.emplace_back(Polyline({Point(11412324, 8600432), Point(11727623, 8578798)}),
ExtrusionAttributes(ExtrusionRole::SolidInfill, ExtrusionFlow(0.059829, 0.43105f, 0.15f), false));
multi_path.paths.emplace_back(Polyline({Point(11727623, 8578798), Point(12042923, 8557165)}),
ExtrusionAttributes(ExtrusionRole::SolidInfill, ExtrusionFlow(0.0654324, 0.468406f, 0.15f), false));
multi_path.paths.emplace_back(Polyline({Point(12042923, 8557165), Point(12358223, 8535532), Point(12339460, 8545477)}),
ExtrusionAttributes(ExtrusionRole::SolidInfill, ExtrusionFlow(0.0710358, 0.505762f, 0.15f), false));
multi_path.paths.emplace_back(Polyline({Point(12339460, 8545477), Point(12035789, 8689023)}),
ExtrusionAttributes(ExtrusionRole::SolidInfill, ExtrusionFlow(0.0701369, 0.499769f, 0.15f), false));
multi_path.paths.emplace_back(Polyline({Point(12035789, 8689023), Point(11732119, 8832569)}),
ExtrusionAttributes(ExtrusionRole::SolidInfill, ExtrusionFlow(0.0650101, 0.465591f, 0.15f), false));
multi_path.paths.emplace_back(Polyline({Point(11732119, 8832569), Point(11428449, 8976115)}),
ExtrusionAttributes(ExtrusionRole::SolidInfill, ExtrusionFlow(0.0598834, 0.431413f, 0.15f), false));
multi_path.paths.emplace_back(Polyline({Point(11428449, 8976115), Point(7890375, 10433797)}),
ExtrusionAttributes(ExtrusionRole::SolidInfill, ExtrusionFlow(0.0547566, 0.397234f, 0.15f), false));
multi_path.paths.emplace_back(Polyline({Point(7890375, 10433797), Point(7890196, 10433871)}),
ExtrusionAttributes(ExtrusionRole::SolidInfill, ExtrusionFlow(0.0546036, 0.396214f, 0.15f), false));
multi_path.paths.emplace_back(Polyline({Point(7890196, 10433871), Point(7645162, 10520244)}),
ExtrusionAttributes(ExtrusionRole::SolidInfill, ExtrusionFlow(0.0586375, 0.423107f, 0.15f), false));
multi_path.paths.emplace_back(Polyline({Point(7645162, 10520244), Point(7400129, 10606618), Point(6491466, 10980845),
Point(3782930, 8968079)}),
ExtrusionAttributes(ExtrusionRole::SolidInfill, ExtrusionFlow(0.0626713, 0.449999f, 0.15f), false));
const double resolution = 8000.;
SmoothPathCache smooth_path_cache;
SmoothPath smooth_path = smooth_path_cache.resolve_or_fit(multi_path, false, resolution);
double min_segment_length = std::numeric_limits<double>::max();
for (const SmoothPathElement &el : smooth_path) {
assert(el.path.size() > 1);
Point prev_pt = el.path.front().point;
for (auto segment_it = std::next(el.path.begin()); segment_it != el.path.end(); ++segment_it) {
if (const double length = (segment_it->point - prev_pt).cast<double>().norm(); length < min_segment_length) {
min_segment_length = length;
}
}
}
REQUIRE(min_segment_length >= resolution);
}
TEST_CASE("SmoothPath clipping test", "[ArcWelder]") {
using namespace Slic3r::Geometry;
const Polyline polyline = {
Point(9237362, -279099), Point(9239309, -204770), Point(9232158, 477899), Point(9153712, 1292530),
Point(9014384, 2036579), Point(8842322, 2697128), Point(8569131, 3468590), Point(8287136, 4090253),
Point(8050736, 4537759), Point(7786167, 4978071), Point(7502123, 5396751), Point(7085512, 5937730),
Point(6536631, 6536722), Point(5937701, 7085536), Point(5336389, 7545178), Point(4766354, 7921046),
Point(4287299, 8181151), Point(3798566, 8424823), Point(3161891, 8687141), Point(2477384, 8903260),
Point(1985727, 9025657), Point(1488659, 9120891), Point(811611, 9208824), Point(229795, 9234222),
Point(-477899, 9232158), Point(-1292541, 9153710), Point(-1963942, 9030487), Point(-2483966, 8901437),
Point(-2967612, 8752145), Point(-3606656, 8511944), Point(-4098726, 8277235), Point(-4583048, 8025111),
Point(-5164553, 7667365), Point(-5602853, 7343037), Point(-6030084, 7003203), Point(-6532687, 6541035),
Point(-7085558, 5937673), Point(-7502041, 5396860), Point(-7802209, 4952884), Point(-8061668, 4518435),
Point(-8375899, 3912214), Point(-8689042, 3156205), Point(-8915304, 2433948), Point(-9073554, 1769674),
Point(-9194504, 960323), Point(-9238723, 227049), Point(-9237360, -279112), Point(-9194498, -960380),
Point(-9073524, -1769810), Point(-8895452, -2505523), Point(-8689032, -3156238), Point(-8375859, -3912298),
Point(-8025112, -4583044), Point(-7667378, -5164532), Point(-7180536, -5822455), Point(-6729193, -6334406),
Point(-6350620, -6713810), Point(-5973693, -7051366), Point(-5438560, -7475505), Point(-4756170, -7927163),
Point(-4110103, -8277232), Point(-3651006, -8489813), Point(-3015355, -8738921), Point(-2492584, -8893770),
Point(-1963947, -9030483), Point(-1286636, -9154696), Point(-590411, -9222659), Point(14602, -9244383),
Point(974789, -9192915), Point(1634833, -9095889), Point(2193590, -8977466), Point(2851102, -8793883),
Point(3612042, -8509372), Point(4098709, -8277242), Point(4583076, -8025095), Point(5164577, -7667349),
Point(5822437, -7180551), Point(6388368, -6677987), Point(6866030, -6190211), Point(7236430, -5740880),
Point(7660739, -5174380), Point(8088357, -4476558), Point(8394013, -3866175), Point(8593000, -3400880),
Point(8768650, -2918284), Point(8915319, -2433894), Point(9073549, -1769711), Point(9194508, -960282),
Point(9237362, -279099)
};
const ExtrusionAttributes extrusion_attributes(ExtrusionRole::Perimeter, ExtrusionFlow{1.0, 1.0, 1.0});
const GCode::SmoothPath smooth_path = {GCode::SmoothPathElement{extrusion_attributes, ArcWelder::fit_path(polyline.points, 32000., 0.05)}};
const double smooth_path_length = GCode::length(smooth_path);
const size_t clip_segment_cnt = 20;
for (size_t segment_idx = 1; segment_idx <= clip_segment_cnt; ++segment_idx) {
const double clip_length = static_cast<double>(segment_idx) * (smooth_path_length / (clip_segment_cnt + 1));
GCode::SmoothPath smooth_path_clipped = smooth_path;
clip_end(smooth_path_clipped, smooth_path_length - clip_length, scaled<double>(GCode::ExtrusionOrder::min_gcode_segment_length));
const double smooth_path_clipped_length = GCode::length(smooth_path_clipped);
const double relative_diff = std::abs(1. - (clip_length / smooth_path_clipped_length));
REQUIRE(relative_diff <= 0.000001);
}
}
#if 0
// For quantization
//#include <libslic3r/GCode/GCodeWriter.hpp>

View File

@@ -103,12 +103,13 @@ std::string get_font_filepath() {
// Explicit horror include (used to be implicit) - libslic3r "officialy" does not depend on imgui.
#include "../../bundled_deps/imgui/imgui/imstb_truetype.h" // stbtt_fontinfo
#include "boost/nowide/cstdio.hpp"
TEST_CASE("Read glyph C shape from font, stb library calls ONLY", "[Emboss]") {
std::string font_path = get_font_filepath();
char letter = 'C';
// Read font file
FILE *file = fopen(font_path.c_str(), "rb");
FILE *file = boost::nowide::fopen(font_path.c_str(), "rb");
REQUIRE(file != nullptr);
// find size of file
REQUIRE(fseek(file, 0L, SEEK_END) == 0);

View File

@@ -0,0 +1,35 @@
#include <catch2/catch.hpp>
#include <libslic3r/MultipleBeds.hpp>
#include <numeric>
using namespace Slic3r;
TEST_CASE("Conversion between grid coords and index", "[MultipleBeds]")
{
std::vector<BedsGrid::Index> original_indices(10);
std::iota(original_indices.begin(), original_indices.end(), 0);
// Add indexes covering the whole int positive range.
const int n{100};
std::generate_n(std::back_inserter(original_indices), n, [i = 1]() mutable {
return std::numeric_limits<int>::max() / n * i++;
});
std::vector<BedsGrid::GridCoords> coords;
std::transform(
original_indices.begin(),
original_indices.end(),
std::back_inserter(coords),
BedsGrid::index2grid_coords
);
std::vector<BedsGrid::Index> indices;
std::transform(
coords.begin(),
coords.end(),
std::back_inserter(indices),
BedsGrid::grid_coords2index
);
CHECK(original_indices == indices);
}

View File

@@ -33,7 +33,7 @@ TEST_CASE("Distance to line", "[Point]") {
TEST_CASE("Distance to diagonal line", "[Point]") {
const Line line{{50, 50}, {125, -25}};
CHECK(std::abs(line.distance_to(Point{100, 0})) == Approx(0));
CHECK_THAT(std::abs(line.distance_to(Point{100, 0})), Catch::Matchers::WithinAbs(0, 1e-6));
}
TEST_CASE("Perp distance to line does not overflow", "[Point]") {

View File

@@ -78,14 +78,14 @@ SCENARIO("Simplify polyne, template", "[Polyline]")
Points polyline{ {0,0}, {1000,0}, {2000,0}, {2000,1000}, {2000,2000}, {1000,2000}, {0,2000}, {0,1000}, {0,0} };
WHEN("simplified with Douglas-Peucker with back inserter") {
Points out;
douglas_peucker<int64_t>(polyline.begin(), polyline.end(), std::back_inserter(out), 10, [](const Point &p) { return p; });
douglas_peucker<int64_t>(polyline.begin(), polyline.end(), std::back_inserter(out), 10., [](const Point &p) { return p; });
THEN("simplified correctly") {
REQUIRE(out == Points{ {0,0}, {2000,0}, {2000,2000}, {0,2000}, {0,0} });
}
}
WHEN("simplified with Douglas-Peucker in place") {
Points out{ polyline };
out.erase(douglas_peucker<int64_t>(out.begin(), out.end(), out.begin(), 10, [](const Point &p) { return p; }), out.end());
out.erase(douglas_peucker<int64_t>(out.begin(), out.end(), out.begin(), 10., [](const Point &p) { return p; }), out.end());
THEN("simplified correctly") {
REQUIRE(out == Points{ {0,0}, {2000,0}, {2000,2000}, {0,2000}, {0,0} });
}

View File

@@ -90,14 +90,14 @@ TEST_CASE("Basic arrange with cube", "[arrangejob]") {
arr2::ArrangeSettings settings;
Points bedpts = get_bed_shape(cfg);
arr2::ArrangeBed bed = arr2::to_arrange_bed(bedpts);
arr2::ArrangeBed bed = arr2::to_arrange_bed(bedpts, Vec2crd{0, 0});
SECTION("Single cube needs to be centered") {
w.push(std::make_unique<ArrangeJob2>(arr2::Scene{
arr2::SceneBuilder{}
.set_model(m)
.set_arrange_settings(&settings)
.set_bed(cfg)}));
.set_bed(cfg, Vec2crd{0, 0})}));
w.process_events();
@@ -126,7 +126,7 @@ TEST_CASE("Basic arrange with cube", "[arrangejob]") {
arr2::Scene scene{arr2::SceneBuilder{}
.set_model(m)
.set_arrange_settings(&settings)
.set_bed(cfg)
.set_bed(cfg, Vec2crd{0, 0})
.set_selection(&sel)};
w.push(std::make_unique<ArrangeJob2>(std::move(scene)));
@@ -160,7 +160,7 @@ TEST_CASE("Basic arrange with cube", "[arrangejob]") {
arr2::Scene scene{arr2::SceneBuilder{}
.set_model(m)
.set_arrange_settings(&settings)
.set_bed(cfg)
.set_bed(cfg, Vec2crd{0, 0})
.set_selection(&sel)};
w.push(std::make_unique<ArrangeJob2>(std::move(scene)));
@@ -217,7 +217,7 @@ TEST_CASE("Basic arrange with cube", "[arrangejob]") {
arr2::Scene scene{arr2::SceneBuilder{}
.set_model(m)
.set_arrange_settings(&settings)
.set_bed(cfg)};
.set_bed(cfg, Point::new_scale(10, 10))};
w.push(std::make_unique<ArrangeJob2>(std::move(scene)));
w.process_events();
@@ -266,7 +266,7 @@ TEST_CASE("Test for modifying model during arrangement", "[arrangejob][fillbedjo
new_volume->name = new_object->name;
Points bedpts = get_bed_shape(cfg);
arr2::ArrangeBed bed = arr2::to_arrange_bed(bedpts);
arr2::ArrangeBed bed = arr2::to_arrange_bed(bedpts, Vec2crd{0, 0});
BoostThreadWorker w(std::make_unique<DummyProgress>());
RandomArrangeSettings settings;
@@ -278,7 +278,7 @@ TEST_CASE("Test for modifying model during arrangement", "[arrangejob][fillbedjo
arr2::Scene scene{arr2::SceneBuilder{}
.set_model(m)
.set_arrange_settings(&settings)
.set_bed(cfg)};
.set_bed(cfg, Vec2crd{0, 0})};
ArrangeJob2::Callbacks cbs;
cbs.on_prepared = [&m] (auto &) {