Files
QIDISlicer/src/slic3r-arrange-wrapper/include/arrange-wrapper/Items/ArrangeItem.hpp
2025-02-10 15:31:36 +08:00

510 lines
14 KiB
C++

#ifndef ARRANGEITEM_HPP
#define ARRANGEITEM_HPP
#include <boost/variant.hpp>
#include <libslic3r/ClipperUtils.hpp>
#include <assert.h>
#include <stddef.h>
#include <optional>
#include <algorithm>
#include <initializer_list>
#include <memory>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include <cassert>
#include <cstddef>
#include <libslic3r/ExPolygon.hpp>
#include <libslic3r/BoundingBox.hpp>
#include <libslic3r/AnyPtr.hpp>
#include <libslic3r/Point.hpp>
#include <libslic3r/Polygon.hpp>
#include <libslic3r/libslic3r.h>
#include <arrange/PackingContext.hpp>
#include <arrange/NFP/NFPArrangeItemTraits.hpp>
#include <arrange/NFP/NFP.hpp>
#include <arrange/ArrangeBase.hpp>
#include <arrange/ArrangeItemTraits.hpp>
#include <arrange/DataStoreTraits.hpp>
#include <arrange-wrapper/Items/MutableItemTraits.hpp>
#include <arrange-wrapper/Arrange.hpp>
#include <arrange-wrapper/Tasks/ArrangeTask.hpp>
#include <arrange-wrapper/Tasks/FillBedTask.hpp>
#include <arrange-wrapper/Tasks/MultiplySelectionTask.hpp>
#include <arrange-wrapper/Items/ArbitraryDataStore.hpp>
namespace Slic3r { namespace arr2 {
struct InfiniteBed;
inline bool check_polygons_are_convex(const Polygons &pp) {
return std::all_of(pp.begin(), pp.end(), [](const Polygon &p) {
return polygon_is_convex(p);
});
}
// A class that stores a set of polygons that are garanteed to be all convex.
// They collectively represent a decomposition of a more complex shape into
// its convex part. Note that this class only stores the result of the decomp,
// does not do the job itself. In debug mode, an explicit check is done for
// each component to be convex.
//
// Additionally class stores a translation vector and a rotation angle for the
// stored polygon, plus additional privitives that are all cached cached after
// appying a the transformations. The caching is not thread safe!
class DecomposedShape
{
Polygons m_shape;
Vec2crd m_translation{0, 0}; // The translation of the poly
double m_rotation{0.0}; // The rotation of the poly in radians
mutable Polygons m_transformed_outline;
mutable bool m_transformed_outline_valid = false;
mutable Point m_reference_vertex;
mutable std::vector<Point> m_refs;
mutable std::vector<Point> m_mins;
mutable bool m_reference_vertex_valid = false;
mutable Point m_centroid;
mutable bool m_centroid_valid = false;
mutable Polygon m_convex_hull;
mutable BoundingBox m_bounding_box;
mutable double m_area = 0;
public:
DecomposedShape() = default;
explicit DecomposedShape(Polygon sh)
{
m_shape.emplace_back(std::move(sh));
assert(check_polygons_are_convex(m_shape));
}
explicit DecomposedShape(std::initializer_list<Point> pts)
: DecomposedShape(Polygon{pts})
{}
explicit DecomposedShape(Polygons sh) : m_shape{std::move(sh)}
{
assert(check_polygons_are_convex(m_shape));
}
const Polygons &contours() const { return m_shape; }
const Vec2crd &translation() const { return m_translation; }
double rotation() const { return m_rotation; }
void translation(const Vec2crd &v)
{
m_translation = v;
m_transformed_outline_valid = false;
m_reference_vertex_valid = false;
m_centroid_valid = false;
}
void rotation(double v)
{
m_rotation = v;
m_transformed_outline_valid = false;
m_reference_vertex_valid = false;
m_centroid_valid = false;
}
const Polygons &transformed_outline() const;
const Polygon &convex_hull() const;
const BoundingBox &bounding_box() const;
// The cached reference vertex in the context of NFP creation. Always
// refers to the leftmost upper vertex.
const Vec2crd &reference_vertex() const;
const Vec2crd &reference_vertex(size_t idx) const;
// Also for NFP calculations, the rightmost lowest vertex of the shape.
const Vec2crd &min_vertex(size_t idx) const;
double area_unscaled() const
{
// update cache
transformed_outline();
return m_area;
}
Vec2crd centroid() const;
};
DecomposedShape decompose(const ExPolygons &polys);
DecomposedShape decompose(const Polygon &p);
class ArrangeItem
{
private:
DecomposedShape m_shape; // Shape of item when it's not moving
AnyPtr<DecomposedShape> m_envelope; // Possibly different shape when packed
ArbitraryDataStore m_datastore;
int m_bed_idx{Unarranged}; // To which logical bed does this item belong
int m_priority{0}; // For sorting
std::optional<int> m_bed_constraint;
public:
ArrangeItem() = default;
explicit ArrangeItem(DecomposedShape shape)
: m_shape(std::move(shape)), m_envelope{&m_shape}
{}
explicit ArrangeItem(DecomposedShape shape, DecomposedShape envelope)
: m_shape(std::move(shape))
, m_envelope{std::make_unique<DecomposedShape>(std::move(envelope))}
{}
explicit ArrangeItem(const ExPolygons &shape);
explicit ArrangeItem(Polygon shape);
explicit ArrangeItem(std::initializer_list<Point> pts)
: ArrangeItem(Polygon{pts})
{}
ArrangeItem(const ArrangeItem &);
ArrangeItem(ArrangeItem &&) noexcept;
ArrangeItem & operator=(const ArrangeItem &);
ArrangeItem & operator=(ArrangeItem &&) noexcept;
int bed_idx() const { return m_bed_idx; }
int priority() const { return m_priority; }
std::optional<int> bed_constraint() const { return m_bed_constraint; };
void bed_idx(int v) { m_bed_idx = v; }
void priority(int v) { m_priority = v; }
void bed_constraint(std::optional<int> v) { m_bed_constraint = v; }
const ArbitraryDataStore &datastore() const { return m_datastore; }
ArbitraryDataStore &datastore() { return m_datastore; }
const DecomposedShape & shape() const { return m_shape; }
void set_shape(DecomposedShape shape);
const DecomposedShape & envelope() const { return *m_envelope; }
void set_envelope(DecomposedShape envelope);
const Vec2crd &translation() const { return m_shape.translation(); }
double rotation() const { return m_shape.rotation(); }
void translation(const Vec2crd &v)
{
m_shape.translation(v);
m_envelope->translation(v);
}
void rotation(double v)
{
m_shape.rotation(v);
m_envelope->rotation(v);
}
void update_caches() const
{
m_shape.reference_vertex();
m_envelope->reference_vertex();
m_shape.centroid();
m_envelope->centroid();
}
};
template<> struct ArrangeItemTraits_<ArrangeItem>
{
static const Vec2crd &get_translation(const ArrangeItem &itm)
{
return itm.translation();
}
static double get_rotation(const ArrangeItem &itm)
{
return itm.rotation();
}
static int get_bed_index(const ArrangeItem &itm)
{
return itm.bed_idx();
}
static int get_priority(const ArrangeItem &itm)
{
return itm.priority();
}
static std::optional<int> get_bed_constraint(const ArrangeItem &itm)
{
return itm.bed_constraint();
}
// Setters:
static void set_translation(ArrangeItem &itm, const Vec2crd &v)
{
itm.translation(v);
}
static void set_rotation(ArrangeItem &itm, double v)
{
itm.rotation(v);
}
static void set_bed_index(ArrangeItem &itm, int v)
{
itm.bed_idx(v);
}
static void set_bed_constraint(ArrangeItem &itm, std::optional<int> v)
{
itm.bed_constraint(v);
}
};
// Some items can be containers of arbitrary data stored under string keys.
template<> struct DataStoreTraits_<ArrangeItem>
{
static constexpr bool Implemented = true;
template<class T>
static const T *get(const ArrangeItem &itm, const std::string &key)
{
return itm.datastore().get<T>(key);
}
// Same as above just not const.
template<class T>
static T *get(ArrangeItem &itm, const std::string &key)
{
return itm.datastore().get<T>(key);
}
static bool has_key(const ArrangeItem &itm, const std::string &key)
{
return itm.datastore().has_key(key);
}
};
template<> struct WritableDataStoreTraits_<ArrangeItem>
{
static constexpr bool Implemented = true;
template<class T>
static void set(ArrangeItem &itm,
const std::string &key,
T &&data)
{
itm.datastore().add(key, std::forward<T>(data));
}
};
template<class FixedIt, class StopCond = DefaultStopCondition>
static Polygons calculate_nfp_unnormalized(const ArrangeItem &item,
const Range<FixedIt> &fixed_items,
StopCond &&stop_cond = {})
{
size_t cap = 0;
for (const ArrangeItem &fixitem : fixed_items) {
const Polygons &outlines = fixitem.shape().transformed_outline();
cap += outlines.size();
}
const Polygons &item_outlines = item.envelope().transformed_outline();
auto nfps = reserve_polygons(cap * item_outlines.size());
Vec2crd ref_whole = item.envelope().reference_vertex();
Polygon subnfp;
for (const ArrangeItem &fixed : fixed_items) {
// fixed_polys should already be a set of strictly convex polygons,
// as ArrangeItem stores convex-decomposed polygons
const Polygons & fixed_polys = fixed.shape().transformed_outline();
for (const Polygon &fixed_poly : fixed_polys) {
Point max_fixed = Slic3r::reference_vertex(fixed_poly);
for (size_t mi = 0; mi < item_outlines.size(); ++mi) {
const Polygon &movable = item_outlines[mi];
const Vec2crd &mref = item.envelope().reference_vertex(mi);
subnfp = nfp_convex_convex_legacy(fixed_poly, movable);
Vec2crd min_movable = item.envelope().min_vertex(mi);
Vec2crd dtouch = max_fixed - min_movable;
Vec2crd top_other = mref + dtouch;
Vec2crd max_nfp = Slic3r::reference_vertex(subnfp);
auto dnfp = top_other - max_nfp;
auto d = ref_whole - mref + dnfp;
subnfp.translate(d);
nfps.emplace_back(subnfp);
}
if (stop_cond())
break;
nfps = union_(nfps);
}
if (stop_cond()) {
nfps.clear();
break;
}
}
return nfps;
}
template<> struct NFPArrangeItemTraits_<ArrangeItem> {
template<class Context, class Bed, class StopCond>
static ExPolygons calculate_nfp(const ArrangeItem &item,
const Context &packing_context,
const Bed &bed,
StopCond &&stopcond)
{
auto static_items = all_items_range(packing_context);
Polygons nfps = arr2::calculate_nfp_unnormalized(item, static_items, stopcond);
ExPolygons nfp_ex;
if (!stopcond()) {
if constexpr (!std::is_convertible_v<Bed, InfiniteBed>) {
ExPolygons ifpbed = ifp_convex(bed, item.envelope().convex_hull());
nfp_ex = diff_ex(ifpbed, nfps);
} else {
nfp_ex = union_ex(nfps);
}
}
item.update_caches();
return nfp_ex;
}
static const Vec2crd& reference_vertex(const ArrangeItem &item)
{
return item.envelope().reference_vertex();
}
static BoundingBox envelope_bounding_box(const ArrangeItem &itm)
{
return itm.envelope().bounding_box();
}
static BoundingBox fixed_bounding_box(const ArrangeItem &itm)
{
return itm.shape().bounding_box();
}
static double envelope_area(const ArrangeItem &itm)
{
return itm.envelope().area_unscaled() * scaled<double>(1.) *
scaled<double>(1.);
}
static double fixed_area(const ArrangeItem &itm)
{
return itm.shape().area_unscaled() * scaled<double>(1.) *
scaled<double>(1.);
}
static const Polygons & envelope_outline(const ArrangeItem &itm)
{
return itm.envelope().transformed_outline();
}
static const Polygons & fixed_outline(const ArrangeItem &itm)
{
return itm.shape().transformed_outline();
}
static const Polygon & envelope_convex_hull(const ArrangeItem &itm)
{
return itm.envelope().convex_hull();
}
static const Polygon & fixed_convex_hull(const ArrangeItem &itm)
{
return itm.shape().convex_hull();
}
static const std::vector<double>& allowed_rotations(const ArrangeItem &itm)
{
static const std::vector<double> ret_zero = {0.};
const std::vector<double> * ret_ptr = &ret_zero;
auto rots = get_data<std::vector<double>>(itm, "rotations");
if (rots) {
ret_ptr = rots;
}
return *ret_ptr;
}
static Vec2crd fixed_centroid(const ArrangeItem &itm)
{
return itm.shape().centroid();
}
static Vec2crd envelope_centroid(const ArrangeItem &itm)
{
return itm.envelope().centroid();
}
};
template<> struct IsMutableItem_<ArrangeItem>: public std::true_type {};
template<>
struct MutableItemTraits_<ArrangeItem> {
static void set_priority(ArrangeItem &itm, int p) { itm.priority(p); }
static void set_convex_shape(ArrangeItem &itm, const Polygon &shape)
{
itm.set_shape(DecomposedShape{shape});
}
static void set_shape(ArrangeItem &itm, const ExPolygons &shape)
{
itm.set_shape(decompose(shape));
}
static void set_convex_envelope(ArrangeItem &itm, const Polygon &envelope)
{
itm.set_envelope(DecomposedShape{envelope});
}
static void set_envelope(ArrangeItem &itm, const ExPolygons &envelope)
{
itm.set_envelope(decompose(envelope));
}
template<class T>
static void set_arbitrary_data(ArrangeItem &itm, const std::string &key, T &&data)
{
set_data(itm, key, std::forward<T>(data));
}
static void set_allowed_rotations(ArrangeItem &itm, const std::vector<double> &rotations)
{
set_data(itm, "rotations", rotations);
}
};
extern template struct ImbueableItemTraits_<ArrangeItem>;
extern template class ArrangeableToItemConverter<ArrangeItem>;
extern template struct ArrangeTask<ArrangeItem>;
extern template struct FillBedTask<ArrangeItem>;
extern template struct MultiplySelectionTask<ArrangeItem>;
extern template class Arranger<ArrangeItem>;
}} // namespace Slic3r::arr2
#endif // ARRANGEITEM_HPP