update test

This commit is contained in:
QIDI TECH
2025-02-10 15:31:36 +08:00
parent 7529de7fe1
commit 748e5f2db2
76 changed files with 9796 additions and 99 deletions

View File

@@ -0,0 +1,5 @@
{
"files.associations": {
"string_view": "cpp"
}
}

View File

@@ -0,0 +1,35 @@
project(slic3r-arrange-wrapper)
cmake_minimum_required(VERSION 3.13)
add_library(slic3r-arrange-wrapper
include/arrange-wrapper/Arrange.hpp
include/arrange-wrapper/ArrangeSettingsDb_AppCfg.hpp
include/arrange-wrapper/ArrangeSettingsView.hpp
include/arrange-wrapper/Items/ArbitraryDataStore.hpp
include/arrange-wrapper/Items/ArrangeItem.hpp
include/arrange-wrapper/Items/MutableItemTraits.hpp
include/arrange-wrapper/Items/SimpleArrangeItem.hpp
include/arrange-wrapper/Items/TrafoOnlyArrangeItem.hpp
include/arrange-wrapper/Scene.hpp
include/arrange-wrapper/SceneBuilder.hpp
include/arrange-wrapper/SegmentedRectangleBed.hpp
include/arrange-wrapper/Tasks/ArrangeTask.hpp
include/arrange-wrapper/Tasks/FillBedTask.hpp
include/arrange-wrapper/Tasks/MultiplySelectionTask.hpp
include/arrange-wrapper/ModelArrange.hpp
src/ArrangeImpl.hpp
src/ArrangeSettingsDb_AppCfg.cpp
src/Items/SimpleArrangeItem.cpp
src/SceneBuilder.cpp
src/Scene.cpp
src/Items/ArrangeItem.cpp
src/ModelArrange.cpp
src/Tasks/ArrangeTaskImpl.hpp
src/Tasks/FillBedTaskImpl.hpp
src/Tasks/MultiplySelectionTaskImpl.hpp
)
target_include_directories(slic3r-arrange-wrapper PRIVATE src)
target_include_directories(slic3r-arrange-wrapper PUBLIC include)
target_link_libraries(slic3r-arrange-wrapper PUBLIC slic3r-arrange)

View File

@@ -0,0 +1,268 @@
#ifndef ARRANGE2_HPP
#define ARRANGE2_HPP
#include <libslic3r/MinAreaBoundingBox.hpp>
#include <arrange/NFP/NFPArrangeItemTraits.hpp>
#include "Scene.hpp"
#include "Items/MutableItemTraits.hpp"
namespace Slic3r { namespace arr2 {
template<class ArrItem> class Arranger
{
public:
class Ctl : public ArrangeTaskCtl {
public:
virtual void on_packed(ArrItem &item) {};
};
virtual ~Arranger() = default;
virtual void arrange(std::vector<ArrItem> &items,
const std::vector<ArrItem> &fixed,
const ExtendedBed &bed,
Ctl &ctl) = 0;
void arrange(std::vector<ArrItem> &items,
const std::vector<ArrItem> &fixed,
const ExtendedBed &bed,
ArrangeTaskCtl &ctl);
void arrange(std::vector<ArrItem> &items,
const std::vector<ArrItem> &fixed,
const ExtendedBed &bed,
Ctl &&ctl)
{
arrange(items, fixed, bed, ctl);
}
void arrange(std::vector<ArrItem> &items,
const std::vector<ArrItem> &fixed,
const ExtendedBed &bed,
ArrangeTaskCtl &&ctl)
{
arrange(items, fixed, bed, ctl);
}
static std::unique_ptr<Arranger> create(const ArrangeSettingsView &settings);
};
template<class ArrItem> using ArrangerCtl = typename Arranger<ArrItem>::Ctl;
template<class ArrItem>
class DefaultArrangerCtl : public Arranger<ArrItem>::Ctl {
ArrangeTaskCtl *taskctl = nullptr;
public:
DefaultArrangerCtl() = default;
explicit DefaultArrangerCtl(ArrangeTaskCtl &ctl) : taskctl{&ctl} {}
void update_status(int st) override
{
if (taskctl)
taskctl->update_status(st);
}
bool was_canceled() const override
{
if (taskctl)
return taskctl->was_canceled();
return false;
}
};
template<class ArrItem>
void Arranger<ArrItem>::arrange(std::vector<ArrItem> &items,
const std::vector<ArrItem> &fixed,
const ExtendedBed &bed,
ArrangeTaskCtl &ctl)
{
arrange(items, fixed, bed, DefaultArrangerCtl<ArrItem>{ctl});
}
class EmptyItemOutlineError: public std::exception {
static constexpr const char *Msg = "No outline can be derived for object";
public:
const char* what() const noexcept override { return Msg; }
};
template<class ArrItem> class ArrangeableToItemConverter
{
public:
virtual ~ArrangeableToItemConverter() = default;
// May throw EmptyItemOutlineError
virtual ArrItem convert(const Arrangeable &arrbl, coord_t offs = 0) const = 0;
// Returns the extent of simplification that the converter utilizes when
// creating arrange items. Zero shall mean no simplification at all.
virtual coord_t simplification_tolerance() const { return 0; }
static std::unique_ptr<ArrangeableToItemConverter> create(
ArrangeSettingsView::GeometryHandling geometry_handling,
coord_t safety_d);
static std::unique_ptr<ArrangeableToItemConverter> create(
const Scene &sc)
{
return create(sc.settings().get_geometry_handling(),
scaled(sc.settings().get_distance_from_objects()));
}
};
template<class DStore, class = WritableDataStoreOnly<DStore>>
class AnyWritableDataStore: public AnyWritable
{
DStore &dstore;
public:
AnyWritableDataStore(DStore &store): dstore{store} {}
void write(std::string_view key, std::any d) override
{
set_data(dstore, std::string{key}, std::move(d));
}
};
template<class ArrItem>
class BasicItemConverter : public ArrangeableToItemConverter<ArrItem>
{
coord_t m_safety_d;
coord_t m_simplify_tol;
public:
BasicItemConverter(coord_t safety_d = 0, coord_t simpl_tol = 0)
: m_safety_d{safety_d}, m_simplify_tol{simpl_tol}
{}
coord_t safety_dist() const noexcept { return m_safety_d; }
coord_t simplification_tolerance() const override
{
return m_simplify_tol;
}
};
template<class ArrItem>
class ConvexItemConverter : public BasicItemConverter<ArrItem>
{
public:
using BasicItemConverter<ArrItem>::BasicItemConverter;
ArrItem convert(const Arrangeable &arrbl, coord_t offs) const override;
};
template<class ArrItem>
class AdvancedItemConverter : public BasicItemConverter<ArrItem>
{
protected:
virtual ArrItem get_arritem(const Arrangeable &arrbl, coord_t eps) const;
public:
using BasicItemConverter<ArrItem>::BasicItemConverter;
ArrItem convert(const Arrangeable &arrbl, coord_t offs) const override;
};
template<class ArrItem>
class BalancedItemConverter : public AdvancedItemConverter<ArrItem>
{
protected:
ArrItem get_arritem(const Arrangeable &arrbl, coord_t offs) const override;
public:
using AdvancedItemConverter<ArrItem>::AdvancedItemConverter;
};
template<class ArrItem, class En = void> struct ImbueableItemTraits_
{
static constexpr const char *Key = "object_id";
static void imbue_id(ArrItem &itm, const ObjectID &id)
{
set_arbitrary_data(itm, Key, id);
}
static std::optional<ObjectID> retrieve_id(const ArrItem &itm)
{
std::optional<ObjectID> ret;
auto idptr = get_data<const ObjectID>(itm, Key);
if (idptr)
ret = *idptr;
return ret;
}
};
template<class ArrItem>
using ImbueableItemTraits = ImbueableItemTraits_<StripCVRef<ArrItem>>;
template<class ArrItem>
void imbue_id(ArrItem &itm, const ObjectID &id)
{
ImbueableItemTraits<ArrItem>::imbue_id(itm, id);
}
template<class ArrItem>
std::optional<ObjectID> retrieve_id(const ArrItem &itm)
{
return ImbueableItemTraits<ArrItem>::retrieve_id(itm);
}
template<class ArrItem>
bool apply_arrangeitem(const ArrItem &itm, ArrangeableModel &mdl)
{
bool ret = false;
if (auto id = retrieve_id(itm)) {
mdl.visit_arrangeable(*id, [&itm, &ret](Arrangeable &arrbl) {
if ((ret = arrbl.assign_bed(get_bed_index(itm))))
arrbl.transform(unscaled(get_translation(itm)), get_rotation(itm));
});
}
return ret;
}
template<class ArrItem>
double get_min_area_bounding_box_rotation(const ArrItem &itm)
{
return MinAreaBoundigBox{envelope_convex_hull(itm),
MinAreaBoundigBox::pcConvex}
.angle_to_X();
}
template<class ArrItem>
double get_fit_into_bed_rotation(const ArrItem &itm, const RectangleBed &bed)
{
double ret = 0.;
auto bbsz = envelope_bounding_box(itm).size();
auto binbb = bounding_box(bed);
auto binbbsz = binbb.size();
if (bbsz.x() >= binbbsz.x() || bbsz.y() >= binbbsz.y())
ret = fit_into_box_rotation(envelope_convex_hull(itm), binbb);
return ret;
}
template<class ArrItem>
auto get_corrected_bed(const ExtendedBed &bed,
const ArrangeableToItemConverter<ArrItem> &converter)
{
auto bedcpy = bed;
visit_bed([tol = -converter.simplification_tolerance()](auto &rawbed) {
rawbed = offset(rawbed, tol);
}, bedcpy);
return bedcpy;
}
}} // namespace Slic3r::arr2
#endif // ARRANGE2_HPP

View File

@@ -0,0 +1,96 @@
#ifndef ARRANGESETTINGSDB_APPCFG_HPP
#define ARRANGESETTINGSDB_APPCFG_HPP
#include <string>
#include "ArrangeSettingsView.hpp"
#include "libslic3r/AppConfig.hpp"
#include "libslic3r/PrintConfig.hpp"
namespace Slic3r {
class AppConfig;
class ArrangeSettingsDb_AppCfg: public arr2::ArrangeSettingsDb
{
public:
enum Slots { slotFFF, slotFFFSeqPrint, slotSLA };
private:
AppConfig *m_appcfg;
Slots m_current_slot = slotFFF;
struct FloatRange { float minval = 0.f, maxval = 100.f; };
struct Slot
{
Values vals;
Values defaults;
FloatRange dobj_range, dbed_range;
std::string postfix;
};
// Settings and their defaults are stored separately for fff,
// sla and fff sequential mode
Slot m_settings_fff, m_settings_fff_seq, m_settings_sla;
template<class Self>
static auto & get_slot(Self *self, Slots slot) {
switch(slot) {
case slotFFF: return self->m_settings_fff;
case slotFFFSeqPrint: return self->m_settings_fff_seq;
case slotSLA: return self->m_settings_sla;
}
return self->m_settings_fff;
}
template<class Self> static auto &get_slot(Self *self)
{
return get_slot(self, self->m_current_slot);
}
template<class Self>
static auto& get_ref(Self *self) { return get_slot(self).vals; }
public:
explicit ArrangeSettingsDb_AppCfg(AppConfig *appcfg);
void sync();
float get_distance_from_objects() const override { return get_ref(this).d_obj; }
float get_distance_from_bed() const override { return get_ref(this).d_bed; }
bool is_rotation_enabled() const override { return get_ref(this).rotations; }
XLPivots get_xl_alignment() const override { return m_settings_fff.vals.xl_align; }
GeometryHandling get_geometry_handling() const override { return m_settings_fff.vals.geom_handling; }
ArrangeStrategy get_arrange_strategy() const override { return m_settings_fff.vals.arr_strategy; }
void distance_from_obj_range(float &min, float &max) const override;
void distance_from_bed_range(float &min, float &max) const override;
ArrangeSettingsDb& set_distance_from_objects(float v) override;
ArrangeSettingsDb& set_distance_from_bed(float v) override;
ArrangeSettingsDb& set_rotation_enabled(bool v) override;
ArrangeSettingsDb& set_xl_alignment(XLPivots v) override;
ArrangeSettingsDb& set_geometry_handling(GeometryHandling v) override;
ArrangeSettingsDb& set_arrange_strategy(ArrangeStrategy v) override;
Values get_defaults() const override { return get_slot(this).defaults; }
void set_active_slot(Slots slot) noexcept { m_current_slot = slot; }
void set_distance_from_obj_range(Slots slot, float min, float max)
{
get_slot(this, slot).dobj_range = FloatRange{min, max};
}
void set_distance_from_bed_range(Slots slot, float min, float max)
{
get_slot(this, slot).dbed_range = FloatRange{min, max};
}
Values &get_defaults(Slots slot) { return get_slot(this, slot).defaults; }
};
} // namespace Slic3r
#endif // ARRANGESETTINGSDB_APPCFG_HPP

View File

@@ -0,0 +1,234 @@
#ifndef ARRANGESETTINGSVIEW_HPP
#define ARRANGESETTINGSVIEW_HPP
#include <string_view>
#include <array>
#include "libslic3r/StaticMap.hpp"
namespace Slic3r { namespace arr2 {
using namespace std::string_view_literals;
class ArrangeSettingsView
{
public:
enum GeometryHandling { ghConvex, ghBalanced, ghAdvanced, ghCount };
enum ArrangeStrategy { asAuto, asPullToCenter, asCount };
enum XLPivots {
xlpCenter,
xlpRearLeft,
xlpFrontLeft,
xlpFrontRight,
xlpRearRight,
xlpRandom,
xlpCount
};
virtual ~ArrangeSettingsView() = default;
virtual float get_distance_from_objects() const = 0;
virtual float get_distance_from_bed() const = 0;
virtual bool is_rotation_enabled() const = 0;
virtual XLPivots get_xl_alignment() const = 0;
virtual GeometryHandling get_geometry_handling() const = 0;
virtual ArrangeStrategy get_arrange_strategy() const = 0;
static constexpr std::string_view get_label(GeometryHandling v)
{
constexpr auto STR = std::array{
"0"sv, // convex
"1"sv, // balanced
"2"sv, // advanced
"-1"sv, // undefined
};
return STR[v];
}
static constexpr std::string_view get_label(ArrangeStrategy v)
{
constexpr auto STR = std::array{
"0"sv, // auto
"1"sv, // pulltocenter
"-1"sv, // undefined
};
return STR[v];
}
static constexpr std::string_view get_label(XLPivots v)
{
constexpr auto STR = std::array{
"0"sv, // center
"1"sv, // rearleft
"2"sv, // frontleft
"3"sv, // frontright
"4"sv, // rearright
"5"sv, // random
"-1"sv, // undefined
};
return STR[v];
}
private:
template<class EnumType, size_t N>
using EnumMap = StaticMap<std::string_view, EnumType, N>;
template<class EnumType, size_t N>
static constexpr std::optional<EnumType> get_enumval(std::string_view str,
const EnumMap<EnumType, N> &emap)
{
std::optional<EnumType> ret;
if (auto v = query(emap, str); v.has_value()) {
ret = *v;
}
return ret;
}
public:
static constexpr std::optional<GeometryHandling> to_geometry_handling(std::string_view str)
{
return get_enumval(str, GeometryHandlingLabels);
}
static constexpr std::optional<ArrangeStrategy> to_arrange_strategy(std::string_view str)
{
return get_enumval(str, ArrangeStrategyLabels);
}
static constexpr std::optional<XLPivots> to_xl_pivots(std::string_view str)
{
return get_enumval(str, XLPivotsLabels);
}
private:
static constexpr const auto GeometryHandlingLabels = make_staticmap<std::string_view, GeometryHandling>({
{"convex"sv, ghConvex},
{"balanced"sv, ghBalanced},
{"advanced"sv, ghAdvanced},
{"0"sv, ghConvex},
{"1"sv, ghBalanced},
{"2"sv, ghAdvanced},
});
static constexpr const auto ArrangeStrategyLabels = make_staticmap<std::string_view, ArrangeStrategy>({
{"auto"sv, asAuto},
{"pulltocenter"sv, asPullToCenter},
{"0"sv, asAuto},
{"1"sv, asPullToCenter}
});
static constexpr const auto XLPivotsLabels = make_staticmap<std::string_view, XLPivots>({
{"center"sv, xlpCenter },
{"rearleft"sv, xlpRearLeft },
{"frontleft"sv, xlpFrontLeft },
{"frontright"sv, xlpFrontRight },
{"rearright"sv, xlpRearRight },
{"random"sv, xlpRandom },
{"0"sv, xlpCenter },
{"1"sv, xlpRearLeft },
{"2"sv, xlpFrontLeft },
{"3"sv, xlpFrontRight },
{"4"sv, xlpRearRight },
{"5"sv, xlpRandom }
});
};
class ArrangeSettingsDb: public ArrangeSettingsView
{
public:
virtual void distance_from_obj_range(float &min, float &max) const = 0;
virtual void distance_from_bed_range(float &min, float &max) const = 0;
virtual ArrangeSettingsDb& set_distance_from_objects(float v) = 0;
virtual ArrangeSettingsDb& set_distance_from_bed(float v) = 0;
virtual ArrangeSettingsDb& set_rotation_enabled(bool v) = 0;
virtual ArrangeSettingsDb& set_xl_alignment(XLPivots v) = 0;
virtual ArrangeSettingsDb& set_geometry_handling(GeometryHandling v) = 0;
virtual ArrangeSettingsDb& set_arrange_strategy(ArrangeStrategy v) = 0;
struct Values {
float d_obj = 6.f, d_bed = 0.f;
bool rotations = false;
XLPivots xl_align = XLPivots::xlpFrontLeft;
GeometryHandling geom_handling = GeometryHandling::ghConvex;
ArrangeStrategy arr_strategy = ArrangeStrategy::asAuto;
Values() = default;
Values(const ArrangeSettingsView &sv)
{
d_bed = sv.get_distance_from_bed();
d_obj = sv.get_distance_from_objects();
arr_strategy = sv.get_arrange_strategy();
geom_handling = sv.get_geometry_handling();
rotations = sv.is_rotation_enabled();
xl_align = sv.get_xl_alignment();
}
};
virtual Values get_defaults() const { return {}; }
ArrangeSettingsDb& set_from(const ArrangeSettingsView &sv)
{
set_distance_from_bed(sv.get_distance_from_bed());
set_distance_from_objects(sv.get_distance_from_objects());
set_arrange_strategy(sv.get_arrange_strategy());
set_geometry_handling(sv.get_geometry_handling());
set_rotation_enabled(sv.is_rotation_enabled());
set_xl_alignment(sv.get_xl_alignment());
return *this;
}
};
class ArrangeSettings: public Slic3r::arr2::ArrangeSettingsDb
{
ArrangeSettingsDb::Values m_v = {};
public:
explicit ArrangeSettings(
const ArrangeSettingsDb::Values &v = {})
: m_v{v}
{}
explicit ArrangeSettings(const ArrangeSettingsView &v)
: m_v{v}
{}
float get_distance_from_objects() const override { return m_v.d_obj; }
float get_distance_from_bed() const override { return m_v.d_bed; }
bool is_rotation_enabled() const override { return m_v.rotations; }
XLPivots get_xl_alignment() const override { return m_v.xl_align; }
GeometryHandling get_geometry_handling() const override { return m_v.geom_handling; }
ArrangeStrategy get_arrange_strategy() const override { return m_v.arr_strategy; }
void distance_from_obj_range(float &min, float &max) const override { min = 0.f; max = 100.f; }
void distance_from_bed_range(float &min, float &max) const override { min = 0.f; max = 100.f; }
ArrangeSettings& set_distance_from_objects(float v) override { m_v.d_obj = v; return *this; }
ArrangeSettings& set_distance_from_bed(float v) override { m_v.d_bed = v; return *this; }
ArrangeSettings& set_rotation_enabled(bool v) override { m_v.rotations = v; return *this; }
ArrangeSettings& set_xl_alignment(XLPivots v) override { m_v.xl_align = v; return *this; }
ArrangeSettings& set_geometry_handling(GeometryHandling v) override { m_v.geom_handling = v; return *this; }
ArrangeSettings& set_arrange_strategy(ArrangeStrategy v) override { m_v.arr_strategy = v; return *this; }
auto & values() const { return m_v; }
auto & values() { return m_v; }
};
}} // namespace Slic3r::arr2
#endif // ARRANGESETTINGSVIEW_HPP

View File

@@ -0,0 +1,91 @@
#ifndef ARBITRARYDATASTORE_HPP
#define ARBITRARYDATASTORE_HPP
#include <string>
#include <map>
#include <any>
#include <arrange/DataStoreTraits.hpp>
namespace Slic3r { namespace arr2 {
// An associative container able to store and retrieve any data type.
// Based on std::any
class ArbitraryDataStore {
std::map<std::string, std::any> m_data;
public:
template<class T> void add(const std::string &key, T &&data)
{
m_data[key] = std::any{std::forward<T>(data)};
}
void add(const std::string &key, std::any &&data)
{
m_data[key] = std::move(data);
}
// Return nullptr if the key does not exist or the stored data has a
// type other then T. Otherwise returns a pointer to the stored data.
template<class T> const T *get(const std::string &key) const
{
auto it = m_data.find(key);
return it != m_data.end() ? std::any_cast<T>(&(it->second)) :
nullptr;
}
// Same as above just not const.
template<class T> T *get(const std::string &key)
{
auto it = m_data.find(key);
return it != m_data.end() ? std::any_cast<T>(&(it->second)) : nullptr;
}
bool has_key(const std::string &key) const
{
auto it = m_data.find(key);
return it != m_data.end();
}
};
// Some items can be containers of arbitrary data stored under string keys.
template<> struct DataStoreTraits_<ArbitraryDataStore>
{
static constexpr bool Implemented = true;
template<class T>
static const T *get(const ArbitraryDataStore &s, const std::string &key)
{
return s.get<T>(key);
}
// Same as above just not const.
template<class T>
static T *get(ArbitraryDataStore &s, const std::string &key)
{
return s.get<T>(key);
}
template<class T>
static bool has_key(ArbitraryDataStore &s, const std::string &key)
{
return s.has_key(key);
}
};
template<> struct WritableDataStoreTraits_<ArbitraryDataStore>
{
static constexpr bool Implemented = true;
template<class T>
static void set(ArbitraryDataStore &store,
const std::string &key,
T &&data)
{
store.add(key, std::forward<T>(data));
}
};
}} // namespace Slic3r::arr2
#endif // ARBITRARYDATASTORE_HPP

View File

@@ -0,0 +1,509 @@
#ifndef ARRANGEITEM_HPP
#define ARRANGEITEM_HPP
#include <boost/variant.hpp>
#include <libslic3r/ClipperUtils.hpp>
#include <assert.h>
#include <stddef.h>
#include <optional>
#include <algorithm>
#include <initializer_list>
#include <memory>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include <cassert>
#include <cstddef>
#include <libslic3r/ExPolygon.hpp>
#include <libslic3r/BoundingBox.hpp>
#include <libslic3r/AnyPtr.hpp>
#include <libslic3r/Point.hpp>
#include <libslic3r/Polygon.hpp>
#include <libslic3r/libslic3r.h>
#include <arrange/PackingContext.hpp>
#include <arrange/NFP/NFPArrangeItemTraits.hpp>
#include <arrange/NFP/NFP.hpp>
#include <arrange/ArrangeBase.hpp>
#include <arrange/ArrangeItemTraits.hpp>
#include <arrange/DataStoreTraits.hpp>
#include <arrange-wrapper/Items/MutableItemTraits.hpp>
#include <arrange-wrapper/Arrange.hpp>
#include <arrange-wrapper/Tasks/ArrangeTask.hpp>
#include <arrange-wrapper/Tasks/FillBedTask.hpp>
#include <arrange-wrapper/Tasks/MultiplySelectionTask.hpp>
#include <arrange-wrapper/Items/ArbitraryDataStore.hpp>
namespace Slic3r { namespace arr2 {
struct InfiniteBed;
inline bool check_polygons_are_convex(const Polygons &pp) {
return std::all_of(pp.begin(), pp.end(), [](const Polygon &p) {
return polygon_is_convex(p);
});
}
// A class that stores a set of polygons that are garanteed to be all convex.
// They collectively represent a decomposition of a more complex shape into
// its convex part. Note that this class only stores the result of the decomp,
// does not do the job itself. In debug mode, an explicit check is done for
// each component to be convex.
//
// Additionally class stores a translation vector and a rotation angle for the
// stored polygon, plus additional privitives that are all cached cached after
// appying a the transformations. The caching is not thread safe!
class DecomposedShape
{
Polygons m_shape;
Vec2crd m_translation{0, 0}; // The translation of the poly
double m_rotation{0.0}; // The rotation of the poly in radians
mutable Polygons m_transformed_outline;
mutable bool m_transformed_outline_valid = false;
mutable Point m_reference_vertex;
mutable std::vector<Point> m_refs;
mutable std::vector<Point> m_mins;
mutable bool m_reference_vertex_valid = false;
mutable Point m_centroid;
mutable bool m_centroid_valid = false;
mutable Polygon m_convex_hull;
mutable BoundingBox m_bounding_box;
mutable double m_area = 0;
public:
DecomposedShape() = default;
explicit DecomposedShape(Polygon sh)
{
m_shape.emplace_back(std::move(sh));
assert(check_polygons_are_convex(m_shape));
}
explicit DecomposedShape(std::initializer_list<Point> pts)
: DecomposedShape(Polygon{pts})
{}
explicit DecomposedShape(Polygons sh) : m_shape{std::move(sh)}
{
assert(check_polygons_are_convex(m_shape));
}
const Polygons &contours() const { return m_shape; }
const Vec2crd &translation() const { return m_translation; }
double rotation() const { return m_rotation; }
void translation(const Vec2crd &v)
{
m_translation = v;
m_transformed_outline_valid = false;
m_reference_vertex_valid = false;
m_centroid_valid = false;
}
void rotation(double v)
{
m_rotation = v;
m_transformed_outline_valid = false;
m_reference_vertex_valid = false;
m_centroid_valid = false;
}
const Polygons &transformed_outline() const;
const Polygon &convex_hull() const;
const BoundingBox &bounding_box() const;
// The cached reference vertex in the context of NFP creation. Always
// refers to the leftmost upper vertex.
const Vec2crd &reference_vertex() const;
const Vec2crd &reference_vertex(size_t idx) const;
// Also for NFP calculations, the rightmost lowest vertex of the shape.
const Vec2crd &min_vertex(size_t idx) const;
double area_unscaled() const
{
// update cache
transformed_outline();
return m_area;
}
Vec2crd centroid() const;
};
DecomposedShape decompose(const ExPolygons &polys);
DecomposedShape decompose(const Polygon &p);
class ArrangeItem
{
private:
DecomposedShape m_shape; // Shape of item when it's not moving
AnyPtr<DecomposedShape> m_envelope; // Possibly different shape when packed
ArbitraryDataStore m_datastore;
int m_bed_idx{Unarranged}; // To which logical bed does this item belong
int m_priority{0}; // For sorting
std::optional<int> m_bed_constraint;
public:
ArrangeItem() = default;
explicit ArrangeItem(DecomposedShape shape)
: m_shape(std::move(shape)), m_envelope{&m_shape}
{}
explicit ArrangeItem(DecomposedShape shape, DecomposedShape envelope)
: m_shape(std::move(shape))
, m_envelope{std::make_unique<DecomposedShape>(std::move(envelope))}
{}
explicit ArrangeItem(const ExPolygons &shape);
explicit ArrangeItem(Polygon shape);
explicit ArrangeItem(std::initializer_list<Point> pts)
: ArrangeItem(Polygon{pts})
{}
ArrangeItem(const ArrangeItem &);
ArrangeItem(ArrangeItem &&) noexcept;
ArrangeItem & operator=(const ArrangeItem &);
ArrangeItem & operator=(ArrangeItem &&) noexcept;
int bed_idx() const { return m_bed_idx; }
int priority() const { return m_priority; }
std::optional<int> bed_constraint() const { return m_bed_constraint; };
void bed_idx(int v) { m_bed_idx = v; }
void priority(int v) { m_priority = v; }
void bed_constraint(std::optional<int> v) { m_bed_constraint = v; }
const ArbitraryDataStore &datastore() const { return m_datastore; }
ArbitraryDataStore &datastore() { return m_datastore; }
const DecomposedShape & shape() const { return m_shape; }
void set_shape(DecomposedShape shape);
const DecomposedShape & envelope() const { return *m_envelope; }
void set_envelope(DecomposedShape envelope);
const Vec2crd &translation() const { return m_shape.translation(); }
double rotation() const { return m_shape.rotation(); }
void translation(const Vec2crd &v)
{
m_shape.translation(v);
m_envelope->translation(v);
}
void rotation(double v)
{
m_shape.rotation(v);
m_envelope->rotation(v);
}
void update_caches() const
{
m_shape.reference_vertex();
m_envelope->reference_vertex();
m_shape.centroid();
m_envelope->centroid();
}
};
template<> struct ArrangeItemTraits_<ArrangeItem>
{
static const Vec2crd &get_translation(const ArrangeItem &itm)
{
return itm.translation();
}
static double get_rotation(const ArrangeItem &itm)
{
return itm.rotation();
}
static int get_bed_index(const ArrangeItem &itm)
{
return itm.bed_idx();
}
static int get_priority(const ArrangeItem &itm)
{
return itm.priority();
}
static std::optional<int> get_bed_constraint(const ArrangeItem &itm)
{
return itm.bed_constraint();
}
// Setters:
static void set_translation(ArrangeItem &itm, const Vec2crd &v)
{
itm.translation(v);
}
static void set_rotation(ArrangeItem &itm, double v)
{
itm.rotation(v);
}
static void set_bed_index(ArrangeItem &itm, int v)
{
itm.bed_idx(v);
}
static void set_bed_constraint(ArrangeItem &itm, std::optional<int> v)
{
itm.bed_constraint(v);
}
};
// Some items can be containers of arbitrary data stored under string keys.
template<> struct DataStoreTraits_<ArrangeItem>
{
static constexpr bool Implemented = true;
template<class T>
static const T *get(const ArrangeItem &itm, const std::string &key)
{
return itm.datastore().get<T>(key);
}
// Same as above just not const.
template<class T>
static T *get(ArrangeItem &itm, const std::string &key)
{
return itm.datastore().get<T>(key);
}
static bool has_key(const ArrangeItem &itm, const std::string &key)
{
return itm.datastore().has_key(key);
}
};
template<> struct WritableDataStoreTraits_<ArrangeItem>
{
static constexpr bool Implemented = true;
template<class T>
static void set(ArrangeItem &itm,
const std::string &key,
T &&data)
{
itm.datastore().add(key, std::forward<T>(data));
}
};
template<class FixedIt, class StopCond = DefaultStopCondition>
static Polygons calculate_nfp_unnormalized(const ArrangeItem &item,
const Range<FixedIt> &fixed_items,
StopCond &&stop_cond = {})
{
size_t cap = 0;
for (const ArrangeItem &fixitem : fixed_items) {
const Polygons &outlines = fixitem.shape().transformed_outline();
cap += outlines.size();
}
const Polygons &item_outlines = item.envelope().transformed_outline();
auto nfps = reserve_polygons(cap * item_outlines.size());
Vec2crd ref_whole = item.envelope().reference_vertex();
Polygon subnfp;
for (const ArrangeItem &fixed : fixed_items) {
// fixed_polys should already be a set of strictly convex polygons,
// as ArrangeItem stores convex-decomposed polygons
const Polygons & fixed_polys = fixed.shape().transformed_outline();
for (const Polygon &fixed_poly : fixed_polys) {
Point max_fixed = Slic3r::reference_vertex(fixed_poly);
for (size_t mi = 0; mi < item_outlines.size(); ++mi) {
const Polygon &movable = item_outlines[mi];
const Vec2crd &mref = item.envelope().reference_vertex(mi);
subnfp = nfp_convex_convex_legacy(fixed_poly, movable);
Vec2crd min_movable = item.envelope().min_vertex(mi);
Vec2crd dtouch = max_fixed - min_movable;
Vec2crd top_other = mref + dtouch;
Vec2crd max_nfp = Slic3r::reference_vertex(subnfp);
auto dnfp = top_other - max_nfp;
auto d = ref_whole - mref + dnfp;
subnfp.translate(d);
nfps.emplace_back(subnfp);
}
if (stop_cond())
break;
nfps = union_(nfps);
}
if (stop_cond()) {
nfps.clear();
break;
}
}
return nfps;
}
template<> struct NFPArrangeItemTraits_<ArrangeItem> {
template<class Context, class Bed, class StopCond>
static ExPolygons calculate_nfp(const ArrangeItem &item,
const Context &packing_context,
const Bed &bed,
StopCond &&stopcond)
{
auto static_items = all_items_range(packing_context);
Polygons nfps = arr2::calculate_nfp_unnormalized(item, static_items, stopcond);
ExPolygons nfp_ex;
if (!stopcond()) {
if constexpr (!std::is_convertible_v<Bed, InfiniteBed>) {
ExPolygons ifpbed = ifp_convex(bed, item.envelope().convex_hull());
nfp_ex = diff_ex(ifpbed, nfps);
} else {
nfp_ex = union_ex(nfps);
}
}
item.update_caches();
return nfp_ex;
}
static const Vec2crd& reference_vertex(const ArrangeItem &item)
{
return item.envelope().reference_vertex();
}
static BoundingBox envelope_bounding_box(const ArrangeItem &itm)
{
return itm.envelope().bounding_box();
}
static BoundingBox fixed_bounding_box(const ArrangeItem &itm)
{
return itm.shape().bounding_box();
}
static double envelope_area(const ArrangeItem &itm)
{
return itm.envelope().area_unscaled() * scaled<double>(1.) *
scaled<double>(1.);
}
static double fixed_area(const ArrangeItem &itm)
{
return itm.shape().area_unscaled() * scaled<double>(1.) *
scaled<double>(1.);
}
static const Polygons & envelope_outline(const ArrangeItem &itm)
{
return itm.envelope().transformed_outline();
}
static const Polygons & fixed_outline(const ArrangeItem &itm)
{
return itm.shape().transformed_outline();
}
static const Polygon & envelope_convex_hull(const ArrangeItem &itm)
{
return itm.envelope().convex_hull();
}
static const Polygon & fixed_convex_hull(const ArrangeItem &itm)
{
return itm.shape().convex_hull();
}
static const std::vector<double>& allowed_rotations(const ArrangeItem &itm)
{
static const std::vector<double> ret_zero = {0.};
const std::vector<double> * ret_ptr = &ret_zero;
auto rots = get_data<std::vector<double>>(itm, "rotations");
if (rots) {
ret_ptr = rots;
}
return *ret_ptr;
}
static Vec2crd fixed_centroid(const ArrangeItem &itm)
{
return itm.shape().centroid();
}
static Vec2crd envelope_centroid(const ArrangeItem &itm)
{
return itm.envelope().centroid();
}
};
template<> struct IsMutableItem_<ArrangeItem>: public std::true_type {};
template<>
struct MutableItemTraits_<ArrangeItem> {
static void set_priority(ArrangeItem &itm, int p) { itm.priority(p); }
static void set_convex_shape(ArrangeItem &itm, const Polygon &shape)
{
itm.set_shape(DecomposedShape{shape});
}
static void set_shape(ArrangeItem &itm, const ExPolygons &shape)
{
itm.set_shape(decompose(shape));
}
static void set_convex_envelope(ArrangeItem &itm, const Polygon &envelope)
{
itm.set_envelope(DecomposedShape{envelope});
}
static void set_envelope(ArrangeItem &itm, const ExPolygons &envelope)
{
itm.set_envelope(decompose(envelope));
}
template<class T>
static void set_arbitrary_data(ArrangeItem &itm, const std::string &key, T &&data)
{
set_data(itm, key, std::forward<T>(data));
}
static void set_allowed_rotations(ArrangeItem &itm, const std::vector<double> &rotations)
{
set_data(itm, "rotations", rotations);
}
};
extern template struct ImbueableItemTraits_<ArrangeItem>;
extern template class ArrangeableToItemConverter<ArrangeItem>;
extern template struct ArrangeTask<ArrangeItem>;
extern template struct FillBedTask<ArrangeItem>;
extern template struct MultiplySelectionTask<ArrangeItem>;
extern template class Arranger<ArrangeItem>;
}} // namespace Slic3r::arr2
#endif // ARRANGEITEM_HPP

View File

@@ -0,0 +1,136 @@
#ifndef MutableItemTraits_HPP
#define MutableItemTraits_HPP
#include <libslic3r/ExPolygon.hpp>
#include <arrange/ArrangeItemTraits.hpp>
#include <arrange/DataStoreTraits.hpp>
namespace Slic3r { namespace arr2 {
template<class Itm> struct IsMutableItem_ : public std::false_type
{};
// Using this interface to set up any arrange item. Provides default
// implementation but it needs to be explicitly switched on with
// IsMutableItem_ or completely reimplement a specialization.
template<class Itm, class En = void> struct MutableItemTraits_
{
static_assert(IsMutableItem_<Itm>::value, "Not a Writable item type!");
static void set_priority(Itm &itm, int p) { itm.set_priority(p); }
static void set_convex_shape(Itm &itm, const Polygon &shape)
{
itm.set_convex_shape(shape);
}
static void set_shape(Itm &itm, const ExPolygons &shape)
{
itm.set_shape(shape);
}
static void set_convex_envelope(Itm &itm, const Polygon &envelope)
{
itm.set_convex_envelope(envelope);
}
static void set_envelope(Itm &itm, const ExPolygons &envelope)
{
itm.set_envelope(envelope);
}
template<class T>
static void set_arbitrary_data(Itm &itm, const std::string &key, T &&data)
{
if constexpr (IsWritableDataStore<Itm>)
set_data(itm, key, std::forward<T>(data));
}
static void set_allowed_rotations(Itm &itm,
const std::vector<double> &rotations)
{
itm.set_allowed_rotations(rotations);
}
};
template<class T>
using MutableItemTraits = MutableItemTraits_<StripCVRef<T>>;
template<class T> constexpr bool IsMutableItem = IsMutableItem_<T>::value;
template<class T, class TT = T>
using MutableItemOnly = std::enable_if_t<IsMutableItem<T>, TT>;
template<class Itm> void set_priority(Itm &itm, int p)
{
MutableItemTraits<Itm>::set_priority(itm, p);
}
template<class Itm> void set_convex_shape(Itm &itm, const Polygon &shape)
{
MutableItemTraits<Itm>::set_convex_shape(itm, shape);
}
template<class Itm> void set_shape(Itm &itm, const ExPolygons &shape)
{
MutableItemTraits<Itm>::set_shape(itm, shape);
}
template<class Itm>
void set_convex_envelope(Itm &itm, const Polygon &envelope)
{
MutableItemTraits<Itm>::set_convex_envelope(itm, envelope);
}
template<class Itm> void set_envelope(Itm &itm, const ExPolygons &envelope)
{
MutableItemTraits<Itm>::set_envelope(itm, envelope);
}
template<class T, class Itm>
void set_arbitrary_data(Itm &itm, const std::string &key, T &&data)
{
MutableItemTraits<Itm>::set_arbitrary_data(itm, key, std::forward<T>(data));
}
template<class Itm>
void set_allowed_rotations(Itm &itm, const std::vector<double> &rotations)
{
MutableItemTraits<Itm>::set_allowed_rotations(itm, rotations);
}
template<class ArrItem> int raise_priority(ArrItem &itm)
{
int ret = get_priority(itm) + 1;
set_priority(itm, ret);
return ret;
}
template<class ArrItem> int reduce_priority(ArrItem &itm)
{
int ret = get_priority(itm) - 1;
set_priority(itm, ret);
return ret;
}
template<class It> int lowest_priority(const Range<It> &item_range)
{
auto minp_it = std::min_element(item_range.begin(),
item_range.end(),
[](auto &itm1, auto &itm2) {
return get_priority(itm1) <
get_priority(itm2);
});
int min_priority = 0;
if (minp_it != item_range.end())
min_priority = get_priority(*minp_it);
return min_priority;
}
}} // namespace Slic3r::arr2
#endif // MutableItemTraits_HPP

View File

@@ -0,0 +1,233 @@
#ifndef SIMPLEARRANGEITEM_HPP
#define SIMPLEARRANGEITEM_HPP
#include <optional>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include <libslic3r/Polygon.hpp>
#include <libslic3r/Geometry/ConvexHull.hpp>
#include <libslic3r/BoundingBox.hpp>
#include <libslic3r/ClipperUtils.hpp>
#include <libslic3r/ObjectID.hpp>
#include <libslic3r/Point.hpp>
#include <arrange/ArrangeItemTraits.hpp>
#include <arrange/PackingContext.hpp>
#include <arrange/NFP/NFPArrangeItemTraits.hpp>
#include <arrange/NFP/NFP.hpp>
#include <arrange-wrapper/Arrange.hpp>
#include <arrange-wrapper/Tasks/FillBedTask.hpp>
#include <arrange-wrapper/Tasks/ArrangeTask.hpp>
#include <arrange-wrapper/Items/MutableItemTraits.hpp>
namespace Slic3r { namespace arr2 {
struct InfiniteBed;
class SimpleArrangeItem {
Polygon m_shape;
Vec2crd m_translation = Vec2crd::Zero();
double m_rotation = 0.;
int m_priority = 0;
int m_bed_idx = Unarranged;
std::optional<int> m_bed_constraint;
std::vector<double> m_allowed_rotations = {0.};
ObjectID m_obj_id;
public:
explicit SimpleArrangeItem(Polygon chull = {}): m_shape{std::move(chull)} {}
void set_shape(Polygon chull) { m_shape = std::move(chull); }
const Vec2crd& get_translation() const noexcept { return m_translation; }
double get_rotation() const noexcept { return m_rotation; }
int get_priority() const noexcept { return m_priority; }
int get_bed_index() const noexcept { return m_bed_idx; }
std::optional<int> get_bed_constraint() const noexcept {
return m_bed_constraint;
}
void set_translation(const Vec2crd &v) { m_translation = v; }
void set_rotation(double v) noexcept { m_rotation = v; }
void set_priority(int v) noexcept { m_priority = v; }
void set_bed_index(int v) noexcept { m_bed_idx = v; }
void set_bed_constraint(std::optional<int> v) noexcept { m_bed_constraint = v; }
const Polygon &shape() const { return m_shape; }
Polygon outline() const;
const auto &allowed_rotations() const noexcept
{
return m_allowed_rotations;
}
void set_allowed_rotations(std::vector<double> rots)
{
m_allowed_rotations = std::move(rots);
}
void set_object_id(const ObjectID &id) noexcept { m_obj_id = id; }
const ObjectID & get_object_id() const noexcept { return m_obj_id; }
};
template<> struct NFPArrangeItemTraits_<SimpleArrangeItem>
{
template<class Context, class Bed, class StopCond>
static ExPolygons calculate_nfp(const SimpleArrangeItem &item,
const Context &packing_context,
const Bed &bed,
StopCond &&stop_cond)
{
auto fixed_items = all_items_range(packing_context);
auto nfps = reserve_polygons(fixed_items.size());
for (const SimpleArrangeItem &fixed_part : fixed_items) {
Polygon subnfp = nfp_convex_convex_legacy(fixed_part.outline(),
item.outline());
nfps.emplace_back(subnfp);
if (stop_cond()) {
nfps.clear();
break;
}
}
ExPolygons nfp_ex;
if (!stop_cond()) {
if constexpr (!std::is_convertible_v<Bed, InfiniteBed>) {
ExPolygons ifpbed = ifp_convex(bed, item.outline());
nfp_ex = diff_ex(ifpbed, nfps);
} else {
nfp_ex = union_ex(nfps);
}
}
return nfp_ex;
}
static Vec2crd reference_vertex(const SimpleArrangeItem &item)
{
return Slic3r::reference_vertex(item.outline());
}
static BoundingBox envelope_bounding_box(const SimpleArrangeItem &itm)
{
return get_extents(itm.outline());
}
static BoundingBox fixed_bounding_box(const SimpleArrangeItem &itm)
{
return get_extents(itm.outline());
}
static Polygons envelope_outline(const SimpleArrangeItem &itm)
{
return {itm.outline()};
}
static Polygons fixed_outline(const SimpleArrangeItem &itm)
{
return {itm.outline()};
}
static Polygon envelope_convex_hull(const SimpleArrangeItem &itm)
{
return Geometry::convex_hull(itm.outline());
}
static Polygon fixed_convex_hull(const SimpleArrangeItem &itm)
{
return Geometry::convex_hull(itm.outline());
}
static double envelope_area(const SimpleArrangeItem &itm)
{
return itm.shape().area();
}
static double fixed_area(const SimpleArrangeItem &itm)
{
return itm.shape().area();
}
static const auto& allowed_rotations(const SimpleArrangeItem &itm) noexcept
{
return itm.allowed_rotations();
}
static Vec2crd fixed_centroid(const SimpleArrangeItem &itm) noexcept
{
return itm.outline().centroid();
}
static Vec2crd envelope_centroid(const SimpleArrangeItem &itm) noexcept
{
return itm.outline().centroid();
}
};
template<> struct IsMutableItem_<SimpleArrangeItem>: public std::true_type {};
template<>
struct MutableItemTraits_<SimpleArrangeItem> {
static void set_priority(SimpleArrangeItem &itm, int p) { itm.set_priority(p); }
static void set_convex_shape(SimpleArrangeItem &itm, const Polygon &shape)
{
itm.set_shape(shape);
}
static void set_shape(SimpleArrangeItem &itm, const ExPolygons &shape)
{
itm.set_shape(Geometry::convex_hull(shape));
}
static void set_convex_envelope(SimpleArrangeItem &itm, const Polygon &envelope)
{
itm.set_shape(envelope);
}
static void set_envelope(SimpleArrangeItem &itm, const ExPolygons &envelope)
{
itm.set_shape(Geometry::convex_hull(envelope));
}
template<class T>
static void set_data(SimpleArrangeItem &itm, const std::string &key, T &&data)
{}
static void set_allowed_rotations(SimpleArrangeItem &itm, const std::vector<double> &rotations)
{
itm.set_allowed_rotations(rotations);
}
};
template<> struct ImbueableItemTraits_<SimpleArrangeItem>
{
static void imbue_id(SimpleArrangeItem &itm, const ObjectID &id)
{
itm.set_object_id(id);
}
static std::optional<ObjectID> retrieve_id(const SimpleArrangeItem &itm)
{
std::optional<ObjectID> ret;
if (itm.get_object_id().valid())
ret = itm.get_object_id();
return ret;
}
};
extern template class ArrangeableToItemConverter<SimpleArrangeItem>;
extern template struct ArrangeTask<SimpleArrangeItem>;
extern template struct FillBedTask<SimpleArrangeItem>;
extern template struct MultiplySelectionTask<SimpleArrangeItem>;
extern template class Arranger<SimpleArrangeItem>;
}} // namespace Slic3r::arr2
#endif // SIMPLEARRANGEITEM_HPP

View File

@@ -0,0 +1,82 @@
#ifndef TRAFOONLYARRANGEITEM_HPP
#define TRAFOONLYARRANGEITEM_HPP
#include <arrange/ArrangeItemTraits.hpp>
#include "ArbitraryDataStore.hpp"
#include "MutableItemTraits.hpp"
namespace Slic3r { namespace arr2 {
class TrafoOnlyArrangeItem {
int m_bed_idx = Unarranged;
int m_priority = 0;
Vec2crd m_translation = Vec2crd::Zero();
double m_rotation = 0.;
std::optional<int> m_bed_constraint;
ArbitraryDataStore m_datastore;
public:
TrafoOnlyArrangeItem() = default;
template<class ArrItm>
explicit TrafoOnlyArrangeItem(const ArrItm &other)
: m_bed_idx{arr2::get_bed_index(other)},
m_priority{arr2::get_priority(other)},
m_translation(arr2::get_translation(other)),
m_rotation{arr2::get_rotation(other)},
m_bed_constraint{arr2::get_bed_constraint(other)}
{}
const Vec2crd& get_translation() const noexcept { return m_translation; }
double get_rotation() const noexcept { return m_rotation; }
int get_bed_index() const noexcept { return m_bed_idx; }
int get_priority() const noexcept { return m_priority; }
std::optional<int> get_bed_constraint() const noexcept { return m_bed_constraint; }
const ArbitraryDataStore &datastore() const noexcept { return m_datastore; }
ArbitraryDataStore &datastore() { return m_datastore; }
};
template<> struct DataStoreTraits_<TrafoOnlyArrangeItem>
{
static constexpr bool Implemented = true;
template<class T>
static const T *get(const TrafoOnlyArrangeItem &itm, const std::string &key)
{
return itm.datastore().get<T>(key);
}
template<class T>
static T *get(TrafoOnlyArrangeItem &itm, const std::string &key)
{
return itm.datastore().get<T>(key);
}
static bool has_key(const TrafoOnlyArrangeItem &itm, const std::string &key)
{
return itm.datastore().has_key(key);
}
};
template<> struct IsMutableItem_<TrafoOnlyArrangeItem>: public std::true_type {};
template<> struct WritableDataStoreTraits_<TrafoOnlyArrangeItem>
{
static constexpr bool Implemented = true;
template<class T>
static void set(TrafoOnlyArrangeItem &itm,
const std::string &key,
T &&data)
{
set_data(itm.datastore(), key, std::forward<T>(data));
}
};
} // namespace arr2
} // namespace Slic3r
#endif // TRAFOONLYARRANGEITEM_HPP

View File

@@ -0,0 +1,41 @@
#ifndef MODELARRANGE_HPP
#define MODELARRANGE_HPP
#include <stddef.h>
#include <vector>
#include <cstddef>
#include <arrange/Beds.hpp>
#include "Scene.hpp"
namespace Slic3r {
class Model;
class ModelInstance;
namespace arr2 {
class ArrangeSettingsView;
} // namespace arr2
using ModelInstancePtrs = std::vector<ModelInstance*>;
//void duplicate(Model &model, ArrangePolygons &copies, VirtualBedFn);
void duplicate_objects(Model &model, size_t copies_num);
bool arrange_objects(Model &model,
const arr2::ArrangeBed &bed,
const arr2::ArrangeSettingsView &settings);
void duplicate_objects(Model & model,
size_t copies_num,
const arr2::ArrangeBed &bed,
const arr2::ArrangeSettingsView &settings);
void duplicate(Model & model,
size_t copies_num,
const arr2::ArrangeBed &bed,
const arr2::ArrangeSettingsView &settings);
} // namespace Slic3r
#endif // MODELARRANGE_HPP

View File

@@ -0,0 +1,440 @@
#ifndef ARR2_SCENE_HPP
#define ARR2_SCENE_HPP
#include <stddef.h>
#include <boost/variant.hpp>
#include <boost/variant/variant.hpp>
#include <any>
#include <string_view>
#include <algorithm>
#include <functional>
#include <memory>
#include <set>
#include <type_traits>
#include <utility>
#include <vector>
#include <cstddef>
#include <libslic3r/ObjectID.hpp>
#include <libslic3r/AnyPtr.hpp>
#include <libslic3r/BoundingBox.hpp>
#include <libslic3r/ExPolygon.hpp>
#include <libslic3r/Point.hpp>
#include <libslic3r/Polygon.hpp>
#include <libslic3r/libslic3r.h>
#include <arrange/Beds.hpp>
#include "ArrangeSettingsView.hpp"
#include "SegmentedRectangleBed.hpp"
namespace Slic3r { namespace arr2 {
// This module contains all the necessary high level interfaces for
// arrangement. No dependency on the rest of libslic3r is intoduced here. (No
// Model, ModelObject, etc...) except for ObjectID.
// An interface that allows to store arbitrary data (std::any) under a specific
// key in an object implementing the interface. This is later used to pass
// arbitrary parameters from any arrangeable object down to the arrangement core.
class AnyWritable
{
public:
virtual ~AnyWritable() = default;
virtual void write(std::string_view key, std::any d) = 0;
};
// The interface that captures the objects which are actually moved around.
// Implementations must provide means to extract the 2D outline that is used
// by the arrangement core.
class Arrangeable
{
public:
virtual ~Arrangeable() = default;
// ID is implementation specific, must uniquely identify an Arrangeable
// object.
virtual ObjectID id() const = 0;
// This is different than id(), and identifies an underlying group into
// which the Arrangeable belongs. Can be used to group arrangeables sharing
// the same outline.
virtual ObjectID geometry_id() const = 0;
// Outline extraction can be a demanding operation, so there is a separate
// method the extract the full outline of an object and the convex hull only
// It will depend on the arrangement config to choose which one is called.
// convex_outline might be considerably faster than calling full_outline()
// and then calculating the convex hull from that.
virtual ExPolygons full_outline() const = 0;
virtual Polygon convex_outline() const = 0;
// Envelope is the boundary that an arrangeble object might have which
// is used when the object is being placed or moved around. Once it is
// placed, the outline (convex or full) will be used to determine the
// boundaries instead of the envelope. This concept can be used to
// implement arranging objects with support structures that can overlap,
// but never touch the actual object. In this case, full envelope would
// return the silhouette of the object with supports (pad, brim, etc...) and
// outline would be the actual object boundary.
virtual ExPolygons full_envelope() const { return {}; }
virtual Polygon convex_envelope() const { return {}; }
// Write the transformations determined by the arrangement into the object
virtual void transform(const Vec2d &transl, double rot) = 0;
// An arrangeable can be printable or unprintable, they should not be on
// the same bed. (See arrange tasks)
virtual bool is_printable() const { return true; }
// An arrangeable can be selected or not, this will determine if treated
// as static objects or movable ones.
virtual bool is_selected() const { return true; }
// Determines the order in which the objects are arranged. Higher priority
// objects are arranged first.
virtual int priority() const { return 0; }
virtual std::optional<int> bed_constraint() const { return std::nullopt; }
// Any implementation specific properties can be passed to the arrangement
// core by overriding this method. This implies that the specific Arranger
// will be able to interpret these properties. An example usage is to mark
// special objects (like a wipe tower)
virtual void imbue_data(AnyWritable &datastore) const {}
// for convinience to pass an AnyWritable created in the same expression
// as the method call
void imbue_data(AnyWritable &&datastore) const { imbue_data(datastore); }
// An Arrangeable might reside on a logical bed instead of the real one
// in case that the arrangement can not fit it onto the real bed. Handling
// of logical beds is also implementation specific and are specified with
// the next two methods:
// Returns the bed index on which the given Arrangeable is sitting.
virtual int get_bed_index() const = 0;
// Assign the Arrangeable to the given bed index. Note that this
// method can return false, indicating that the given bed is not available
// to be occupied.
virtual bool assign_bed(int bed_idx) = 0;
};
// Arrangeable objects are provided by an ArrangeableModel which is also able to
// create new arrangeables given a prototype id to copy.
class ArrangeableModel
{
public:
virtual ~ArrangeableModel() = default;
// Visit all arrangeable in this model and call the provided visitor
virtual void for_each_arrangeable(std::function<void(Arrangeable &)>) = 0;
virtual void for_each_arrangeable(std::function<void(const Arrangeable&)>) const = 0;
// Visit a specific arrangeable identified by it's id
virtual void visit_arrangeable(const ObjectID &id, std::function<void(const Arrangeable &)>) const = 0;
virtual void visit_arrangeable(const ObjectID &id, std::function<void(Arrangeable &)>) = 0;
// Add a new arrangeable which is a copy of the one matching prototype_id
// Return the new object id or an invalid id if the new object was not
// created.
virtual ObjectID add_arrangeable(const ObjectID &prototype_id) = 0;
size_t arrangeable_count() const
{
size_t cnt = 0;
for_each_arrangeable([&cnt](auto &) { ++cnt; });
return cnt;
}
};
// The special bed type used by XL printers
using XLBed = SegmentedRectangleBed<std::integral_constant<size_t, 4>,
std::integral_constant<size_t, 4>>;
// ExtendedBed is a variant type holding all bed types supported by the
// arrange core and the additional XLBed
template<class... Args> struct ExtendedBed_
{
using Type =
boost::variant<XLBed, /* insert other types if needed*/ Args...>;
};
template<class... Args> struct ExtendedBed_<boost::variant<Args...>>
{
using Type = boost::variant<XLBed, Args...>;
};
using ExtendedBed = typename ExtendedBed_<ArrangeBed>::Type;
template<class BedFn> void visit_bed(BedFn &&fn, const ExtendedBed &bed)
{
boost::apply_visitor(fn, bed);
}
template<class BedFn> void visit_bed(BedFn &&fn, ExtendedBed &bed)
{
boost::apply_visitor(fn, bed);
}
inline BoundingBox bounding_box(const ExtendedBed &bed)
{
BoundingBox bedbb;
visit_bed([&bedbb](auto &rawbed) { bedbb = bounding_box(rawbed); }, bed);
return bedbb;
}
inline Vec2crd bed_gap(const ExtendedBed &bed)
{
Vec2crd gap;
visit_bed([&gap](auto &rawbed) { gap = bed_gap(rawbed); }, bed);
return gap;
}
class Scene;
// SceneBuilderBase is intended for Scene construction. A simple constructor
// is not enough here to capture all the possible ways of constructing a Scene.
// Subclasses of SceneBuilderBase can add more domain specific methods and
// overloads. An rvalue object of this class is handed over to the Scene
// constructor which can then establish itself using the provided builder.
// A little CRTP is used to implement fluent interface returning Subclass
// references.
template<class Subclass>
class SceneBuilderBase
{
protected:
AnyPtr<ArrangeableModel> m_arrangeable_model;
AnyPtr<const ArrangeSettingsView> m_settings;
ExtendedBed m_bed = arr2::InfiniteBed{};
coord_t m_brims_offs = 0;
coord_t m_skirt_offs = 0;
public:
virtual ~SceneBuilderBase() = default;
SceneBuilderBase() = default;
SceneBuilderBase(const SceneBuilderBase &) = delete;
SceneBuilderBase& operator=(const SceneBuilderBase &) = delete;
SceneBuilderBase(SceneBuilderBase &&) = default;
SceneBuilderBase& operator=(SceneBuilderBase &&) = default;
// All setters return an rvalue reference so that at the end, the
// build_scene method can be called fluently
Subclass &&set_arrange_settings(AnyPtr<const ArrangeSettingsView> settings)
{
m_settings = std::move(settings);
return std::move(static_cast<Subclass&>(*this));
}
Subclass &&set_arrange_settings(const ArrangeSettingsView &settings)
{
m_settings = std::make_unique<ArrangeSettings>(settings);
return std::move(static_cast<Subclass&>(*this));
}
Subclass &&set_bed(const Points &pts, const Vec2crd &gap)
{
m_bed = arr2::to_arrange_bed(pts, gap);
return std::move(static_cast<Subclass&>(*this));
}
Subclass && set_bed(const arr2::ArrangeBed &bed)
{
m_bed = bed;
return std::move(static_cast<Subclass&>(*this));
}
Subclass &&set_bed(const XLBed &bed)
{
m_bed = bed;
return std::move(static_cast<Subclass&>(*this));
}
Subclass &&set_arrangeable_model(AnyPtr<ArrangeableModel> model)
{
m_arrangeable_model = std::move(model);
return std::move(static_cast<Subclass&>(*this));
}
// Can only be called on an rvalue instance (hence the && at the end),
// the method will potentially move its content into sc
virtual void build_scene(Scene &sc) &&;
};
class BasicSceneBuilder: public SceneBuilderBase<BasicSceneBuilder> {};
// The Scene class captures all data needed to do an arrangement.
class Scene
{
template <class Sub> friend class SceneBuilderBase;
// These fields always need to be initialized to valid objects after
// construction of Scene which is ensured by the SceneBuilder
AnyPtr<ArrangeableModel> m_amodel;
AnyPtr<const ArrangeSettingsView> m_settings;
ExtendedBed m_bed;
public:
// Scene can only be built from an rvalue SceneBuilder whose content will
// potentially be moved to the constructed Scene object.
template<class Sub>
explicit Scene(SceneBuilderBase<Sub> &&bld)
{
std::move(bld).build_scene(*this);
}
const ArrangeableModel &model() const noexcept { return *m_amodel; }
ArrangeableModel &model() noexcept { return *m_amodel; }
const ArrangeSettingsView &settings() const noexcept { return *m_settings; }
template<class BedFn> void visit_bed(BedFn &&fn) const
{
arr2::visit_bed(fn, m_bed);
}
const ExtendedBed & bed() const { return m_bed; }
std::vector<ObjectID> selected_ids() const;
};
// Get all the ObjectIDs of Arrangeables which are in selected state
std::set<ObjectID> selected_geometry_ids(const Scene &sc);
// A dummy, empty ArrangeableModel for testing and as placeholder to avoiod using nullptr
class EmptyArrangeableModel: public ArrangeableModel
{
public:
void for_each_arrangeable(std::function<void(Arrangeable &)>) override {}
void for_each_arrangeable(std::function<void(const Arrangeable&)>) const override {}
void visit_arrangeable(const ObjectID &id, std::function<void(const Arrangeable &)>) const override {}
void visit_arrangeable(const ObjectID &id, std::function<void(Arrangeable &)>) override {}
ObjectID add_arrangeable(const ObjectID &prototype_id) override { return {}; }
};
template<class Subclass>
void SceneBuilderBase<Subclass>::build_scene(Scene &sc) &&
{
if (!m_arrangeable_model)
m_arrangeable_model = std::make_unique<EmptyArrangeableModel>();
if (!m_settings)
m_settings = std::make_unique<arr2::ArrangeSettings>();
// Apply the bed minimum distance by making the original bed smaller
// and arranging on this smaller bed.
coord_t inset = std::max(scaled(m_settings->get_distance_from_bed()),
m_skirt_offs + m_brims_offs);
// Objects have also a minimum distance from each other implemented
// as inflation applied to object outlines. This object distance
// does not apply to the bed, so the bed is inflated by this amount
// to compensate.
coord_t md = scaled(m_settings->get_distance_from_objects());
md = md / 2 - inset;
// Applying the final bed with the corrected dimensions to account
// for safety distances
visit_bed([md](auto &rawbed) { rawbed = offset(rawbed, md); }, m_bed);
sc.m_settings = std::move(m_settings);
sc.m_amodel = std::move(m_arrangeable_model);
sc.m_bed = std::move(m_bed);
}
// Arrange tasks produce an object implementing this interface. The arrange
// result can be applied to an ArrangeableModel which may or may not succeed.
// The ArrangeableModel could be in a different state (it's objects may have
// changed or removed) than it was at the time of arranging.
class ArrangeResult
{
public:
virtual ~ArrangeResult() = default;
virtual bool apply_on(ArrangeableModel &mdlwt) = 0;
};
enum class Tasks { Arrange, FillBed };
class ArrangeTaskCtl
{
public:
virtual ~ArrangeTaskCtl() = default;
virtual void update_status(int st) = 0;
virtual bool was_canceled() const = 0;
};
class DummyCtl : public ArrangeTaskCtl
{
public:
void update_status(int) override {}
bool was_canceled() const override { return false; }
};
class ArrangeTaskBase
{
public:
using Ctl = ArrangeTaskCtl;
virtual ~ArrangeTaskBase() = default;
[[nodiscard]] virtual std::unique_ptr<ArrangeResult> process(Ctl &ctl) = 0;
[[nodiscard]] virtual int item_count_to_process() const = 0;
[[nodiscard]] static std::unique_ptr<ArrangeTaskBase> create(
Tasks task_type, const Scene &sc);
[[nodiscard]] std::unique_ptr<ArrangeResult> process(Ctl &&ctl)
{
return process(ctl);
}
[[nodiscard]] std::unique_ptr<ArrangeResult> process()
{
return process(DummyCtl{});
}
};
bool arrange(Scene &scene, ArrangeTaskCtl &ctl);
inline bool arrange(Scene &scene, ArrangeTaskCtl &&ctl = DummyCtl{})
{
return arrange(scene, ctl);
}
inline bool arrange(Scene &&scene, ArrangeTaskCtl &ctl)
{
return arrange(scene, ctl);
}
inline bool arrange(Scene &&scene, ArrangeTaskCtl &&ctl = DummyCtl{})
{
return arrange(scene, ctl);
}
template<class Builder, class Ctl = DummyCtl>
bool arrange(SceneBuilderBase<Builder> &&builder, Ctl &&ctl = {})
{
return arrange(Scene{std::move(builder)}, ctl);
}
} // namespace arr2
} // namespace Slic3r
#endif // ARR2_SCENE_HPP

View File

@@ -0,0 +1,722 @@
#ifndef SCENEBUILDER_HPP
#define SCENEBUILDER_HPP
#include <assert.h>
#include <stddef.h>
#include <algorithm>
#include <functional>
#include <initializer_list>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
#include <cassert>
#include <cstddef>
#include <libslic3r/AnyPtr.hpp>
#include <libslic3r/BoundingBox.hpp>
#include <libslic3r/ExPolygon.hpp>
#include <libslic3r/Model.hpp>
#include <libslic3r/ObjectID.hpp>
#include <libslic3r/Point.hpp>
#include <libslic3r/Polygon.hpp>
#include <libslic3r/libslic3r.h>
#include <arrange/ArrangeItemTraits.hpp>
#include <arrange/Beds.hpp>
#include "Scene.hpp"
namespace Slic3r {
class Model;
class ModelInstance;
class ModelWipeTower;
class Print;
class SLAPrint;
class SLAPrintObject;
class PrintObject;
class DynamicPrintConfig;
namespace arr2 {
using SelectionPredicate = std::function<bool(int)>;
// Objects implementing this interface should know how to present the wipe tower
// as an Arrangeable. If the wipe tower is not present, the overloads of visit() shouldn't do
// anything. (See MissingWipeTowerHandler)
class WipeTowerHandler
{
public:
virtual ~WipeTowerHandler() = default;
virtual void visit(std::function<void(Arrangeable &)>) = 0;
virtual void visit(std::function<void(const Arrangeable &)>) const = 0;
virtual void set_selection_predicate(SelectionPredicate pred) = 0;
virtual ObjectID get_id() const = 0;
};
// Something that has a bounding box and can be displaced by arbitrary 2D offset and rotated
// by arbitrary rotation. Used as targets to place on virtual beds. Normally this would correspond
// to ModelInstances but the same functionality was needed in more contexts.
class VBedPlaceable {
public:
virtual ~VBedPlaceable() = default;
virtual BoundingBoxf bounding_box() const = 0;
virtual void displace(const Vec2d &transl, double rot) = 0;
};
// An interface to handle virtual beds for VBedPlaceable objects. A VBedPlaceable
// may be assigned to a logical bed identified by an integer index value (zero
// is the actual physical bed). The VBedPlaceable may still be outside of it's
// bed, regardless of being assigned to it. The handler object should provide
// means to read the assigned bed index of a VBedPlaceable, to assign a
// different bed index and to provide a trafo that maps it to the physical bed
// given a logical bed index. The reason is that the arrangement expects items
// to be in the coordinate system of the physical bed.
class VirtualBedHandler
{
public:
virtual ~VirtualBedHandler() = default;
// Returns the bed index on which the given VBedPlaceable is sitting.
virtual int get_bed_index(const VBedPlaceable &obj) const = 0;
// The returned trafo can be used to displace the VBedPlaceable
// to the coordinate system of the physical bed, should that differ from
// the coordinate space of a logical bed.
virtual Transform3d get_physical_bed_trafo(int bed_index) const = 0;
// Assign the VBedPlaceable to the given bed index. Note that this
// method can return false, indicating that the given bed is not available
// to be occupied (e.g. the handler has a limited amount of logical bed)
virtual bool assign_bed(VBedPlaceable &obj, int bed_idx) = 0;
bool assign_bed(VBedPlaceable &&obj, int bed_idx)
{
return assign_bed(obj, bed_idx);
}
static std::unique_ptr<VirtualBedHandler> create(const ExtendedBed &bed);
};
// Holds the info about which object (ID) is selected/unselected
class SelectionMask
{
public:
virtual ~SelectionMask() = default;
virtual std::vector<bool> selected_objects() const = 0;
virtual std::vector<bool> selected_instances(int obj_id) const = 0;
virtual bool is_wipe_tower_selected(int wipe_tower_index) const = 0;
};
class FixedSelection : public Slic3r::arr2::SelectionMask
{
std::vector<std::vector<bool>> m_seldata;
bool m_wp = false;
public:
FixedSelection() = default;
explicit FixedSelection(std::initializer_list<std::vector<bool>> seld,
bool wp = false)
: m_seldata{std::move(seld)}, m_wp{wp}
{}
explicit FixedSelection(const Model &m);
explicit FixedSelection(const SelectionMask &other);
std::vector<bool> selected_objects() const override;
std::vector<bool> selected_instances(int obj_id) const override
{
return obj_id < int(m_seldata.size()) ? m_seldata[obj_id] :
std::vector<bool>{};
}
bool is_wipe_tower_selected(int) const override { return m_wp; }
};
// Common part of any Arrangeable which is a wipe tower
struct ArrangeableWipeTowerBase: public Arrangeable
{
ObjectID oid;
Polygon poly;
SelectionPredicate selection_pred;
int bed_index{0};
ArrangeableWipeTowerBase(
const ObjectID &objid,
Polygon shape,
int bed_index,
SelectionPredicate selection_predicate = [](int){ return false; })
: oid{objid},
poly{std::move(shape)},
bed_index{bed_index},
selection_pred{std::move(selection_predicate)}
{}
ObjectID id() const override { return oid; }
ObjectID geometry_id() const override { return {}; }
ExPolygons full_outline() const override
{
auto cpy = poly;
return {ExPolygon{std::move(cpy)}};
}
Polygon convex_outline() const override
{
return poly;
}
bool is_selected() const override
{
return selection_pred(bed_index);
}
int get_bed_index() const override;
bool assign_bed(int /*bed_idx*/) override;
int priority() const override { return 1; }
std::optional<int> bed_constraint() const override {
return this->bed_index;
}
void transform(const Vec2d &transl, double rot) override {}
void imbue_data(AnyWritable &datastore) const override
{
datastore.write("is_wipe_tower", {});
}
};
class SceneBuilder;
struct InstPos { size_t obj_idx = 0, inst_idx = 0; };
using BedConstraints = std::map<ObjectID, int>;
// Implementing ArrangeableModel interface for QIDISlicer's Model, ModelObject, ModelInstance data
// hierarchy
class ArrangeableSlicerModel: public ArrangeableModel
{
protected:
AnyPtr<Model> m_model;
std::vector<AnyPtr<WipeTowerHandler>> m_wths; // Determines how wipe tower is handled
AnyPtr<VirtualBedHandler> m_vbed_handler; // Determines how virtual beds are handled
AnyPtr<const SelectionMask> m_selmask; // Determines which objects are selected/unselected
BedConstraints m_bed_constraints;
std::optional<std::set<ObjectID>> m_considered_instances;
private:
friend class SceneBuilder;
template<class Self, class Fn>
static void for_each_arrangeable_(Self &&self, Fn &&fn);
template<class Self, class Fn>
static void visit_arrangeable_(Self &&self, const ObjectID &id, Fn &&fn);
public:
explicit ArrangeableSlicerModel(SceneBuilder &builder);
~ArrangeableSlicerModel();
void for_each_arrangeable(std::function<void(Arrangeable &)>) override;
void for_each_arrangeable(std::function<void(const Arrangeable&)>) const override;
void visit_arrangeable(const ObjectID &id, std::function<void(const Arrangeable &)>) const override;
void visit_arrangeable(const ObjectID &id, std::function<void(Arrangeable &)>) override;
ObjectID add_arrangeable(const ObjectID &prototype_id) override;
Model & get_model() { return *m_model; }
const Model &get_model() const { return *m_model; }
};
// SceneBuilder implementation for QIDISlicer API.
class SceneBuilder: public SceneBuilderBase<SceneBuilder>
{
protected:
AnyPtr<Model> m_model;
std::vector<AnyPtr<WipeTowerHandler>> m_wipetower_handlers;
BedConstraints m_bed_constraints;
std::optional<std::set<ObjectID>> m_considered_instances;
AnyPtr<VirtualBedHandler> m_vbed_handler;
AnyPtr<const SelectionMask> m_selection;
AnyPtr<const SLAPrint> m_sla_print;
AnyPtr<const Print> m_fff_print;
bool m_xl_printer = false;
void set_brim_and_skirt();
public:
SceneBuilder();
~SceneBuilder();
SceneBuilder(SceneBuilder&&);
SceneBuilder& operator=(SceneBuilder&&);
SceneBuilder && set_model(AnyPtr<Model> mdl);
SceneBuilder && set_model(Model &mdl);
SceneBuilder && set_fff_print(AnyPtr<const Print> fffprint);
SceneBuilder && set_sla_print(AnyPtr<const SLAPrint> mdl_print);
using SceneBuilderBase<SceneBuilder>::set_bed;
SceneBuilder &&set_bed(const DynamicPrintConfig &cfg, const Vec2crd &gap);
SceneBuilder &&set_bed(const Print &print, const Vec2crd &gap);
SceneBuilder && set_wipe_tower_handlers(std::vector<AnyPtr<WipeTowerHandler>> &&handlers)
{
m_wipetower_handlers = std::move(handlers);
return std::move(*this);
}
SceneBuilder && set_bed_constraints(BedConstraints &&bed_constraints)
{
m_bed_constraints = std::move(bed_constraints);
return std::move(*this);
}
SceneBuilder && set_considered_instances(std::set<ObjectID> &&considered_instances)
{
m_considered_instances = std::move(considered_instances);
return std::move(*this);
}
SceneBuilder && set_virtual_bed_handler(AnyPtr<VirtualBedHandler> vbedh)
{
m_vbed_handler = std::move(vbedh);
return std::move(*this);
}
SceneBuilder && set_sla_print(const SLAPrint *slaprint);
SceneBuilder && set_selection(AnyPtr<const SelectionMask> sel)
{
m_selection = std::move(sel);
return std::move(*this);
}
// Can only be called on an rvalue instance (hence the && at the end),
// the method will potentially move its content into sc
void build_scene(Scene &sc) && override;
void build_arrangeable_slicer_model(ArrangeableSlicerModel &amodel);
};
// Only a physical bed, non-zero bed index values are discarded.
class PhysicalOnlyVBedHandler final : public VirtualBedHandler
{
public:
using VirtualBedHandler::assign_bed;
int get_bed_index(const VBedPlaceable &obj) const override { return 0; }
Transform3d get_physical_bed_trafo(int bed_index) const override
{
return Transform3d::Identity();
}
bool assign_bed(VBedPlaceable &inst, int bed_idx) override;
};
// A virtual bed handler implementation, that defines logical beds to be created
// on the right side of the physical bed along the X axis in a row
class XStriderVBedHandler final : public VirtualBedHandler
{
coord_t m_stride_scaled;
coord_t m_start;
public:
explicit XStriderVBedHandler(const BoundingBox &bedbb, coord_t xgap)
: m_stride_scaled{bedbb.size().x() + 2 * std::max(0, xgap)},
m_start{bedbb.min.x() - std::max(0, xgap)}
{
}
coord_t stride_scaled() const { return m_stride_scaled; }
// Can return negative indices when the instance is to the left of the
// physical bed
int get_bed_index(const VBedPlaceable &obj) const override;
// Only positive beds are accepted
bool assign_bed(VBedPlaceable &inst, int bed_idx) override;
using VirtualBedHandler::assign_bed;
Transform3d get_physical_bed_trafo(int bed_index) const override;
};
// Same as XStriderVBedHandler only that it lays out vbeds on the Y axis
class YStriderVBedHandler final : public VirtualBedHandler
{
coord_t m_stride_scaled;
coord_t m_start;
public:
coord_t stride_scaled() const { return m_stride_scaled; }
explicit YStriderVBedHandler(const BoundingBox &bedbb, coord_t ygap)
: m_stride_scaled{bedbb.size().y() + 2 * std::max(0, ygap)}
, m_start{bedbb.min.y() - std::max(0, ygap)}
{}
int get_bed_index(const VBedPlaceable &obj) const override;
bool assign_bed(VBedPlaceable &inst, int bed_idx) override;
Transform3d get_physical_bed_trafo(int bed_index) const override;
};
class GridStriderVBedHandler: public VirtualBedHandler
{
XStriderVBedHandler m_xstrider;
YStriderVBedHandler m_ystrider;
public:
GridStriderVBedHandler(const BoundingBox &bedbb, const Vec2crd &gap)
: m_xstrider{bedbb, gap.x()}
, m_ystrider{bedbb, gap.y()}
{}
int get_bed_index(const VBedPlaceable &obj) const override;
bool assign_bed(VBedPlaceable &inst, int bed_idx) override;
Transform3d get_physical_bed_trafo(int bed_index) const override;
};
std::vector<size_t> selected_object_indices(const SelectionMask &sm);
std::vector<size_t> selected_instance_indices(int obj_idx, const SelectionMask &sm);
coord_t get_skirt_inset(const Print &fffprint);
coord_t brim_offset(const PrintObject &po);
// unscaled coords are necessary to be able to handle bigger coordinate range
// than what is available with scaled coords. This is useful when working with
// virtual beds.
void transform_instance(ModelInstance &mi,
const Vec2d &transl_unscaled,
double rot,
const Transform3d &physical_tr = Transform3d::Identity());
BoundingBoxf3 instance_bounding_box(const ModelInstance &mi,
bool dont_translate = false);
BoundingBoxf3 instance_bounding_box(const ModelInstance &mi,
const Transform3d &tr,
bool dont_translate = false);
constexpr double UnscaledCoordLimit = 1000.;
ExPolygons extract_full_outline(const ModelInstance &inst,
const Transform3d &tr = Transform3d::Identity());
Polygon extract_convex_outline(const ModelInstance &inst,
const Transform3d &tr = Transform3d::Identity());
size_t model_instance_count (const Model &m);
class VBedPlaceableMI : public VBedPlaceable
{
ModelInstance *m_mi;
public:
explicit VBedPlaceableMI(ModelInstance &mi) : m_mi{&mi} {}
BoundingBoxf bounding_box() const override { return to_2d(instance_bounding_box(*m_mi)); }
void displace(const Vec2d &transl, double rot) override
{
transform_instance(*m_mi, transl, rot);
}
};
// Arrangeable interface implementation for ModelInstances
template<class InstPtr, class VBedHPtr>
class ArrangeableModelInstance : public Arrangeable, VBedPlaceable
{
InstPtr *m_mi;
VBedHPtr *m_vbedh;
const SelectionMask *m_selmask;
InstPos m_pos_within_model;
std::optional<int> m_bed_constraint;
public:
explicit ArrangeableModelInstance(InstPtr *mi,
VBedHPtr *vbedh,
const SelectionMask *selmask,
const InstPos &pos,
const std::optional<int> bed_constraint)
: m_mi{mi}, m_vbedh{vbedh}, m_selmask{selmask}, m_pos_within_model{pos}, m_bed_constraint(bed_constraint)
{
assert(m_mi != nullptr && m_vbedh != nullptr);
}
// Arrangeable:
ObjectID id() const override { return m_mi->id(); }
ObjectID geometry_id() const override { return m_mi->get_object()->id(); }
ExPolygons full_outline() const override;
Polygon convex_outline() const override;
bool is_printable() const override { return m_mi->printable; }
bool is_selected() const override;
void transform(const Vec2d &tr, double rot) override;
int get_bed_index() const override { return m_vbedh->get_bed_index(*this); }
bool assign_bed(int bed_idx) override;
std::optional<int> bed_constraint() const override { return m_bed_constraint; }
// VBedPlaceable:
BoundingBoxf bounding_box() const override { return to_2d(instance_bounding_box(*m_mi)); }
void displace(const Vec2d &transl, double rot) override
{
if constexpr (!std::is_const_v<InstPtr>)
transform_instance(*m_mi, transl, rot);
}
};
extern template class ArrangeableModelInstance<ModelInstance, VirtualBedHandler>;
extern template class ArrangeableModelInstance<const ModelInstance, const VirtualBedHandler>;
// Arrangeable implementation for an SLAPrintObject to be able to arrange with the supports and pad
class ArrangeableSLAPrintObject : public Arrangeable
{
const SLAPrintObject *m_po;
Arrangeable *m_arrbl;
Transform3d m_inst_trafo;
std::optional<int> m_bed_constraint;
public:
ArrangeableSLAPrintObject(const SLAPrintObject *po,
Arrangeable *arrbl,
const std::optional<int> bed_constraint,
const Transform3d &inst_tr = Transform3d::Identity())
: m_po{po}, m_arrbl{arrbl}, m_inst_trafo{inst_tr}, m_bed_constraint(bed_constraint)
{}
ObjectID id() const override { return m_arrbl->id(); }
ObjectID geometry_id() const override { return m_arrbl->geometry_id(); }
ExPolygons full_outline() const override;
ExPolygons full_envelope() const override;
Polygon convex_outline() const override;
Polygon convex_envelope() const override;
void transform(const Vec2d &transl, double rot) override
{
m_arrbl->transform(transl, rot);
}
int get_bed_index() const override { return m_arrbl->get_bed_index(); }
bool assign_bed(int bedidx) override
{
return m_arrbl->assign_bed(bedidx);
}
std::optional<int> bed_constraint() const override { return m_bed_constraint; }
bool is_printable() const override { return m_arrbl->is_printable(); }
bool is_selected() const override { return m_arrbl->is_selected(); }
int priority() const override { return m_arrbl->priority(); }
};
// Extension of ArrangeableSlicerModel for SLA
class ArrangeableSLAPrint : public ArrangeableSlicerModel {
const SLAPrint *m_slaprint;
friend class SceneBuilder;
template<class Self, class Fn>
static void for_each_arrangeable_(Self &&self, Fn &&fn);
template<class Self, class Fn>
static void visit_arrangeable_(Self &&self, const ObjectID &id, Fn &&fn);
public:
explicit ArrangeableSLAPrint(const SLAPrint *slaprint, SceneBuilder &builder)
: m_slaprint{slaprint}
, ArrangeableSlicerModel{builder}
{
assert(slaprint != nullptr);
}
void for_each_arrangeable(std::function<void(Arrangeable &)>) override;
void for_each_arrangeable(
std::function<void(const Arrangeable &)>) const override;
void visit_arrangeable(
const ObjectID &id,
std::function<void(const Arrangeable &)>) const override;
void visit_arrangeable(const ObjectID &id,
std::function<void(Arrangeable &)>) override;
};
template<class Mdl>
auto find_instance_by_id(Mdl &&model, const ObjectID &id)
{
std::remove_reference_t<
decltype(std::declval<Mdl>().objects[0]->instances[0])>
ret = nullptr;
InstPos pos;
for (auto * obj : model.objects) {
for (auto *inst : obj->instances) {
if (inst->id() == id) {
ret = inst;
break;
}
++pos.inst_idx;
}
if (ret)
break;
++pos.obj_idx;
pos.inst_idx = 0;
}
return std::make_pair(ret, pos);
}
struct ModelDuplicate
{
ObjectID id;
Vec2d tr = Vec2d::Zero();
double rot = 0.;
int bed_idx = Unarranged;
};
// Implementing the Arrangeable interface with the whole Model being one outline
// with all its objects and instances.
template<class Mdl, class Dup, class VBH>
class ArrangeableFullModel: public Arrangeable, VBedPlaceable
{
Mdl *m_mdl;
Dup *m_dup;
VBH *m_vbh;
public:
explicit ArrangeableFullModel(Mdl *mdl,
Dup *md,
VBH *vbh)
: m_mdl{mdl}, m_dup{md}, m_vbh{vbh}
{
assert(m_mdl != nullptr);
}
ObjectID id() const override { return m_dup->id.id + 1; }
ObjectID geometry_id() const override;
ExPolygons full_outline() const override;
Polygon convex_outline() const override;
bool is_printable() const override { return true; }
bool is_selected() const override { return m_dup->id == 0; }
int get_bed_index() const override
{
return m_vbh->get_bed_index(*this);
}
void transform(const Vec2d &tr, double rot) override
{
if constexpr (!std::is_const_v<Mdl> && !std::is_const_v<Dup>) {
m_dup->tr += tr;
m_dup->rot += rot;
}
}
bool assign_bed(int bed_idx) override
{
bool ret = false;
if constexpr (!std::is_const_v<VBH> && !std::is_const_v<Dup>) {
if ((ret = m_vbh->assign_bed(*this, bed_idx)))
m_dup->bed_idx = bed_idx;
}
return ret;
}
BoundingBoxf bounding_box() const override { return unscaled(get_extents(convex_outline())); }
void displace(const Vec2d &transl, double rot) override
{
transform(transl, rot);
}
};
extern template class ArrangeableFullModel<Model, ModelDuplicate, VirtualBedHandler>;
extern template class ArrangeableFullModel<const Model, const ModelDuplicate, const VirtualBedHandler>;
// An implementation of the ArrangeableModel to be used for the full model 'duplicate' feature
// accessible from CLI
class DuplicableModel: public ArrangeableModel {
AnyPtr<Model> m_model;
AnyPtr<VirtualBedHandler> m_vbh;
std::vector<ModelDuplicate> m_duplicates;
BoundingBox m_bedbb;
template<class Self, class Fn>
static void visit_arrangeable_(Self &&self, const ObjectID &id, Fn &&fn)
{
if (id.valid()) {
size_t idx = id.id - 1;
if (idx < self.m_duplicates.size()) {
auto &md = self.m_duplicates[idx];
ArrangeableFullModel arrbl{self.m_model.get(), &md, self.m_vbh.get()};
fn(arrbl);
}
}
}
public:
explicit DuplicableModel(AnyPtr<Model> mdl,
AnyPtr<VirtualBedHandler> vbh,
const BoundingBox &bedbb);
~DuplicableModel();
void for_each_arrangeable(std::function<void(Arrangeable &)> fn) override
{
for (ModelDuplicate &md : m_duplicates) {
ArrangeableFullModel arrbl{m_model.get(), &md, m_vbh.get()};
fn(arrbl);
}
}
void for_each_arrangeable(std::function<void(const Arrangeable&)> fn) const override
{
for (const ModelDuplicate &md : m_duplicates) {
ArrangeableFullModel arrbl{m_model.get(), &md, m_vbh.get()};
fn(arrbl);
}
}
void visit_arrangeable(const ObjectID &id, std::function<void(const Arrangeable &)> fn) const override
{
visit_arrangeable_(*this, id, fn);
}
void visit_arrangeable(const ObjectID &id, std::function<void(Arrangeable &)> fn) override
{
visit_arrangeable_(*this, id, fn);
}
ObjectID add_arrangeable(const ObjectID &prototype_id) override;
void apply_duplicates();
};
} // namespace arr2
} // namespace Slic3r
#endif // SCENEBUILDER_HPP

View File

@@ -0,0 +1,121 @@
#ifndef SEGMENTEDRECTANGLEBED_HPP
#define SEGMENTEDRECTANGLEBED_HPP
#include <arrange/Beds.hpp>
namespace Slic3r { namespace arr2 {
enum class RectPivots {
Center, BottomLeft, BottomRight, TopLeft, TopRight
};
template<class T> struct IsSegmentedBed_ : public std::false_type {};
template<class T> constexpr bool IsSegmentedBed = IsSegmentedBed_<StripCVRef<T>>::value;
template<class SegX = void, class SegY = void, class Pivot = void>
struct SegmentedRectangleBed {
Vec<2, size_t> segments = Vec<2, size_t>::Ones();
BoundingBox bb;
Vec2crd gap;
RectPivots pivot = RectPivots::Center;
SegmentedRectangleBed() = default;
SegmentedRectangleBed(const BoundingBox &bb,
size_t segments_x,
size_t segments_y,
const Vec2crd &gap,
const RectPivots pivot = RectPivots::Center)
: segments{segments_x, segments_y}, bb{bb}, gap{gap}, pivot{pivot}
{}
size_t segments_x() const noexcept { return segments.x(); }
size_t segments_y() const noexcept { return segments.y(); }
auto alignment() const noexcept { return pivot; }
};
template<size_t SegX, size_t SegY>
struct SegmentedRectangleBed<std::integral_constant<size_t, SegX>,
std::integral_constant<size_t, SegY>>
{
BoundingBox bb;
Vec2crd gap;
RectPivots pivot = RectPivots::Center;
SegmentedRectangleBed() = default;
explicit SegmentedRectangleBed(const BoundingBox &b,
const Vec2crd &gap,
const RectPivots pivot = RectPivots::Center)
: bb{b},
gap{gap}
{}
size_t segments_x() const noexcept { return SegX; }
size_t segments_y() const noexcept { return SegY; }
auto alignment() const noexcept { return pivot; }
};
template<size_t SegX, size_t SegY, RectPivots pivot>
struct SegmentedRectangleBed<std::integral_constant<size_t, SegX>,
std::integral_constant<size_t, SegY>,
std::integral_constant<RectPivots, pivot>>
{
BoundingBox bb;
Vec2crd gap;
SegmentedRectangleBed() = default;
explicit SegmentedRectangleBed(const BoundingBox &b, const Vec2crd &gap) : bb{b}, gap{gap} {}
size_t segments_x() const noexcept { return SegX; }
size_t segments_y() const noexcept { return SegY; }
auto alignment() const noexcept { return pivot; }
};
template<class... Args>
struct IsSegmentedBed_<SegmentedRectangleBed<Args...>>
: public std::true_type {};
template<class... Args>
auto offset(const SegmentedRectangleBed<Args...> &bed, coord_t val_scaled)
{
auto cpy = bed;
cpy.bb.offset(val_scaled);
return cpy;
}
template<class...Args>
auto bounding_box(const SegmentedRectangleBed<Args...> &bed)
{
return bed.bb;
}
template<class...Args>
auto bed_gap(const SegmentedRectangleBed<Args...> &bed)
{
return bed.gap;
}
template<class...Args>
auto area(const SegmentedRectangleBed<Args...> &bed)
{
return arr2::area(bed.bb);
}
template<class...Args>
ExPolygons to_expolygons(const SegmentedRectangleBed<Args...> &bed)
{
return to_expolygons(RectangleBed{bed.bb});
}
template<class SegB>
struct IsRectangular_<SegB, std::enable_if_t<IsSegmentedBed<SegB>, void>> : public std::true_type
{};
}} // namespace Slic3r::arr2
#endif // SEGMENTEDRECTANGLEBED_HPP

View File

@@ -0,0 +1,81 @@
#ifndef ARRANGETASK_HPP
#define ARRANGETASK_HPP
#include <arrange-wrapper/Arrange.hpp>
#include <arrange-wrapper/Items/TrafoOnlyArrangeItem.hpp>
namespace Slic3r { namespace arr2 {
struct ArrangeTaskResult : public ArrangeResult
{
std::vector<TrafoOnlyArrangeItem> items;
bool apply_on(ArrangeableModel &mdl) override
{
bool ret = true;
for (auto &itm : items) {
if (is_arranged(itm))
ret = ret && apply_arrangeitem(itm, mdl);
}
return ret;
}
template<class ArrItem>
void add_item(const ArrItem &itm)
{
items.emplace_back(itm);
if (auto id = retrieve_id(itm))
imbue_id(items.back(), *id);
}
template<class It>
void add_items(const Range<It> &items_range)
{
for (auto &itm : items_range)
add_item(itm);
}
};
template<class ArrItem> struct ArrangeTask : public ArrangeTaskBase
{
struct ArrangeSet
{
std::vector<ArrItem> selected, unselected;
} printable, unprintable;
ExtendedBed bed;
ArrangeSettings settings;
static std::unique_ptr<ArrangeTask> create(
const Scene &sc,
const ArrangeableToItemConverter<ArrItem> &converter);
static std::unique_ptr<ArrangeTask> create(const Scene &sc)
{
auto conv = ArrangeableToItemConverter<ArrItem>::create(sc);
return create(sc, *conv);
}
std::unique_ptr<ArrangeResult> process(Ctl &ctl) override
{
return process_native(ctl);
}
std::unique_ptr<ArrangeTaskResult> process_native(Ctl &ctl);
std::unique_ptr<ArrangeTaskResult> process_native(Ctl &&ctl)
{
return process_native(ctl);
}
int item_count_to_process() const override
{
return static_cast<int>(printable.selected.size() +
unprintable.selected.size());
}
};
} // namespace arr2
} // namespace Slic3r
#endif // ARRANGETASK_HPP

View File

@@ -0,0 +1,57 @@
#ifndef FILLBEDTASK_HPP
#define FILLBEDTASK_HPP
#include <arrange-wrapper/Arrange.hpp>
#include "MultiplySelectionTask.hpp"
namespace Slic3r { namespace arr2 {
struct FillBedTaskResult: public MultiplySelectionTaskResult {};
template<class ArrItem>
struct FillBedTask: public ArrangeTaskBase
{
std::optional<ArrItem> prototype_item;
std::vector<ArrItem> selected, unselected;
// For workaround regarding "holes" when filling the bed with the same
// item's copies
std::vector<ArrItem> selected_fillers;
ArrangeSettings settings;
ExtendedBed bed;
size_t selected_existing_count = 0;
std::unique_ptr<FillBedTaskResult> process_native(Ctl &ctl);
std::unique_ptr<FillBedTaskResult> process_native(Ctl &&ctl)
{
return process_native(ctl);
}
std::unique_ptr<ArrangeResult> process(Ctl &ctl) override
{
return process_native(ctl);
}
int item_count_to_process() const override
{
return selected.size();
}
static std::unique_ptr<FillBedTask> create(
const Scene &sc,
const ArrangeableToItemConverter<ArrItem> &converter);
static std::unique_ptr<FillBedTask> create(const Scene &sc)
{
auto conv = ArrangeableToItemConverter<ArrItem>::create(sc);
return create(sc, *conv);
}
};
} // namespace arr2
} // namespace Slic3r
#endif // FILLBEDTASK_HPP

View File

@@ -0,0 +1,108 @@
#ifndef MULTIPLYSELECTIONTASK_HPP
#define MULTIPLYSELECTIONTASK_HPP
#include <arrange-wrapper/Arrange.hpp>
#include <arrange-wrapper/Items/TrafoOnlyArrangeItem.hpp>
namespace Slic3r { namespace arr2 {
struct MultiplySelectionTaskResult: public ArrangeResult {
ObjectID prototype_id;
std::vector<TrafoOnlyArrangeItem> arranged_items;
std::vector<TrafoOnlyArrangeItem> to_add;
bool apply_on(ArrangeableModel &mdl) override
{
bool ret = prototype_id.valid();
if (!ret)
return ret;
for (auto &itm : to_add) {
auto id = mdl.add_arrangeable(prototype_id);
imbue_id(itm, id);
ret = ret && apply_arrangeitem(itm, mdl);
}
for (auto &itm : arranged_items) {
if (is_arranged(itm))
ret = ret && apply_arrangeitem(itm, mdl);
}
return ret;
}
template<class ArrItem>
void add_arranged_item(const ArrItem &itm)
{
arranged_items.emplace_back(itm);
if (auto id = retrieve_id(itm))
imbue_id(arranged_items.back(), *id);
}
template<class It>
void add_arranged_items(const Range<It> &items_range)
{
arranged_items.reserve(items_range.size());
for (auto &itm : items_range)
add_arranged_item(itm);
}
template<class ArrItem> void add_new_item(const ArrItem &itm)
{
to_add.emplace_back(itm);
}
template<class It> void add_new_items(const Range<It> &items_range)
{
to_add.reserve(items_range.size());
for (auto &itm : items_range) {
to_add.emplace_back(itm);
}
}
};
template<class ArrItem>
struct MultiplySelectionTask: public ArrangeTaskBase
{
std::optional<ArrItem> prototype_item;
std::vector<ArrItem> selected, unselected;
ArrangeSettings settings;
ExtendedBed bed;
size_t selected_existing_count = 0;
std::unique_ptr<MultiplySelectionTaskResult> process_native(Ctl &ctl);
std::unique_ptr<MultiplySelectionTaskResult> process_native(Ctl &&ctl)
{
return process_native(ctl);
}
std::unique_ptr<ArrangeResult> process(Ctl &ctl) override
{
return process_native(ctl);
}
int item_count_to_process() const override
{
return selected.size();
}
static std::unique_ptr<MultiplySelectionTask> create(
const Scene &sc,
size_t multiply_count,
const ArrangeableToItemConverter<ArrItem> &converter);
static std::unique_ptr<MultiplySelectionTask> create(const Scene &sc,
size_t multiply_count)
{
auto conv = ArrangeableToItemConverter<ArrItem>::create(sc);
return create(sc, multiply_count, *conv);
}
};
}} // namespace Slic3r::arr2
#endif // MULTIPLYSELECTIONTASK_HPP

View File

@@ -0,0 +1,498 @@
#ifndef ARRANGEIMPL_HPP
#define ARRANGEIMPL_HPP
#include <random>
#include <map>
#include <libslic3r/Execution/ExecutionTBB.hpp>
#include <libslic3r/Geometry/ConvexHull.hpp>
#include <arrange/ArrangeBase.hpp>
#include <arrange/ArrangeFirstFit.hpp>
#include <arrange/NFP/PackStrategyNFP.hpp>
#include <arrange/NFP/Kernels/TMArrangeKernel.hpp>
#include <arrange/NFP/Kernels/GravityKernel.hpp>
#include <arrange/NFP/RectangleOverfitPackingStrategy.hpp>
#include <arrange/Beds.hpp>
#include <arrange-wrapper/Arrange.hpp>
#include <arrange-wrapper/Items/MutableItemTraits.hpp>
#include <arrange-wrapper/SegmentedRectangleBed.hpp>
#ifndef NDEBUG
#include <arrange/NFP/Kernels/SVGDebugOutputKernelWrapper.hpp>
#endif
namespace Slic3r { namespace arr2 {
// arrange overload for SegmentedRectangleBed which is exactly what is used
// by XL printers.
template<class It,
class ConstIt,
class SelectionStrategy,
class PackStrategy, class...SBedArgs>
void arrange(SelectionStrategy &&selstrategy,
PackStrategy &&packingstrategy,
const Range<It> &items,
const Range<ConstIt> &fixed,
const SegmentedRectangleBed<SBedArgs...> &bed)
{
// Dispatch:
arrange(std::forward<SelectionStrategy>(selstrategy),
std::forward<PackStrategy>(packingstrategy), items, fixed,
RectangleBed{bed.bb, bed.gap}, SelStrategyTag<SelectionStrategy>{});
std::vector<int> bed_indices = get_bed_indices(items, fixed);
std::map<int, BoundingBox> pilebb;
std::map<int, bool> bed_occupied;
for (auto &itm : items) {
auto bedidx = get_bed_index(itm);
if (bedidx >= 0) {
pilebb[bedidx].merge(fixed_bounding_box(itm));
if (is_wipe_tower(itm))
bed_occupied[bedidx] = true;
}
}
for (auto &fxitm : fixed) {
auto bedidx = get_bed_index(fxitm);
if (bedidx >= 0)
bed_occupied[bedidx] = true;
}
auto bedbb = bounding_box(bed);
auto piecesz = unscaled(bedbb).size();
piecesz.x() /= bed.segments_x();
piecesz.y() /= bed.segments_y();
using Pivots = RectPivots;
Pivots pivot = bed.alignment();
for (int bedidx : bed_indices) {
if (auto occup_it = bed_occupied.find(bedidx);
occup_it != bed_occupied.end() && occup_it->second)
continue;
BoundingBox bb;
auto pilesz = unscaled(pilebb[bedidx]).size();
bb.max.x() = scaled(std::ceil(pilesz.x() / piecesz.x()) * piecesz.x());
bb.max.y() = scaled(std::ceil(pilesz.y() / piecesz.y()) * piecesz.y());
switch (pivot) {
case Pivots::BottomLeft:
bb.translate(bedbb.min - bb.min);
break;
case Pivots::TopRight:
bb.translate(bedbb.max - bb.max);
break;
case Pivots::BottomRight: {
Point bedref{bedbb.max.x(), bedbb.min.y()};
Point bbref {bb.max.x(), bb.min.y()};
bb.translate(bedref - bbref);
break;
}
case Pivots::TopLeft: {
Point bedref{bedbb.min.x(), bedbb.max.y()};
Point bbref {bb.min.x(), bb.max.y()};
bb.translate(bedref - bbref);
break;
}
case Pivots::Center: {
bb.translate(bedbb.center() - bb.center());
break;
}
default:
;
}
Vec2crd d = bb.center() - pilebb[bedidx].center();
auto pilebbx = pilebb[bedidx];
pilebbx.translate(d);
Point corr{0, 0};
corr.x() = -std::min(0, pilebbx.min.x() - bedbb.min.x())
-std::max(0, pilebbx.max.x() - bedbb.max.x());
corr.y() = -std::min(0, pilebbx.min.y() - bedbb.min.y())
-std::max(0, pilebbx.max.y() - bedbb.max.y());
d += corr;
for (auto &itm : items)
if (get_bed_index(itm) == static_cast<int>(bedidx) && !is_wipe_tower(itm))
translate(itm, d);
}
}
using VariantKernel =
boost::variant<TMArrangeKernel, GravityKernel>;
template<> struct KernelTraits_<VariantKernel> {
template<class ArrItem>
static double placement_fitness(const VariantKernel &kernel,
const ArrItem &itm,
const Vec2crd &transl)
{
double ret = NaNd;
boost::apply_visitor(
[&](auto &k) { ret = k.placement_fitness(itm, transl); }, kernel);
return ret;
}
template<class ArrItem, class Bed, class Ctx, class RemIt>
static bool on_start_packing(VariantKernel &kernel,
ArrItem &itm,
const Bed &bed,
const Ctx &packing_context,
const Range<RemIt> &remaining_items)
{
bool ret = false;
boost::apply_visitor([&](auto &k) {
ret = k.on_start_packing(itm, bed, packing_context, remaining_items);
}, kernel);
return ret;
}
template<class ArrItem>
static bool on_item_packed(VariantKernel &kernel, ArrItem &itm)
{
bool ret = false;
boost::apply_visitor([&](auto &k) { ret = k.on_item_packed(itm); },
kernel);
return ret;
}
};
template<class ArrItem>
struct firstfit::ItemArrangedVisitor<ArrItem, DataStoreOnly<ArrItem>> {
template<class Bed, class PIt, class RIt>
static void on_arranged(ArrItem &itm,
const Bed &bed,
const Range<PIt> &packed,
const Range<RIt> &remaining)
{
using OnArrangeCb = std::function<void(StripCVRef<ArrItem> &)>;
auto cb = get_data<OnArrangeCb>(itm, "on_arranged");
if (cb) {
(*cb)(itm);
}
}
};
inline RectPivots xlpivots_to_rect_pivots(ArrangeSettingsView::XLPivots xlpivot)
{
if (xlpivot == arr2::ArrangeSettingsView::xlpRandom) {
// means it should be random
std::random_device rd{};
std::mt19937 rng(rd());
std::uniform_int_distribution<std::mt19937::result_type>
dist(0, arr2::ArrangeSettingsView::xlpRandom - 1);
xlpivot = static_cast<ArrangeSettingsView::XLPivots>(dist(rng));
}
RectPivots rectpivot = RectPivots::Center;
switch(xlpivot) {
case arr2::ArrangeSettingsView::xlpCenter: rectpivot = RectPivots::Center; break;
case arr2::ArrangeSettingsView::xlpFrontLeft: rectpivot = RectPivots::BottomLeft; break;
case arr2::ArrangeSettingsView::xlpFrontRight: rectpivot = RectPivots::BottomRight; break;
case arr2::ArrangeSettingsView::xlpRearLeft: rectpivot = RectPivots::TopLeft; break;
case arr2::ArrangeSettingsView::xlpRearRight: rectpivot = RectPivots::TopRight; break;
default:
;
}
return rectpivot;
}
template<class It, class Bed>
void fill_rotations(const Range<It> &items,
const Bed &bed,
const ArrangeSettingsView &settings)
{
if (!settings.is_rotation_enabled())
return;
for (auto &itm : items) {
if (is_wipe_tower(itm)) // Rotating the wipe tower is currently problematic
continue;
// Use the minimum bounding box rotation as a starting point.
auto minbbr = get_min_area_bounding_box_rotation(itm);
std::vector<double> rotations =
{minbbr,
minbbr + PI / 4., minbbr + PI / 2.,
minbbr + PI, minbbr + 3 * PI / 4.};
// Add the original rotation of the item if minbbr
// is not already the original rotation (zero)
if (std::abs(minbbr) > 0.)
rotations.emplace_back(0.);
// Also try to find the rotation that fits the item
// into a rectangular bed, given that it cannot fit,
// and there exists a rotation which can fit.
if constexpr (std::is_convertible_v<Bed, RectangleBed>) {
double fitbrot = get_fit_into_bed_rotation(itm, bed);
if (std::abs(fitbrot) > 0.)
rotations.emplace_back(fitbrot);
}
set_allowed_rotations(itm, rotations);
}
}
// An arranger put together to fulfill all the requirements of QIDISlicer based
// on the supplied ArrangeSettings
template<class ArrItem>
class DefaultArranger: public Arranger<ArrItem> {
ArrangeSettings m_settings;
static constexpr auto Accuracy = 1.;
template<class It, class FixIt, class Bed>
void arrange_(
const Range<It> &items,
const Range<FixIt> &fixed,
const Bed &bed,
ArrangerCtl<ArrItem> &ctl)
{
auto cmpfn = [](const auto &itm1, const auto &itm2) {
int pa = get_priority(itm1);
int pb = get_priority(itm2);
return pa == pb ? area(envelope_convex_hull(itm1)) > area(envelope_convex_hull(itm2)) :
pa > pb;
};
auto on_arranged = [&ctl](auto &itm, auto &bed, auto &ctx, auto &rem) {
ctl.update_status(rem.size());
ctl.on_packed(itm);
firstfit::DefaultOnArrangedFn{}(itm, bed, ctx, rem);
};
auto stop_cond = [&ctl] { return ctl.was_canceled(); };
firstfit::SelectionStrategy sel{cmpfn, on_arranged, stop_cond};
constexpr auto ep = ex_tbb;
VariantKernel basekernel;
switch (m_settings.get_arrange_strategy()) {
default:
[[fallthrough]];
case ArrangeSettingsView::asAuto:
if constexpr (std::is_convertible_v<Bed, CircleBed>){
basekernel = GravityKernel{};
} else {
basekernel = TMArrangeKernel{items.size(), area(bed)};
}
break;
case ArrangeSettingsView::asPullToCenter:
basekernel = GravityKernel{};
break;
}
#ifndef NDEBUG
SVGDebugOutputKernelWrapper<VariantKernel> kernel{bounding_box(bed), basekernel};
#else
auto & kernel = basekernel;
#endif
fill_rotations(items, bed, m_settings);
bool with_wipe_tower = std::any_of(items.begin(), items.end(),
[](auto &itm) {
return is_wipe_tower(itm);
});
// With rectange bed, and no fixed items, let's use an infinite bed
// with RectangleOverfitKernelWrapper. It produces better results than
// a pure RectangleBed with inner-fit polygon calculation.
if (!with_wipe_tower &&
m_settings.get_arrange_strategy() == ArrangeSettingsView::asAuto &&
IsRectangular<Bed>) {
PackStrategyNFP base_strategy{std::move(kernel), ep, Accuracy, stop_cond};
RectangleOverfitPackingStrategy final_strategy{std::move(base_strategy)};
arr2::arrange(sel, final_strategy, items, fixed, bed);
} else {
PackStrategyNFP ps{std::move(kernel), ep, Accuracy, stop_cond};
arr2::arrange(sel, ps, items, fixed, bed);
}
}
public:
explicit DefaultArranger(const ArrangeSettingsView &settings)
{
m_settings.set_from(settings);
}
void arrange(
std::vector<ArrItem> &items,
const std::vector<ArrItem> &fixed,
const ExtendedBed &bed,
ArrangerCtl<ArrItem> &ctl) override
{
visit_bed([this, &items, &fixed, &ctl](auto rawbed) {
if constexpr (IsSegmentedBed<decltype(rawbed)>)
rawbed.pivot = xlpivots_to_rect_pivots(
m_settings.get_xl_alignment());
arrange_(range(items), crange(fixed), rawbed, ctl);
}, bed);
}
};
template<class ArrItem>
std::unique_ptr<Arranger<ArrItem>> Arranger<ArrItem>::create(
const ArrangeSettingsView &settings)
{
// Currently all that is needed is handled by DefaultArranger
return std::make_unique<DefaultArranger<ArrItem>>(settings);
}
template<class ArrItem>
ArrItem ConvexItemConverter<ArrItem>::convert(const Arrangeable &arrbl,
coord_t offs) const
{
auto bed_index = arrbl.get_bed_index();
Polygon outline = arrbl.convex_outline();
if (outline.empty())
throw EmptyItemOutlineError{};
Polygon envelope = arrbl.convex_envelope();
coord_t infl = offs + coord_t(std::ceil(this->safety_dist() / 2.));
if (infl != 0) {
outline = Geometry::convex_hull(offset(outline, infl));
if (! envelope.empty())
envelope = Geometry::convex_hull(offset(envelope, infl));
}
ArrItem ret;
set_convex_shape(ret, outline);
if (! envelope.empty())
set_convex_envelope(ret, envelope);
set_bed_index(ret, bed_index);
set_priority(ret, arrbl.priority());
set_bed_constraint(ret, arrbl.bed_constraint());
imbue_id(ret, arrbl.id());
if constexpr (IsWritableDataStore<ArrItem>)
arrbl.imbue_data(AnyWritableDataStore{ret});
return ret;
}
template<class ArrItem>
ArrItem AdvancedItemConverter<ArrItem>::convert(const Arrangeable &arrbl,
coord_t offs) const
{
auto bed_index = arrbl.get_bed_index();
ArrItem ret = get_arritem(arrbl, offs);
set_bed_index(ret, bed_index);
set_priority(ret, arrbl.priority());
set_bed_constraint(ret, arrbl.bed_constraint());
imbue_id(ret, arrbl.id());
if constexpr (IsWritableDataStore<ArrItem>)
arrbl.imbue_data(AnyWritableDataStore{ret});
return ret;
}
template<class ArrItem>
ArrItem AdvancedItemConverter<ArrItem>::get_arritem(const Arrangeable &arrbl,
coord_t offs) const
{
coord_t infl = offs + coord_t(std::ceil(this->safety_dist() / 2.));
auto outline = arrbl.full_outline();
if (outline.empty())
throw EmptyItemOutlineError{};
auto envelope = arrbl.full_envelope();
if (infl != 0) {
outline = offset_ex(outline, infl);
if (! envelope.empty())
envelope = offset_ex(envelope, infl);
}
auto simpl_tol = static_cast<double>(this->simplification_tolerance());
if (simpl_tol > 0.)
{
outline = expolygons_simplify(outline, simpl_tol);
if (!envelope.empty())
envelope = expolygons_simplify(envelope, simpl_tol);
}
ArrItem ret;
set_shape(ret, outline);
if (! envelope.empty())
set_envelope(ret, envelope);
return ret;
}
template<class ArrItem>
ArrItem BalancedItemConverter<ArrItem>::get_arritem(const Arrangeable &arrbl,
coord_t offs) const
{
ArrItem ret = AdvancedItemConverter<ArrItem>::get_arritem(arrbl, offs);
set_convex_envelope(ret, envelope_convex_hull(ret));
return ret;
}
template<class ArrItem>
std::unique_ptr<ArrangeableToItemConverter<ArrItem>>
ArrangeableToItemConverter<ArrItem>::create(
ArrangeSettingsView::GeometryHandling gh,
coord_t safety_d)
{
std::unique_ptr<ArrangeableToItemConverter<ArrItem>> ret;
constexpr coord_t SimplifyTol = scaled(.2);
switch(gh) {
case arr2::ArrangeSettingsView::ghConvex:
ret = std::make_unique<ConvexItemConverter<ArrItem>>(safety_d);
break;
case arr2::ArrangeSettingsView::ghBalanced:
ret = std::make_unique<BalancedItemConverter<ArrItem>>(safety_d, SimplifyTol);
break;
case arr2::ArrangeSettingsView::ghAdvanced:
ret = std::make_unique<AdvancedItemConverter<ArrItem>>(safety_d, SimplifyTol);
break;
default:
;
}
return ret;
}
}} // namespace Slic3r::arr2
#endif // ARRANGEIMPL_HPP

View File

@@ -0,0 +1,190 @@
#include <arrange-wrapper/ArrangeSettingsDb_AppCfg.hpp>
#include <LocalesUtils.hpp>
#include <libslic3r/AppConfig.hpp>
#include <arrange-wrapper/ArrangeSettingsView.hpp>
namespace Slic3r {
ArrangeSettingsDb_AppCfg::ArrangeSettingsDb_AppCfg(AppConfig *appcfg) : m_appcfg{appcfg}
{
sync();
}
void ArrangeSettingsDb_AppCfg::sync()
{
m_settings_fff.postfix = "_fff";
m_settings_fff_seq.postfix = "_fff_seq_print";
m_settings_sla.postfix = "_sla";
std::string dist_fff_str =
m_appcfg->get("arrange", "min_object_distance_fff");
std::string dist_bed_fff_str =
m_appcfg->get("arrange", "min_bed_distance_fff");
std::string dist_fff_seq_print_str =
m_appcfg->get("arrange", "min_object_distance_fff_seq_print");
std::string dist_bed_fff_seq_print_str =
m_appcfg->get("arrange", "min_bed_distance_fff_seq_print");
std::string dist_sla_str =
m_appcfg->get("arrange", "min_object_distance_sla");
std::string dist_bed_sla_str =
m_appcfg->get("arrange", "min_bed_distance_sla");
std::string en_rot_fff_str =
m_appcfg->get("arrange", "enable_rotation_fff");
std::string en_rot_fff_seqp_str =
m_appcfg->get("arrange", "enable_rotation_fff_seq_print");
std::string en_rot_sla_str =
m_appcfg->get("arrange", "enable_rotation_sla");
std::string alignment_xl_str =
m_appcfg->get("arrange", "alignment_xl");
std::string geom_handling_str =
m_appcfg->get("arrange", "geometry_handling");
std::string strategy_str =
m_appcfg->get("arrange", "arrange_strategy");
if (!dist_fff_str.empty())
m_settings_fff.vals.d_obj = string_to_float_decimal_point(dist_fff_str);
else
m_settings_fff.vals.d_obj = m_settings_fff.defaults.d_obj;
if (!dist_bed_fff_str.empty())
m_settings_fff.vals.d_bed = string_to_float_decimal_point(dist_bed_fff_str);
else
m_settings_fff.vals.d_bed = m_settings_fff.defaults.d_bed;
if (!dist_fff_seq_print_str.empty())
m_settings_fff_seq.vals.d_obj = string_to_float_decimal_point(dist_fff_seq_print_str);
else
m_settings_fff_seq.vals.d_obj = m_settings_fff_seq.defaults.d_obj;
if (!dist_bed_fff_seq_print_str.empty())
m_settings_fff_seq.vals.d_bed = string_to_float_decimal_point(dist_bed_fff_seq_print_str);
else
m_settings_fff_seq.vals.d_bed = m_settings_fff_seq.defaults.d_bed;
if (!dist_sla_str.empty())
m_settings_sla.vals.d_obj = string_to_float_decimal_point(dist_sla_str);
else
m_settings_sla.vals.d_obj = m_settings_sla.defaults.d_obj;
if (!dist_bed_sla_str.empty())
m_settings_sla.vals.d_bed = string_to_float_decimal_point(dist_bed_sla_str);
else
m_settings_sla.vals.d_bed = m_settings_sla.defaults.d_bed;
if (!en_rot_fff_str.empty())
m_settings_fff.vals.rotations = (en_rot_fff_str == "1" || en_rot_fff_str == "yes");
if (!en_rot_fff_seqp_str.empty())
m_settings_fff_seq.vals.rotations = (en_rot_fff_seqp_str == "1" || en_rot_fff_seqp_str == "yes");
else
m_settings_fff_seq.vals.rotations = m_settings_fff_seq.defaults.rotations;
if (!en_rot_sla_str.empty())
m_settings_sla.vals.rotations = (en_rot_sla_str == "1" || en_rot_sla_str == "yes");
else
m_settings_sla.vals.rotations = m_settings_sla.defaults.rotations;
// Override default alignment and save/load it to a temporary slot "alignment_xl"
auto arr_alignment = ArrangeSettingsView::to_xl_pivots(alignment_xl_str)
.value_or(m_settings_fff.defaults.xl_align);
m_settings_sla.vals.xl_align = arr_alignment ;
m_settings_fff.vals.xl_align = arr_alignment ;
m_settings_fff_seq.vals.xl_align = arr_alignment ;
auto geom_handl = ArrangeSettingsView::to_geometry_handling(geom_handling_str)
.value_or(m_settings_fff.defaults.geom_handling);
m_settings_sla.vals.geom_handling = geom_handl;
m_settings_fff.vals.geom_handling = geom_handl;
m_settings_fff_seq.vals.geom_handling = geom_handl;
auto arr_strategy = ArrangeSettingsView::to_arrange_strategy(strategy_str)
.value_or(m_settings_fff.defaults.arr_strategy);
m_settings_sla.vals.arr_strategy = arr_strategy;
m_settings_fff.vals.arr_strategy = arr_strategy;
m_settings_fff_seq.vals.arr_strategy = arr_strategy;
}
void ArrangeSettingsDb_AppCfg::distance_from_obj_range(float &min,
float &max) const
{
min = get_slot(this).dobj_range.minval;
max = get_slot(this).dobj_range.maxval;
}
void ArrangeSettingsDb_AppCfg::distance_from_bed_range(float &min,
float &max) const
{
min = get_slot(this).dbed_range.minval;
max = get_slot(this).dbed_range.maxval;
}
arr2::ArrangeSettingsDb& ArrangeSettingsDb_AppCfg::set_distance_from_objects(float v)
{
Slot &slot = get_slot(this);
slot.vals.d_obj = v;
m_appcfg->set("arrange", "min_object_distance" + slot.postfix,
float_to_string_decimal_point(v));
return *this;
}
arr2::ArrangeSettingsDb& ArrangeSettingsDb_AppCfg::set_distance_from_bed(float v)
{
Slot &slot = get_slot(this);
slot.vals.d_bed = v;
m_appcfg->set("arrange", "min_bed_distance" + slot.postfix,
float_to_string_decimal_point(v));
return *this;
}
arr2::ArrangeSettingsDb& ArrangeSettingsDb_AppCfg::set_rotation_enabled(bool v)
{
Slot &slot = get_slot(this);
slot.vals.rotations = v;
m_appcfg->set("arrange", "enable_rotation" + slot.postfix, v ? "1" : "0");
return *this;
}
arr2::ArrangeSettingsDb& ArrangeSettingsDb_AppCfg::set_xl_alignment(XLPivots v)
{
m_settings_fff.vals.xl_align = v;
m_appcfg->set("arrange", "alignment_xl", std::string{get_label(v)});
return *this;
}
arr2::ArrangeSettingsDb& ArrangeSettingsDb_AppCfg::set_geometry_handling(GeometryHandling v)
{
m_settings_fff.vals.geom_handling = v;
m_appcfg->set("arrange", "geometry_handling", std::string{get_label(v)});
return *this;
}
arr2::ArrangeSettingsDb& ArrangeSettingsDb_AppCfg::set_arrange_strategy(ArrangeStrategy v)
{
m_settings_fff.vals.arr_strategy = v;
m_appcfg->set("arrange", "arrange_strategy", std::string{get_label(v)});
return *this;
}
} // namespace Slic3r

View File

@@ -0,0 +1,207 @@
#include <numeric>
#include <libslic3r/Geometry/ConvexHull.hpp>
#include <arrange/NFP/NFPConcave_Tesselate.hpp>
#include <arrange-wrapper/Items/ArrangeItem.hpp>
#include "ArrangeImpl.hpp" // IWYU pragma: keep
#include "Tasks/ArrangeTaskImpl.hpp" // IWYU pragma: keep
#include "Tasks/FillBedTaskImpl.hpp" // IWYU pragma: keep
#include "Tasks/MultiplySelectionTaskImpl.hpp" // IWYU pragma: keep
namespace Slic3r { namespace arr2 {
const Polygons &DecomposedShape::transformed_outline() const
{
constexpr auto sc = scaled<double>(1.) * scaled<double>(1.);
if (!m_transformed_outline_valid) {
m_transformed_outline = contours();
for (Polygon &poly : m_transformed_outline) {
poly.rotate(rotation());
poly.translate(translation());
}
m_area = std::accumulate(m_transformed_outline.begin(),
m_transformed_outline.end(), 0.,
[sc](double s, const auto &p) {
return s + p.area() / sc;
});
m_convex_hull = Geometry::convex_hull(m_transformed_outline);
m_bounding_box = get_extents(m_convex_hull);
m_transformed_outline_valid = true;
}
return m_transformed_outline;
}
const Polygon &DecomposedShape::convex_hull() const
{
if (!m_transformed_outline_valid)
transformed_outline();
return m_convex_hull;
}
const BoundingBox &DecomposedShape::bounding_box() const
{
if (!m_transformed_outline_valid)
transformed_outline();
return m_bounding_box;
}
const Vec2crd &DecomposedShape::reference_vertex() const
{
if (!m_reference_vertex_valid) {
m_reference_vertex = Slic3r::reference_vertex(transformed_outline());
m_refs.clear();
m_mins.clear();
m_refs.reserve(m_transformed_outline.size());
m_mins.reserve(m_transformed_outline.size());
for (auto &poly : m_transformed_outline) {
m_refs.emplace_back(Slic3r::reference_vertex(poly));
m_mins.emplace_back(Slic3r::min_vertex(poly));
}
m_reference_vertex_valid = true;
}
return m_reference_vertex;
}
const Vec2crd &DecomposedShape::reference_vertex(size_t i) const
{
if (!m_reference_vertex_valid) {
reference_vertex();
}
return m_refs[i];
}
const Vec2crd &DecomposedShape::min_vertex(size_t idx) const
{
if (!m_reference_vertex_valid) {
reference_vertex();
}
return m_mins[idx];
}
Vec2crd DecomposedShape::centroid() const
{
constexpr double area_sc = scaled<double>(1.) * scaled(1.);
if (!m_centroid_valid) {
double total_area = 0.0;
Vec2d cntr = Vec2d::Zero();
for (const Polygon& poly : transformed_outline()) {
double parea = poly.area() / area_sc;
Vec2d pcntr = unscaled(poly.centroid());
total_area += parea;
cntr += pcntr * parea;
}
cntr /= total_area;
m_centroid = scaled(cntr);
m_centroid_valid = true;
}
return m_centroid;
}
DecomposedShape decompose(const ExPolygons &shape)
{
return DecomposedShape{convex_decomposition_tess(shape)};
}
DecomposedShape decompose(const Polygon &shape)
{
Polygons convex_shapes;
bool is_convex = polygon_is_convex(shape);
if (is_convex) {
convex_shapes.emplace_back(shape);
} else {
convex_shapes = convex_decomposition_tess(shape);
}
return DecomposedShape{std::move(convex_shapes)};
}
ArrangeItem::ArrangeItem(const ExPolygons &shape)
: m_shape{decompose(shape)}, m_envelope{&m_shape}
{}
ArrangeItem::ArrangeItem(Polygon shape)
: m_shape{decompose(shape)}, m_envelope{&m_shape}
{}
ArrangeItem::ArrangeItem(const ArrangeItem &other)
{
this->operator= (other);
}
ArrangeItem::ArrangeItem(ArrangeItem &&other) noexcept
{
this->operator=(std::move(other));
}
ArrangeItem &ArrangeItem::operator=(const ArrangeItem &other)
{
m_shape = other.m_shape;
m_datastore = other.m_datastore;
m_bed_idx = other.m_bed_idx;
m_priority = other.m_priority;
m_bed_constraint = other.m_bed_constraint;
if (other.m_envelope.get() == &other.m_shape)
m_envelope = &m_shape;
else
m_envelope = std::make_unique<DecomposedShape>(other.envelope());
return *this;
}
void ArrangeItem::set_shape(DecomposedShape shape)
{
m_shape = std::move(shape);
m_envelope = &m_shape;
}
void ArrangeItem::set_envelope(DecomposedShape envelope)
{
m_envelope = std::make_unique<DecomposedShape>(std::move(envelope));
// Initial synch of transformations of envelope and shape.
// They need to be in synch all the time
m_envelope->translation(m_shape.translation());
m_envelope->rotation(m_shape.rotation());
}
ArrangeItem &ArrangeItem::operator=(ArrangeItem &&other) noexcept
{
m_shape = std::move(other.m_shape);
m_datastore = std::move(other.m_datastore);
m_bed_idx = other.m_bed_idx;
m_priority = other.m_priority;
m_bed_constraint = other.m_bed_constraint;
if (other.m_envelope.get() == &other.m_shape)
m_envelope = &m_shape;
else
m_envelope = std::move(other.m_envelope);
return *this;
}
template struct ImbueableItemTraits_<ArrangeItem>;
template class ArrangeableToItemConverter<ArrangeItem>;
template struct ArrangeTask<ArrangeItem>;
template struct FillBedTask<ArrangeItem>;
template struct MultiplySelectionTask<ArrangeItem>;
template class Arranger<ArrangeItem>;
}} // namespace Slic3r::arr2

View File

@@ -0,0 +1,24 @@
#include <arrange-wrapper/Items/SimpleArrangeItem.hpp>
#include "ArrangeImpl.hpp" // IWYU pragma: keep
#include "Tasks/ArrangeTaskImpl.hpp" // IWYU pragma: keep
#include "Tasks/FillBedTaskImpl.hpp" // IWYU pragma: keep
#include "Tasks/MultiplySelectionTaskImpl.hpp" // IWYU pragma: keep
namespace Slic3r { namespace arr2 {
Polygon SimpleArrangeItem::outline() const
{
Polygon ret = shape();
ret.rotate(m_rotation);
ret.translate(m_translation);
return ret;
}
template class ArrangeableToItemConverter<SimpleArrangeItem>;
template struct ArrangeTask<SimpleArrangeItem>;
template struct FillBedTask<SimpleArrangeItem>;
template struct MultiplySelectionTask<SimpleArrangeItem>;
template class Arranger<SimpleArrangeItem>;
}} // namespace Slic3r::arr2

View File

@@ -0,0 +1,66 @@
#include <libslic3r/Model.hpp>
#include <utility>
#include <arrange-wrapper/ModelArrange.hpp>
#include <arrange-wrapper/Items/ArrangeItem.hpp>
#include <arrange-wrapper/Tasks/MultiplySelectionTask.hpp>
#include <arrange-wrapper/SceneBuilder.hpp>
#include <arrange-wrapper/ArrangeSettingsView.hpp>
#include <arrange-wrapper/Scene.hpp>
namespace Slic3r {
void duplicate_objects(Model &model, size_t copies_num)
{
for (ModelObject *o : model.objects) {
// make a copy of the pointers in order to avoid recursion when appending their copies
ModelInstancePtrs instances = o->instances;
for (const ModelInstance *i : instances)
for (size_t k = 2; k <= copies_num; ++ k)
o->add_instance(*i);
}
}
bool arrange_objects(Model &model,
const arr2::ArrangeBed &bed,
const arr2::ArrangeSettingsView &settings)
{
return arrange(arr2::SceneBuilder{}
.set_bed(bed)
.set_arrange_settings(settings)
.set_model(model));
}
void duplicate_objects(Model &model,
size_t copies_num,
const arr2::ArrangeBed &bed,
const arr2::ArrangeSettingsView &settings)
{
duplicate_objects(model, copies_num);
arrange_objects(model, bed, settings);
}
void duplicate(Model &model,
size_t copies_num,
const arr2::ArrangeBed &bed,
const arr2::ArrangeSettingsView &settings)
{
auto vbh = arr2::VirtualBedHandler::create(bed);
arr2::DuplicableModel dup_model{&model, std::move(vbh), bounding_box(bed)};
arr2::Scene scene{arr2::BasicSceneBuilder{}
.set_arrangeable_model(&dup_model)
.set_arrange_settings(&settings)
.set_bed(bed)};
if (copies_num >= 1)
copies_num -= 1;
auto task = arr2::MultiplySelectionTask<arr2::ArrangeItem>::create(scene, copies_num);
auto result = task->process_native(arr2::DummyCtl{});
if (result->apply_on(scene.model()))
dup_model.apply_duplicates();
}
} // namespace Slic3r

View File

@@ -0,0 +1,62 @@
#include <arrange-wrapper/Scene.hpp>
#include <arrange-wrapper/Items/ArrangeItem.hpp>
#include <arrange-wrapper/Tasks/ArrangeTask.hpp>
#include <arrange-wrapper/Tasks/FillBedTask.hpp>
namespace Slic3r { namespace arr2 {
std::vector<ObjectID> Scene::selected_ids() const
{
auto items = reserve_vector<ObjectID>(model().arrangeable_count());
model().for_each_arrangeable([ &items](auto &arrbl) mutable {
if (arrbl.is_selected())
items.emplace_back(arrbl.id());
});
return items;
}
using DefaultArrangeItem = ArrangeItem;
std::unique_ptr<ArrangeTaskBase> ArrangeTaskBase::create(Tasks task_type, const Scene &sc)
{
std::unique_ptr<ArrangeTaskBase> ret;
switch(task_type) {
case Tasks::Arrange:
ret = ArrangeTask<ArrangeItem>::create(sc);
break;
case Tasks::FillBed:
ret = FillBedTask<ArrangeItem>::create(sc);
break;
default:
;
}
return ret;
}
std::set<ObjectID> selected_geometry_ids(const Scene &sc)
{
std::set<ObjectID> result;
std::vector<ObjectID> selected_ids = sc.selected_ids();
for (const ObjectID &id : selected_ids) {
sc.model().visit_arrangeable(id, [&result](const Arrangeable &arrbl) {
auto id = arrbl.geometry_id();
if (id.valid())
result.insert(arrbl.geometry_id());
});
}
return result;
}
bool arrange(Scene &scene, ArrangeTaskCtl &ctl)
{
auto task = ArrangeTaskBase::create(Tasks::Arrange, scene);
auto result = task->process(ctl);
return result->apply_on(scene.model());
}
}} // namespace Slic3r::arr2

View File

@@ -0,0 +1,986 @@
#ifndef SCENEBUILDER_CPP
#define SCENEBUILDER_CPP
#include <cmath>
#include <limits>
#include <numeric>
#include <cstdlib>
#include <iterator>
#include <libslic3r/Model.hpp>
#include <libslic3r/MultipleBeds.hpp>
#include <libslic3r/Print.hpp>
#include <libslic3r/SLAPrint.hpp>
#include <libslic3r/Geometry/ConvexHull.hpp>
#include <libslic3r/ClipperUtils.hpp>
#include <libslic3r/Geometry.hpp>
#include <libslic3r/PrintConfig.hpp>
#include <libslic3r/SLA/Pad.hpp>
#include <libslic3r/TriangleMesh.hpp>
#include <libslic3r/TriangleMeshSlicer.hpp>
#include <arrange/Beds.hpp>
#include <arrange/ArrangeItemTraits.hpp>
#include <arrange-wrapper/SceneBuilder.hpp>
#include <arrange-wrapper/Scene.hpp>
namespace Slic3r { namespace arr2 {
coord_t get_skirt_inset(const Print &fffprint)
{
float skirt_inset = 0.f;
if (fffprint.has_skirt()) {
float skirtflow = fffprint.objects().empty()
? 0
: fffprint.skirt_flow().width();
skirt_inset = fffprint.config().skirts.value * skirtflow
+ fffprint.config().skirt_distance.value;
}
return scaled(skirt_inset);
}
coord_t brim_offset(const PrintObject &po)
{
const BrimType brim_type = po.config().brim_type.value;
const float brim_separation = po.config().brim_separation.getFloat();
const float brim_width = po.config().brim_width.getFloat();
const bool has_outer_brim = brim_type == BrimType::btOuterOnly ||
brim_type == BrimType::btOuterAndInner;
// How wide is the brim? (in scaled units)
return has_outer_brim ? scaled(brim_width + brim_separation) : 0;
}
size_t model_instance_count (const Model &m)
{
return std::accumulate(m.objects.begin(),
m.objects.end(),
size_t(0),
[](size_t s, const Slic3r::ModelObject *mo) {
return s + mo->instances.size();
});
}
void transform_instance(ModelInstance &mi,
const Vec2d &transl_unscaled,
double rot,
const Transform3d &physical_tr)
{
auto trafo = mi.get_transformation().get_matrix();
auto tr = Transform3d::Identity();
tr.translate(to_3d(transl_unscaled, 0.));
trafo = physical_tr.inverse() * tr * Eigen::AngleAxisd(rot, Vec3d::UnitZ()) * physical_tr * trafo;
mi.set_transformation(Geometry::Transformation{trafo});
mi.invalidate_object_bounding_box();
}
BoundingBoxf3 instance_bounding_box(const ModelInstance &mi,
const Transform3d &tr,
bool dont_translate)
{
BoundingBoxf3 bb;
const Transform3d inst_matrix
= dont_translate ? mi.get_transformation().get_matrix_no_offset()
: mi.get_transformation().get_matrix();
for (ModelVolume *v : mi.get_object()->volumes) {
if (v->is_model_part()) {
bb.merge(v->mesh().transformed_bounding_box(tr * inst_matrix
* v->get_matrix()));
}
}
return bb;
}
BoundingBoxf3 instance_bounding_box(const ModelInstance &mi, bool dont_translate)
{
return instance_bounding_box(mi, Transform3d::Identity(), dont_translate);
}
bool check_coord_bounds(const BoundingBoxf &bb)
{
return std::abs(bb.min.x()) < UnscaledCoordLimit &&
std::abs(bb.min.y()) < UnscaledCoordLimit &&
std::abs(bb.max.x()) < UnscaledCoordLimit &&
std::abs(bb.max.y()) < UnscaledCoordLimit;
}
ExPolygons extract_full_outline(const ModelInstance &inst, const Transform3d &tr)
{
ExPolygons outline;
if (check_coord_bounds(to_2d(instance_bounding_box(inst, tr)))) {
for (const ModelVolume *v : inst.get_object()->volumes) {
Polygons vol_outline;
vol_outline = project_mesh(v->mesh().its,
tr * inst.get_matrix() * v->get_matrix(),
[] {});
switch (v->type()) {
case ModelVolumeType::MODEL_PART:
outline = union_ex(outline, vol_outline);
break;
case ModelVolumeType::NEGATIVE_VOLUME:
outline = diff_ex(outline, vol_outline);
break;
default:;
}
}
}
return outline;
}
Polygon extract_convex_outline(const ModelInstance &inst, const Transform3d &tr)
{
auto bb = to_2d(instance_bounding_box(inst, tr));
Polygon ret;
if (check_coord_bounds(bb)) {
ret = inst.get_object()->convex_hull_2d(tr * inst.get_matrix());
}
return ret;
}
inline static bool is_infinite_bed(const ExtendedBed &ebed) noexcept
{
bool ret = false;
visit_bed(
[&ret](auto &rawbed) {
ret = std::is_convertible_v<decltype(rawbed), InfiniteBed>;
},
ebed);
return ret;
}
void SceneBuilder::set_brim_and_skirt()
{
if (!m_fff_print)
return;
m_brims_offs = 0;
for (const PrintObject *po : m_fff_print->objects()) {
if (po) {
m_brims_offs = std::max(m_brims_offs, brim_offset(*po));
}
}
m_skirt_offs = get_skirt_inset(*m_fff_print);
}
void SceneBuilder::build_scene(Scene &sc) &&
{
if (m_sla_print && !m_fff_print) {
m_arrangeable_model = std::make_unique<ArrangeableSLAPrint>(m_sla_print.get(), *this);
} else {
m_arrangeable_model = std::make_unique<ArrangeableSlicerModel>(*this);
}
if (m_fff_print && !m_sla_print) {
if (is_infinite_bed(m_bed)) {
set_bed(*m_fff_print, Vec2crd::Zero());
} else {
set_brim_and_skirt();
}
}
// Call the parent class implementation of build_scene to finish constructing of the scene
std::move(*this).SceneBuilderBase<SceneBuilder>::build_scene(sc);
}
void SceneBuilder::build_arrangeable_slicer_model(ArrangeableSlicerModel &amodel)
{
if (!m_model)
m_model = std::make_unique<Model>();
if (!m_selection)
m_selection = std::make_unique<FixedSelection>(*m_model);
if (!m_vbed_handler) {
m_vbed_handler = VirtualBedHandler::create(m_bed);
}
if (m_fff_print && !m_xl_printer)
m_xl_printer = is_XL_printer(m_fff_print->config());
const bool has_wipe_tower{std::any_of(
m_wipetower_handlers.begin(),
m_wipetower_handlers.end(),
[](const AnyPtr<WipeTowerHandler> &handler){
bool is_on_current_bed{false};
handler->visit([&](const Arrangeable &arrangeable){
is_on_current_bed = arrangeable.get_bed_index() == s_multiple_beds.get_active_bed();
});
return is_on_current_bed;
}
)};
if (m_xl_printer && !has_wipe_tower) {
m_bed = XLBed{bounding_box(m_bed), bed_gap(m_bed)};
}
amodel.m_vbed_handler = std::move(m_vbed_handler);
amodel.m_model = std::move(m_model);
amodel.m_selmask = std::move(m_selection);
amodel.m_wths = std::move(m_wipetower_handlers);
amodel.m_bed_constraints = std::move(m_bed_constraints);
amodel.m_considered_instances = std::move(m_considered_instances);
for (auto &wth : amodel.m_wths) {
wth->set_selection_predicate(
[&amodel](int wipe_tower_index){
return amodel.m_selmask->is_wipe_tower_selected(wipe_tower_index);
}
);
}
}
int XStriderVBedHandler::get_bed_index(const VBedPlaceable &obj) const
{
int bedidx = 0;
auto stride_s = stride_scaled();
if (stride_s > 0) {
double bedx = unscaled(m_start);
auto instance_bb = obj.bounding_box();
auto reference_pos_x = (instance_bb.min.x() - bedx);
auto stride = unscaled(stride_s);
auto bedidx_d = std::floor(reference_pos_x / stride);
if (bedidx_d < std::numeric_limits<int>::min())
bedidx = std::numeric_limits<int>::min();
else if (bedidx_d > std::numeric_limits<int>::max())
bedidx = std::numeric_limits<int>::max();
else
bedidx = static_cast<int>(bedidx_d);
}
return bedidx;
}
bool XStriderVBedHandler::assign_bed(VBedPlaceable &obj, int bed_index)
{
bool ret = false;
auto stride_s = stride_scaled();
if (bed_index == 0 || (bed_index > 0 && stride_s > 0)) {
auto current_bed_index = get_bed_index(obj);
auto stride = unscaled(stride_s);
auto transl = Vec2d{(bed_index - current_bed_index) * stride, 0.};
obj.displace(transl, 0.);
ret = true;
}
return ret;
}
Transform3d XStriderVBedHandler::get_physical_bed_trafo(int bed_index) const
{
auto stride_s = stride_scaled();
auto tr = Transform3d::Identity();
tr.translate(Vec3d{-bed_index * unscaled(stride_s), 0., 0.});
return tr;
}
int YStriderVBedHandler::get_bed_index(const VBedPlaceable &obj) const
{
int bedidx = 0;
auto stride_s = stride_scaled();
if (stride_s > 0) {
double ystart = unscaled(m_start);
auto instance_bb = obj.bounding_box();
auto reference_pos_y = (instance_bb.min.y() - ystart);
auto stride = unscaled(stride_s);
auto bedidx_d = std::floor(reference_pos_y / stride);
if (bedidx_d < std::numeric_limits<int>::min())
bedidx = std::numeric_limits<int>::min();
else if (bedidx_d > std::numeric_limits<int>::max())
bedidx = std::numeric_limits<int>::max();
else
bedidx = static_cast<int>(bedidx_d);
}
return bedidx;
}
bool YStriderVBedHandler::assign_bed(VBedPlaceable &obj, int bed_index)
{
bool ret = false;
auto stride_s = stride_scaled();
if (bed_index == 0 || (bed_index > 0 && stride_s > 0)) {
auto current_bed_index = get_bed_index(obj);
auto stride = unscaled(stride_s);
auto transl = Vec2d{0., (bed_index - current_bed_index) * stride};
obj.displace(transl, 0.);
ret = true;
}
return ret;
}
Transform3d YStriderVBedHandler::get_physical_bed_trafo(int bed_index) const
{
auto stride_s = stride_scaled();
auto tr = Transform3d::Identity();
tr.translate(Vec3d{0., -bed_index * unscaled(stride_s), 0.});
return tr;
}
int GridStriderVBedHandler::get_bed_index(const VBedPlaceable &obj) const
{
Vec2i crd = {m_xstrider.get_bed_index(obj), m_ystrider.get_bed_index(obj)};
return BedsGrid::grid_coords2index(crd);
}
bool GridStriderVBedHandler::assign_bed(VBedPlaceable &inst, int bed_idx)
{
if (bed_idx < 0) {
return false;
}
Vec2i crd = BedsGrid::index2grid_coords(bed_idx);
bool retx = m_xstrider.assign_bed(inst, crd.x());
bool rety = m_ystrider.assign_bed(inst, crd.y());
return retx && rety;
}
Transform3d GridStriderVBedHandler::get_physical_bed_trafo(int bed_idx) const
{
Vec2i crd = BedsGrid::index2grid_coords(bed_idx);
Transform3d ret = m_xstrider.get_physical_bed_trafo(crd.x()) *
m_ystrider.get_physical_bed_trafo(crd.y());
return ret;
}
FixedSelection::FixedSelection(const Model &m) : m_wp{true}
{
m_seldata.resize(m.objects.size());
for (size_t i = 0; i < m.objects.size(); ++i) {
m_seldata[i].resize(m.objects[i]->instances.size(), true);
}
}
FixedSelection::FixedSelection(const SelectionMask &other)
{
auto obj_sel = other.selected_objects();
m_seldata.reserve(obj_sel.size());
for (int oidx = 0; oidx < static_cast<int>(obj_sel.size()); ++oidx)
m_seldata.emplace_back(other.selected_instances(oidx));
}
std::vector<bool> FixedSelection::selected_objects() const
{
auto ret = Slic3r::reserve_vector<bool>(m_seldata.size());
std::transform(m_seldata.begin(),
m_seldata.end(),
std::back_inserter(ret),
[](auto &a) {
return std::any_of(a.begin(), a.end(), [](bool b) {
return b;
});
});
return ret;
}
static std::vector<size_t> find_true_indices(const std::vector<bool> &v)
{
auto ret = reserve_vector<size_t>(v.size());
for (size_t i = 0; i < v.size(); ++i)
if (v[i])
ret.emplace_back(i);
return ret;
}
std::vector<size_t> selected_object_indices(const SelectionMask &sm)
{
auto sel = sm.selected_objects();
return find_true_indices(sel);
}
std::vector<size_t> selected_instance_indices(int obj_idx, const SelectionMask &sm)
{
auto sel = sm.selected_instances(obj_idx);
return find_true_indices(sel);
}
SceneBuilder::SceneBuilder() = default;
SceneBuilder::~SceneBuilder() = default;
SceneBuilder::SceneBuilder(SceneBuilder &&) = default;
SceneBuilder& SceneBuilder::operator=(SceneBuilder&&) = default;
SceneBuilder &&SceneBuilder::set_model(AnyPtr<Model> mdl)
{
m_model = std::move(mdl);
return std::move(*this);
}
SceneBuilder &&SceneBuilder::set_model(Model &mdl)
{
m_model = &mdl;
return std::move(*this);
}
SceneBuilder &&SceneBuilder::set_fff_print(AnyPtr<const Print> mdl_print)
{
m_fff_print = std::move(mdl_print);
return std::move(*this);
}
SceneBuilder &&SceneBuilder::set_sla_print(AnyPtr<const SLAPrint> mdl_print)
{
m_sla_print = std::move(mdl_print);
return std::move(*this);
}
SceneBuilder &&SceneBuilder::set_bed(const DynamicPrintConfig &cfg, const Vec2crd &gap)
{
Points bedpts = get_bed_shape(cfg);
if (is_XL_printer(cfg)) {
m_xl_printer = true;
}
m_bed = arr2::to_arrange_bed(bedpts, gap);
return std::move(*this);
}
SceneBuilder &&SceneBuilder::set_bed(const Print &print, const Vec2crd &gap)
{
Points bedpts = get_bed_shape(print.config());
if (is_XL_printer(print.config())) {
m_bed = XLBed{get_extents(bedpts), gap};
} else {
m_bed = arr2::to_arrange_bed(bedpts, gap);
}
set_brim_and_skirt();
return std::move(*this);
}
SceneBuilder &&SceneBuilder::set_sla_print(const SLAPrint *slaprint)
{
m_sla_print = slaprint;
return std::move(*this);
}
int ArrangeableWipeTowerBase::get_bed_index() const {
return this->bed_index;
}
bool ArrangeableWipeTowerBase::assign_bed(int bed_idx)
{
return bed_idx == this->bed_index;
}
bool PhysicalOnlyVBedHandler::assign_bed(VBedPlaceable &inst, int bed_idx)
{
return bed_idx == PhysicalBedId;
}
ArrangeableSlicerModel::ArrangeableSlicerModel(SceneBuilder &builder)
{
builder.build_arrangeable_slicer_model(*this);
}
ArrangeableSlicerModel::~ArrangeableSlicerModel() = default;
void ArrangeableSlicerModel::for_each_arrangeable(
std::function<void(Arrangeable &)> fn)
{
for_each_arrangeable_(*this, fn);
for (auto &wth : m_wths) {
wth->visit(fn);
}
}
void ArrangeableSlicerModel::for_each_arrangeable(
std::function<void(const Arrangeable &)> fn) const
{
for_each_arrangeable_(*this, fn);
for (auto &wth : m_wths) {
wth->visit(fn);
}
}
ObjectID ArrangeableSlicerModel::add_arrangeable(const ObjectID &prototype_id)
{
ObjectID ret;
auto [inst, pos] = find_instance_by_id(*m_model, prototype_id);
if (inst) {
auto new_inst = inst->get_object()->add_instance(*inst);
if (new_inst) {
ret = new_inst->id();
}
}
return ret;
}
std::optional<int> get_bed_constraint(
const ObjectID &id,
const BedConstraints &bed_constraints
) {
const auto found_constraint{bed_constraints.find(id)};
if (found_constraint == bed_constraints.end()) {
return std::nullopt;
}
return found_constraint->second;
}
bool should_include_instance(
const ObjectID &instance_id,
const std::set<ObjectID> &considered_instances
) {
if (considered_instances.find(instance_id) == considered_instances.end()) {
return false;
}
return true;
}
template<class Self, class Fn>
void ArrangeableSlicerModel::for_each_arrangeable_(Self &&self, Fn &&fn)
{
InstPos pos;
for (auto *obj : self.m_model->objects) {
for (auto *inst : obj->instances) {
if (!self.m_considered_instances || should_include_instance(inst->id(), *self.m_considered_instances)) {
ArrangeableModelInstance ainst{
inst,
self.m_vbed_handler.get(),
self.m_selmask.get(),
pos,
get_bed_constraint(inst->id(), self.m_bed_constraints)
};
fn(ainst);
}
++pos.inst_idx;
}
pos.inst_idx = 0;
++pos.obj_idx;
}
}
template<class Self, class Fn>
void ArrangeableSlicerModel::visit_arrangeable_(Self &&self, const ObjectID &id, Fn &&fn)
{
for (auto &wth : self.m_wths) {
if (id == wth->get_id()) {
wth->visit(fn);
return;
}
}
auto [inst, pos] = find_instance_by_id(*self.m_model, id);
if (inst) {
ArrangeableModelInstance ainst{
inst,
self.m_vbed_handler.get(),
self.m_selmask.get(),
pos,
get_bed_constraint(id, self.m_bed_constraints)
};
fn(ainst);
}
}
void ArrangeableSlicerModel::visit_arrangeable(
const ObjectID &id, std::function<void(const Arrangeable &)> fn) const
{
visit_arrangeable_(*this, id, fn);
}
void ArrangeableSlicerModel::visit_arrangeable(
const ObjectID &id, std::function<void(Arrangeable &)> fn)
{
visit_arrangeable_(*this, id, fn);
}
template<class Self, class Fn>
void ArrangeableSLAPrint::for_each_arrangeable_(Self &&self, Fn &&fn)
{
InstPos pos;
for (auto *obj : self.m_model->objects) {
for (auto *inst : obj->instances) {
if (!self.m_considered_instances || should_include_instance(inst->id(), *self.m_considered_instances)) {
ArrangeableModelInstance ainst{inst, self.m_vbed_handler.get(),
self.m_selmask.get(), pos, get_bed_constraint(inst->id(), self.m_bed_constraints)};
auto obj_id = inst->get_object()->id();
const SLAPrintObject *po =
self.m_slaprint->get_print_object_by_model_object_id(obj_id);
if (po) {
auto &vbh = self.m_vbed_handler;
auto phtr = vbh->get_physical_bed_trafo(vbh->get_bed_index(VBedPlaceableMI{*inst}));
ArrangeableSLAPrintObject ainst_po{
po,
&ainst,
get_bed_constraint(inst->id(), self.m_bed_constraints),
phtr * inst->get_matrix()
};
fn(ainst_po);
} else {
fn(ainst);
}
}
++pos.inst_idx;
}
pos.inst_idx = 0;
++pos.obj_idx;
}
}
void ArrangeableSLAPrint::for_each_arrangeable(
std::function<void(Arrangeable &)> fn)
{
for_each_arrangeable_(*this, fn);
for (auto &wth : m_wths) {
wth->visit(fn);
}
}
void ArrangeableSLAPrint::for_each_arrangeable(
std::function<void(const Arrangeable &)> fn) const
{
for_each_arrangeable_(*this, fn);
for (auto &wth : m_wths) {
wth->visit(fn);
}
}
template<class Self, class Fn>
void ArrangeableSLAPrint::visit_arrangeable_(Self &&self, const ObjectID &id, Fn &&fn)
{
auto [inst, pos] = find_instance_by_id(*self.m_model, id);
if (inst) {
ArrangeableModelInstance ainst{inst, self.m_vbed_handler.get(),
self.m_selmask.get(), pos, std::nullopt};
auto obj_id = inst->get_object()->id();
const SLAPrintObject *po =
self.m_slaprint->get_print_object_by_model_object_id(obj_id);
if (po) {
auto &vbh = self.m_vbed_handler;
auto phtr = vbh->get_physical_bed_trafo(vbh->get_bed_index(VBedPlaceableMI{*inst}));
ArrangeableSLAPrintObject ainst_po{
po,
&ainst,
get_bed_constraint(inst->id(), self.m_bed_constraints),
phtr * inst->get_matrix()
};
fn(ainst_po);
} else {
fn(ainst);
}
}
}
void ArrangeableSLAPrint::visit_arrangeable(
const ObjectID &id, std::function<void(const Arrangeable &)> fn) const
{
visit_arrangeable_(*this, id, fn);
}
void ArrangeableSLAPrint::visit_arrangeable(
const ObjectID &id, std::function<void(Arrangeable &)> fn)
{
visit_arrangeable_(*this, id, fn);
}
template<class InstPtr, class VBedHPtr>
ExPolygons ArrangeableModelInstance<InstPtr, VBedHPtr>::full_outline() const
{
int bedidx = m_vbedh->get_bed_index(*this);
auto tr = m_vbedh->get_physical_bed_trafo(bedidx);
return extract_full_outline(*m_mi, tr);
}
template<class InstPtr, class VBedHPtr>
Polygon ArrangeableModelInstance<InstPtr, VBedHPtr>::convex_outline() const
{
int bedidx = m_vbedh->get_bed_index(*this);
auto tr = m_vbedh->get_physical_bed_trafo(bedidx);
return extract_convex_outline(*m_mi, tr);
}
template<class InstPtr, class VBedHPtr>
bool ArrangeableModelInstance<InstPtr, VBedHPtr>::is_selected() const
{
bool ret = false;
if (m_selmask) {
auto sel = m_selmask->selected_instances(m_pos_within_model.obj_idx);
if (m_pos_within_model.inst_idx < sel.size() &&
sel[m_pos_within_model.inst_idx])
ret = true;
}
return ret;
}
template<class InstPtr, class VBedHPtr>
void ArrangeableModelInstance<InstPtr, VBedHPtr>::transform(const Vec2d &transl, double rot)
{
if constexpr (!std::is_const_v<InstPtr> && !std::is_const_v<VBedHPtr>) {
int bedidx = m_vbedh->get_bed_index(*this);
auto physical_trafo = m_vbedh->get_physical_bed_trafo(bedidx);
transform_instance(*m_mi, transl, rot, physical_trafo);
}
}
template<class InstPtr, class VBedHPtr>
bool ArrangeableModelInstance<InstPtr, VBedHPtr>::assign_bed(int bed_idx)
{
bool ret = false;
if constexpr (!std::is_const_v<InstPtr> && !std::is_const_v<VBedHPtr>)
ret = m_vbedh->assign_bed(*this, bed_idx);
return ret;
}
template class ArrangeableModelInstance<ModelInstance, VirtualBedHandler>;
template class ArrangeableModelInstance<const ModelInstance, const VirtualBedHandler>;
ExPolygons ArrangeableSLAPrintObject::full_outline() const
{
ExPolygons ret;
auto laststep = m_po->last_completed_step();
if (laststep < slaposCount && laststep > slaposSupportTree) {
Polygons polys;
auto omesh = m_po->get_mesh_to_print();
auto &smesh = m_po->support_mesh();
Transform3d trafo_instance = m_inst_trafo * m_po->trafo().inverse();
if (omesh) {
Polygons ptmp = project_mesh(*omesh, trafo_instance, [] {});
std::move(ptmp.begin(), ptmp.end(), std::back_inserter(polys));
}
Polygons ptmp = project_mesh(smesh.its, trafo_instance, [] {});
std::move(ptmp.begin(), ptmp.end(), std::back_inserter(polys));
ret = union_ex(polys);
} else {
ret = m_arrbl->full_outline();
}
return ret;
}
ExPolygons ArrangeableSLAPrintObject::full_envelope() const
{
ExPolygons ret = full_outline();
auto laststep = m_po->last_completed_step();
if (laststep < slaposCount && laststep > slaposSupportTree) {
auto &pmesh = m_po->pad_mesh();
if (!pmesh.empty()) {
Transform3d trafo_instance = m_inst_trafo * m_po->trafo().inverse();
Polygons ptmp = project_mesh(pmesh.its, trafo_instance, [] {});
ret = union_ex(ret, ptmp);
}
}
return ret;
}
Polygon ArrangeableSLAPrintObject::convex_outline() const
{
Polygons polys;
polys.emplace_back(m_arrbl->convex_outline());
auto laststep = m_po->last_completed_step();
if (laststep < slaposCount && laststep > slaposSupportTree) {
auto omesh = m_po->get_mesh_to_print();
auto &smesh = m_po->support_mesh();
Transform3f trafo_instance = m_inst_trafo.cast<float>();
trafo_instance = trafo_instance * m_po->trafo().cast<float>().inverse();
Polygons polys;
polys.reserve(3);
auto zlvl = -m_po->get_elevation();
if (omesh) {
polys.emplace_back(
its_convex_hull_2d_above(*omesh, trafo_instance, zlvl));
}
polys.emplace_back(
its_convex_hull_2d_above(smesh.its, trafo_instance, zlvl));
}
return Geometry::convex_hull(polys);
}
Polygon ArrangeableSLAPrintObject::convex_envelope() const
{
Polygons polys;
polys.emplace_back(convex_outline());
auto laststep = m_po->last_completed_step();
if (laststep < slaposCount && laststep > slaposSupportTree) {
auto &pmesh = m_po->pad_mesh();
if (!pmesh.empty()) {
Transform3f trafo_instance = m_inst_trafo.cast<float>();
trafo_instance = trafo_instance * m_po->trafo().cast<float>().inverse();
auto zlvl = -m_po->get_elevation();
polys.emplace_back(
its_convex_hull_2d_above(pmesh.its, trafo_instance, zlvl));
}
}
return Geometry::convex_hull(polys);
}
DuplicableModel::DuplicableModel(AnyPtr<Model> mdl, AnyPtr<VirtualBedHandler> vbh, const BoundingBox &bedbb)
: m_model{std::move(mdl)}, m_vbh{std::move(vbh)}, m_duplicates(1), m_bedbb{bedbb}
{
}
DuplicableModel::~DuplicableModel() = default;
ObjectID DuplicableModel::add_arrangeable(const ObjectID &prototype_id)
{
ObjectID ret;
if (prototype_id.valid()) {
size_t idx = prototype_id.id - 1;
if (idx < m_duplicates.size()) {
ModelDuplicate md = m_duplicates[idx];
md.id = m_duplicates.size();
ret = md.id.id + 1;
m_duplicates.emplace_back(std::move(md));
}
}
return ret;
}
void DuplicableModel::apply_duplicates()
{
for (ModelObject *o : m_model->objects) {
// make a copy of the pointers in order to avoid recursion
// when appending their copies
ModelInstancePtrs instances = o->instances;
o->instances.clear();
for (const ModelInstance *i : instances) {
for (const ModelDuplicate &md : m_duplicates) {
ModelInstance *instance = o->add_instance(*i);
arr2::transform_instance(*instance, md.tr, md.rot);
}
}
for (auto *i : instances)
delete i;
instances.clear();
o->invalidate_bounding_box();
}
}
template<class Mdl, class Dup, class VBH>
ObjectID ArrangeableFullModel<Mdl, Dup, VBH>::geometry_id() const { return m_mdl->id(); }
template<class Mdl, class Dup, class VBH>
ExPolygons ArrangeableFullModel<Mdl, Dup, VBH>::full_outline() const
{
auto ret = reserve_vector<ExPolygon>(arr2::model_instance_count(*m_mdl));
auto transl = Transform3d::Identity();
transl.translate(to_3d(m_dup->tr, 0.));
Transform3d trafo = transl* Eigen::AngleAxisd(m_dup->rot, Vec3d::UnitZ());
for (auto *mo : m_mdl->objects) {
for (auto *mi : mo->instances) {
auto expolys = arr2::extract_full_outline(*mi, trafo);
std::move(expolys.begin(), expolys.end(), std::back_inserter(ret));
}
}
return ret;
}
template<class Mdl, class Dup, class VBH>
Polygon ArrangeableFullModel<Mdl, Dup, VBH>::convex_outline() const
{
auto ret = reserve_polygons(arr2::model_instance_count(*m_mdl));
auto transl = Transform3d::Identity();
transl.translate(to_3d(m_dup->tr, 0.));
Transform3d trafo = transl* Eigen::AngleAxisd(m_dup->rot, Vec3d::UnitZ());
for (auto *mo : m_mdl->objects) {
for (auto *mi : mo->instances) {
ret.emplace_back(arr2::extract_convex_outline(*mi, trafo));
}
}
return Geometry::convex_hull(ret);
}
template class ArrangeableFullModel<Model, ModelDuplicate, VirtualBedHandler>;
template class ArrangeableFullModel<const Model, const ModelDuplicate, const VirtualBedHandler>;
std::unique_ptr<VirtualBedHandler> VirtualBedHandler::create(const ExtendedBed &bed)
{
std::unique_ptr<VirtualBedHandler> ret;
if (is_infinite_bed(bed)) {
ret = std::make_unique<PhysicalOnlyVBedHandler>();
} else {
Vec2crd gap;
visit_bed([&gap](auto &rawbed) { gap = bed_gap(rawbed); }, bed);
BoundingBox bedbb;
visit_bed([&bedbb](auto &rawbed) { bedbb = bounding_box(rawbed); }, bed);
ret = std::make_unique<GridStriderVBedHandler>(bedbb, gap);
}
return ret;
}
}} // namespace Slic3r::arr2
#endif // SCENEBUILDER_CPP

View File

@@ -0,0 +1,147 @@
#ifndef ARRANGETASK_IMPL_HPP
#define ARRANGETASK_IMPL_HPP
#include <random>
#include <boost/log/trivial.hpp>
#include <libslic3r/SVG.hpp>
#include <arrange-wrapper/Tasks/ArrangeTask.hpp>
#include <arrange-wrapper/Items/ArrangeItem.hpp>
namespace Slic3r { namespace arr2 {
// Prepare the selected and unselected items separately. If nothing is
// selected, behaves as if everything would be selected.
template<class ArrItem>
void extract_selected(ArrangeTask<ArrItem> &task,
const ArrangeableModel &mdl,
const ArrangeableToItemConverter<ArrItem> &itm_conv)
{
// Go through the objects and check if inside the selection
mdl.for_each_arrangeable(
[&task, &itm_conv](const Arrangeable &arrbl) {
bool selected = arrbl.is_selected();
bool printable = arrbl.is_printable();
try {
auto itm = itm_conv.convert(arrbl, selected ? 0 : -SCALED_EPSILON);
auto &container_parent = printable ? task.printable :
task.unprintable;
auto &container = selected ?
container_parent.selected :
container_parent.unselected;
container.emplace_back(std::move(itm));
} catch (const EmptyItemOutlineError &ex) {
BOOST_LOG_TRIVIAL(error)
<< "ObjectID " << std::to_string(arrbl.id().id) << ": " << ex.what();
}
});
}
template<class ArrItem>
std::unique_ptr<ArrangeTask<ArrItem>> ArrangeTask<ArrItem>::create(
const Scene &sc, const ArrangeableToItemConverter<ArrItem> &converter)
{
auto task = std::make_unique<ArrangeTask<ArrItem>>();
task->settings.set_from(sc.settings());
task->bed = get_corrected_bed(sc.bed(), converter);
extract_selected(*task, sc.model(), converter);
return task;
}
// Remove all items on the physical bed (not occupyable for unprintable items)
// and shift all items to the next lower bed index, so that arrange will think
// that logical bed no. 1 is the physical one
template<class ItemCont>
void prepare_fixed_unselected(ItemCont &items, int shift)
{
for (auto &itm : items)
set_bed_index(itm, get_bed_index(itm) - shift);
items.erase(std::remove_if(items.begin(), items.end(),
[](auto &itm) { return !is_arranged(itm); }),
items.end());
}
inline int find_first_empty_bed(const std::vector<int>& bed_indices,
int starting_from = 0) {
int ret = starting_from;
for (int idx : bed_indices) {
if (idx == ret) {
ret++;
} else if (idx > ret) {
break;
}
}
return ret;
}
template<class ArrItem>
std::unique_ptr<ArrangeTaskResult>
ArrangeTask<ArrItem>::process_native(Ctl &ctl)
{
auto result = std::make_unique<ArrangeTaskResult>();
auto arranger = Arranger<ArrItem>::create(settings);
class TwoStepArrangeCtl: public Ctl
{
Ctl &parent;
ArrangeTask &self;
public:
TwoStepArrangeCtl(Ctl &p, ArrangeTask &slf) : parent{p}, self{slf} {}
void update_status(int remaining) override
{
parent.update_status(remaining + self.unprintable.selected.size());
}
bool was_canceled() const override { return parent.was_canceled(); }
} subctl{ctl, *this};
arranger->arrange(printable.selected, printable.unselected, bed, subctl);
std::vector<int> printable_bed_indices =
get_bed_indices(crange(printable.selected), crange(printable.unselected));
// If there are no printables, leave the physical bed empty
static constexpr int SearchFrom = 1;
// Unprintable items should go to the first logical (!) bed not containing
// any printable items
int first_empty_bed = find_first_empty_bed(printable_bed_indices, SearchFrom);
prepare_fixed_unselected(unprintable.unselected, first_empty_bed);
arranger->arrange(unprintable.selected, unprintable.unselected, bed, ctl);
result->add_items(crange(printable.selected));
for (auto &itm : unprintable.selected) {
if (is_arranged(itm)) {
int bedidx = get_bed_index(itm) + first_empty_bed;
arr2::set_bed_index(itm, bedidx);
}
result->add_item(itm);
}
return result;
}
} // namespace arr2
} // namespace Slic3r
#endif //ARRANGETASK_IMPL_HPP

View File

@@ -0,0 +1,215 @@
#ifndef FILLBEDTASKIMPL_HPP
#define FILLBEDTASKIMPL_HPP
#include <boost/log/trivial.hpp>
#include <arrange/NFP/NFPArrangeItemTraits.hpp>
#include <arrange-wrapper/Tasks/FillBedTask.hpp>
namespace Slic3r { namespace arr2 {
template<class ArrItem>
int calculate_items_needed_to_fill_bed(const ExtendedBed &bed,
const ArrItem &prototype_item,
size_t prototype_count,
const std::vector<ArrItem> &fixed)
{
double poly_area = fixed_area(prototype_item);
auto area_sum_fn = [&](double s, const auto &itm) {
return s + (get_bed_index(itm) == get_bed_constraint(prototype_item)) * fixed_area(itm);
};
double unsel_area = std::accumulate(fixed.begin(),
fixed.end(),
0.,
area_sum_fn);
double fixed_area = unsel_area + prototype_count * poly_area;
double bed_area = 0.;
visit_bed([&bed_area] (auto &realbed) { bed_area = area(realbed); }, bed);
// This is the maximum number of items,
// the real number will always be close but less.
auto needed_items = static_cast<int>(
std::ceil((bed_area - fixed_area) / poly_area));
return needed_items;
}
template<class ArrItem>
void extract(FillBedTask<ArrItem> &task,
const Scene &scene,
const ArrangeableToItemConverter<ArrItem> &itm_conv)
{
task.prototype_item = {};
auto selected_ids = scene.selected_ids();
if (selected_ids.empty())
return;
std::set<ObjectID> selected_objects = selected_geometry_ids(scene);
if (selected_objects.size() != 1)
return;
ObjectID prototype_geometry_id = *(selected_objects.begin());
auto set_prototype_item = [&task, &itm_conv](const Arrangeable &arrbl) {
if (arrbl.is_printable())
task.prototype_item = itm_conv.convert(arrbl);
};
scene.model().visit_arrangeable(selected_ids.front(), set_prototype_item);
if (!task.prototype_item)
return;
// Workaround for missing items when arranging the same geometry only:
// Injecting a number of items but with slightly shrinked shape, so that
// they can fill the emerging holes.
ArrItem prototype_item_shrinked;
scene.model().visit_arrangeable(selected_ids.front(),
[&prototype_item_shrinked, &itm_conv](const Arrangeable &arrbl) {
if (arrbl.is_printable())
prototype_item_shrinked = itm_conv.convert(arrbl, -SCALED_EPSILON);
});
const int bed_constraint{*get_bed_constraint(*task.prototype_item)};
if (bed_constraint != get_bed_index(*task.prototype_item)) {
return;
}
set_bed_index(*task.prototype_item, Unarranged);
auto collect_task_items = [&prototype_geometry_id, &task,
&itm_conv, &bed_constraint](const Arrangeable &arrbl) {
try {
if (arrbl.bed_constraint() == bed_constraint) {
if (arrbl.geometry_id() == prototype_geometry_id) {
if (arrbl.is_printable()) {
auto itm = itm_conv.convert(arrbl);
raise_priority(itm);
task.selected.emplace_back(std::move(itm));
}
} else {
auto itm = itm_conv.convert(arrbl, -SCALED_EPSILON);
task.unselected.emplace_back(std::move(itm));
}
}
} catch (const EmptyItemOutlineError &ex) {
BOOST_LOG_TRIVIAL(error)
<< "ObjectID " << std::to_string(arrbl.id().id) << ": " << ex.what();
}
};
scene.model().for_each_arrangeable(collect_task_items);
int needed_items = calculate_items_needed_to_fill_bed(task.bed,
*task.prototype_item,
task.selected.size(),
task.unselected);
task.selected_existing_count = task.selected.size();
task.selected.reserve(task.selected.size() + needed_items);
std::fill_n(std::back_inserter(task.selected), needed_items,
*task.prototype_item);
// Add as many filler items as there are needed items. Most of them will
// be discarded anyways.
std::fill_n(std::back_inserter(task.selected_fillers), needed_items,
prototype_item_shrinked);
}
template<class ArrItem>
std::unique_ptr<FillBedTask<ArrItem>> FillBedTask<ArrItem>::create(
const Scene &sc, const ArrangeableToItemConverter<ArrItem> &converter)
{
auto task = std::make_unique<FillBedTask<ArrItem>>();
task->settings.set_from(sc.settings());
task->bed = get_corrected_bed(sc.bed(), converter);
extract(*task, sc, converter);
return task;
}
template<class ArrItem>
std::unique_ptr<FillBedTaskResult> FillBedTask<ArrItem>::process_native(
Ctl &ctl)
{
auto result = std::make_unique<FillBedTaskResult>();
if (!prototype_item)
return result;
result->prototype_id = retrieve_id(*prototype_item).value_or(ObjectID{});
class FillBedCtl: public ArrangerCtl<ArrItem>
{
ArrangeTaskCtl &parent;
FillBedTask &self;
bool do_stop = false;
public:
FillBedCtl(ArrangeTaskCtl &p, FillBedTask &slf) : parent{p}, self{slf} {}
void update_status(int remaining) override
{
parent.update_status(remaining);
}
bool was_canceled() const override
{
return parent.was_canceled() || do_stop;
}
void on_packed(ArrItem &itm) override
{
// Stop at the first filler that is not on the physical bed
do_stop = get_bed_index(itm) == -1 && get_priority(itm) == 0;
}
} subctl(ctl, *this);
auto arranger = Arranger<ArrItem>::create(settings);
arranger->arrange(selected, unselected, bed, subctl);
auto unsel_cpy = unselected;
for (const auto &itm : selected) {
unsel_cpy.emplace_back(itm);
}
arranger->arrange(selected_fillers, unsel_cpy, bed, FillBedCtl{ctl, *this});
auto arranged_range = Range{selected.begin(),
selected.begin() + selected_existing_count};
result->add_arranged_items(arranged_range);
auto to_add_range = Range{selected.begin() + selected_existing_count,
selected.end()};
for (auto &itm : to_add_range) {
if (get_bed_index(itm) == get_bed_constraint(itm))
result->add_new_item(itm);
}
for (auto &itm : selected_fillers)
if (get_bed_index(itm) == get_bed_constraint(itm))
result->add_new_item(itm);
return result;
}
} // namespace arr2
} // namespace Slic3r
#endif // FILLBEDTASKIMPL_HPP

View File

@@ -0,0 +1,127 @@
#ifndef MULTIPLYSELECTIONTASKIMPL_HPP
#define MULTIPLYSELECTIONTASKIMPL_HPP
#include <arrange-wrapper/Tasks/MultiplySelectionTask.hpp>
#include <boost/log/trivial.hpp>
namespace Slic3r { namespace arr2 {
template<class ArrItem>
std::unique_ptr<MultiplySelectionTask<ArrItem>> MultiplySelectionTask<ArrItem>::create(
const Scene &scene, size_t count, const ArrangeableToItemConverter<ArrItem> &itm_conv)
{
auto task_ptr = std::make_unique<MultiplySelectionTask<ArrItem>>();
auto &task = *task_ptr;
task.settings.set_from(scene.settings());
task.bed = get_corrected_bed(scene.bed(), itm_conv);
task.prototype_item = {};
auto selected_ids = scene.selected_ids();
if (selected_ids.empty())
return task_ptr;
std::set<ObjectID> selected_objects = selected_geometry_ids(scene);
if (selected_objects.size() != 1)
return task_ptr;
ObjectID prototype_geometry_id = *(selected_objects.begin());
auto set_prototype_item = [&task, &itm_conv](const Arrangeable &arrbl) {
if (arrbl.is_printable())
task.prototype_item = itm_conv.convert(arrbl);
};
scene.model().visit_arrangeable(selected_ids.front(), set_prototype_item);
if (!task.prototype_item)
return task_ptr;
set_bed_index(*task.prototype_item, Unarranged);
auto collect_task_items = [&prototype_geometry_id, &task,
&itm_conv](const Arrangeable &arrbl) {
try {
if (arrbl.geometry_id() == prototype_geometry_id) {
if (arrbl.is_printable()) {
auto itm = itm_conv.convert(arrbl);
raise_priority(itm);
task.selected.emplace_back(std::move(itm));
}
} else {
auto itm = itm_conv.convert(arrbl, -SCALED_EPSILON);
task.unselected.emplace_back(std::move(itm));
}
} catch (const EmptyItemOutlineError &ex) {
BOOST_LOG_TRIVIAL(error)
<< "ObjectID " << std::to_string(arrbl.id().id) << ": " << ex.what();
}
};
scene.model().for_each_arrangeable(collect_task_items);
task.selected_existing_count = task.selected.size();
task.selected.reserve(task.selected.size() + count);
std::fill_n(std::back_inserter(task.selected), count, *task.prototype_item);
return task_ptr;
}
template<class ArrItem>
std::unique_ptr<MultiplySelectionTaskResult>
MultiplySelectionTask<ArrItem>::process_native(Ctl &ctl)
{
auto result = std::make_unique<MultiplySelectionTaskResult>();
if (!prototype_item)
return result;
result->prototype_id = retrieve_id(*prototype_item).value_or(ObjectID{});
class MultiplySelectionCtl: public ArrangerCtl<ArrItem>
{
ArrangeTaskCtl &parent;
MultiplySelectionTask<ArrItem> &self;
public:
MultiplySelectionCtl(ArrangeTaskCtl &p, MultiplySelectionTask<ArrItem> &slf)
: parent{p}, self{slf} {}
void update_status(int remaining) override
{
parent.update_status(remaining);
}
bool was_canceled() const override
{
return parent.was_canceled();
}
} subctl(ctl, *this);
auto arranger = Arranger<ArrItem>::create(settings);
arranger->arrange(selected, unselected, bed, subctl);
auto arranged_range = Range{selected.begin(),
selected.begin() + selected_existing_count};
result->add_arranged_items(arranged_range);
auto to_add_range = Range{selected.begin() + selected_existing_count,
selected.end()};
result->add_new_items(to_add_range);
return result;
}
}} // namespace Slic3r::arr2
#endif // MULTIPLYSELECTIONTASKIMPL_HPP