add FillConcentricinternal update solidinfill

This commit is contained in:
Wang YB
2024-04-27 16:09:27 +08:00
parent 9c52fb3733
commit 04ad174e91
10 changed files with 604 additions and 114 deletions

View File

@@ -88,6 +88,8 @@ set(SLIC3R_SOURCES
Fill/FillBase.hpp
Fill/FillConcentric.cpp
Fill/FillConcentric.hpp
Fill/FillConcentricInternal.cpp
Fill/FillConcentricInternal.hpp
Fill/FillEnsuring.cpp
Fill/FillEnsuring.hpp
Fill/FillHoneycomb.cpp

View File

@@ -376,6 +376,8 @@ inline void extrusion_entities_append_paths(ExtrusionEntitiesPtr &dst, Polylines
polylines.clear();
}
inline void extrusion_entities_append_loops(ExtrusionEntitiesPtr &dst, Polygons &&loops, const ExtrusionAttributes &attributes)
{
dst.reserve(dst.size() + loops.size());

View File

@@ -20,6 +20,8 @@
//w21
#include "../ShortestPath.hpp"
//w11
//w29
#include "FillConcentricInternal.hpp"
#include "LayerRegion.hpp"
@@ -125,9 +127,10 @@ struct SurfaceFill {
//w11
static bool is_narrow_infill_area(const ExPolygon &expolygon)
{
//w29
ExPolygons offsets = offset_ex(expolygon, -scale_(NARROW_INFILL_AREA_THRESHOLD));
ExPolygons offsets_min = offset_ex(expolygon, -scale_(NARROW_INFILL_AREA_THRESHOLD_MIN));
if (offsets.empty() && !offsets_min.empty())
//ExPolygons offsets_min = offset_ex(expolygon, -scale_(NARROW_INFILL_AREA_THRESHOLD_MIN));
if (offsets.empty() )
return true;
return false;
@@ -340,34 +343,39 @@ std::vector<SurfaceFill> group_fills(const Layer &layer)
// Use ipEnsuring pattern for all internal Solids.
//w11
if (layer.object()->config().detect_narrow_internal_solid_infill) {
for (size_t i = 0; i < surface_fills.size(); i++) {
size_t surface_fills_size = surface_fills.size();
for (size_t i = 0; i < surface_fills_size; i++) {
if (surface_fills[i].surface.surface_type != stInternalSolid)
continue;
size_t expolygons_size = surface_fills[i].expolygons.size();
//w29
size_t expolygons_size = surface_fills[i].expolygons.size();
std::vector<size_t> narrow_expolygons_index;
narrow_expolygons_index.reserve(expolygons_size);
for (size_t j = 0; j < expolygons_size; j++)
if (is_narrow_infill_area(surface_fills[i].expolygons[j]))
narrow_expolygons_index.push_back(j);
if (narrow_expolygons_index.size() == expolygons_size) {
surface_fills[i].params.pattern = ipConcentricInternal;
if (narrow_expolygons_index.size() == 0) {
continue;
} else if (narrow_expolygons_index.size() == expolygons_size) {
surface_fills[i].params.pattern = ipConcentric;
} else {
surface_fills[i].params.pattern = ipEnsuring;
}
//w21
if (narrow_expolygons_index.size() != expolygons_size && narrow_expolygons_index.size() != expolygons_size) {
params = surface_fills[i].params;
params.pattern = ipConcentric;
surface_fills.emplace_back(params);
surface_fills.back().region_id = surface_fills[i].region_id;
surface_fills.back().surface.surface_type = stInternalSolid;
surface_fills.back().surface.thickness = surface_fills[i].surface.thickness;
surface_fills.back().region_id_group = surface_fills[i].region_id_group;
surface_fills.back().no_overlap_expolygons = surface_fills[i].no_overlap_expolygons;
}
}
} else {
for (size_t surface_fill_id = 0; surface_fill_id < surface_fills.size(); ++surface_fill_id)
if (SurfaceFill &fill = surface_fills[surface_fill_id]; fill.surface.surface_type == stInternalSolid) {
fill.params.pattern = ipEnsuring;
for (size_t j = 0; j < narrow_expolygons_index.size(); j++) {
surface_fills.back().expolygons.emplace_back(std::move(surface_fills[i].expolygons[narrow_expolygons_index[j]]));
}
for (int j = narrow_expolygons_index.size() - 1; j >= 0; j--) {
surface_fills[i].expolygons.erase(surface_fills[i].expolygons.begin() + narrow_expolygons_index[j]);
}
}
}
}
return surface_fills;
}
@@ -525,14 +533,19 @@ void Layer::make_fills(FillAdaptive::Octree* adaptive_fill_octree, FillAdaptive:
f->print_config = &this->object()->print()->config();
f->print_object_config = &this->object()->config();
if (surface_fill.params.pattern == ipLightning)
dynamic_cast<FillLightning::Filler*>(f.get())->generator = lightning_generator;
if (surface_fill.params.pattern == ipEnsuring) {
auto *fill_ensuring = dynamic_cast<FillEnsuring *>(f.get());
assert(fill_ensuring != nullptr);
fill_ensuring->print_region_config = &m_regions[surface_fill.region_id]->region().config();
}
//w29
if (surface_fill.params.pattern == ipConcentricInternal) {
FillConcentricInternal *fill_concentric = dynamic_cast<FillConcentricInternal *>(f.get());
assert(fill_concentric != nullptr);
fill_concentric->print_config = &this->object()->print()->config();
fill_concentric->print_object_config = &this->object()->config();
} else if (surface_fill.params.pattern == ipConcentric) {
FillConcentric *fill_concentric = dynamic_cast<FillConcentric *>(f.get());
assert(fill_concentric != nullptr);
fill_concentric->print_config = &this->object()->print()->config();
fill_concentric->print_object_config = &this->object()->config();
} else if (surface_fill.params.pattern == ipLightning)
dynamic_cast<FillLightning::Filler *>(f.get())->generator = lightning_generator;
// calculate flow spacing for infill pattern generation
bool using_internal_flow = ! surface_fill.surface.is_solid() && ! surface_fill.params.bridge;
@@ -562,62 +575,59 @@ void Layer::make_fills(FillAdaptive::Octree* adaptive_fill_octree, FillAdaptive:
params.anchor_length_max = surface_fill.params.anchor_length_max;
params.resolution = resolution;
//w14
params.use_arachne = (perimeter_generator == PerimeterGeneratorType::Arachne && surface_fill.params.pattern == ipConcentric) || surface_fill.params.pattern == ipEnsuring || surface_fill.params.pattern == ipConcentricInternal;
params.use_arachne = (perimeter_generator == PerimeterGeneratorType::Arachne && surface_fill.params.pattern == ipConcentric) || surface_fill.params.pattern == ipEnsuring || surface_fill.params.pattern == ipConcentric;
params.layer_height = layerm.layer()->height;
//w29
params.flow = surface_fill.params.flow;
params.extrusion_role = surface_fill.params.extrusion_role;
params.using_internal_flow = !surface_fill.surface.is_solid() && !surface_fill.params.bridge;
for (ExPolygon &expoly : surface_fill.expolygons) {
// Spacing is modified by the filler to indicate adjustments. Reset it for each expolygon.
f->spacing = surface_fill.params.spacing;
//w21
// Spacing is modified by the filler to indicate adjustments. Reset it for each expolygon.
f->spacing = surface_fill.params.spacing;
// w21
f->no_overlap_expolygons = intersection_ex(surface_fill.no_overlap_expolygons, ExPolygons() = {expoly}, ApplySafetyOffset::Yes);
surface_fill.surface.expolygon = std::move(expoly);
surface_fill.surface.expolygon = std::move(expoly);
Polylines polylines;
ThickPolylines thick_polylines;
//w14
if (this->object()->config().detect_narrow_internal_solid_infill &&
(surface_fill.params.pattern == ipConcentricInternal || surface_fill.params.pattern == ipEnsuring)) {
layerm.region().config().infill_overlap.percent ?
f->overlap = layerm.region().config().perimeter_extrusion_width * layerm.region().config().infill_overlap.value / 100 * (-1) :
f->overlap = float(layerm.region().config().infill_overlap.value);
// w14
//w29
/* if (this->object()->config().detect_narrow_internal_solid_infill &&
(surface_fill.params.pattern == ipConcentricInternal || surface_fill.params.pattern == ipEnsuring)) {
layerm.region().config().infill_overlap.percent ? f->overlap = layerm.region().config().perimeter_extrusion_width *
layerm.region().config().infill_overlap.value / 100 * (-1) :
f->overlap = float(layerm.region().config().infill_overlap.value);
} else
f->overlap = 0;
try {
if (params.use_arachne) {
thick_polylines = f->fill_surface_arachne(&surface_fill.surface, params);
//w21
//if (f->layer_id % 2 == 0 && surface_fill.params.pattern == ipConcentricInternal)
// std::reverse(thick_polylines.begin(), thick_polylines.end());
}
else {
polylines = f->fill_surface(&surface_fill.surface, params);
}
} catch (InfillFailedException &) {
}
f->overlap = 0;*/
//w29
f->fill_surface_extrusion(&surface_fill.surface, params, polylines, thick_polylines);
if (!polylines.empty() || !thick_polylines.empty()) {
// calculate actual flow from spacing (which might have been adjusted by the infill
// pattern generator)
double flow_mm3_per_mm = surface_fill.params.flow.mm3_per_mm();
double flow_width = surface_fill.params.flow.width();
if (using_internal_flow) {
// if we used the internal flow we're not doing a solid infill
// so we can safely ignore the slight variation that might have
// been applied to f->spacing
} else {
Flow new_flow = surface_fill.params.flow.with_spacing(float(f->spacing));
flow_mm3_per_mm = new_flow.mm3_per_mm();
flow_width = new_flow.width();
}
// Save into layer.
// pattern generator)
double flow_mm3_per_mm = surface_fill.params.flow.mm3_per_mm();
double flow_width = surface_fill.params.flow.width();
if (using_internal_flow) {
// if we used the internal flow we're not doing a solid infill
// so we can safely ignore the slight variation that might have
// been applied to f->spacing
} else {
Flow new_flow = surface_fill.params.flow.with_spacing(float(f->spacing));
flow_mm3_per_mm = new_flow.mm3_per_mm();
flow_width = new_flow.width();
}
// Save into layer.
ExtrusionEntityCollection *eec = new ExtrusionEntityCollection();
auto fill_begin = uint32_t(layerm.fills().size());
// Only concentric fills are not sorted.
eec->no_sort = f->no_sort();
auto fill_begin = uint32_t(layerm.fills().size());
// Only concentric fills are not sorted.
eec->no_sort = f->no_sort();
if (params.use_arachne) {
for (const ThickPolyline &thick_polyline : thick_polylines) {
Flow new_flow = surface_fill.params.flow.with_spacing(float(f->spacing));
ExtrusionMultiPath multi_path = PerimeterGenerator::thick_polyline_to_multi_path(thick_polyline, surface_fill.params.extrusion_role, new_flow, scaled<float>(0.05), float(SCALED_EPSILON));
ExtrusionMultiPath multi_path = PerimeterGenerator::thick_polyline_to_multi_path(thick_polyline,
surface_fill.params.extrusion_role,
new_flow, scaled<float>(0.05),
float(SCALED_EPSILON));
// Append paths to collection.
if (!multi_path.empty()) {
if (multi_path.paths.front().first_point() == multi_path.paths.back().last_point())
@@ -633,15 +643,14 @@ void Layer::make_fills(FillAdaptive::Octree* adaptive_fill_octree, FillAdaptive:
delete eec;
thick_polylines.clear();
} else {
extrusion_entities_append_paths(
eec->entities, std::move(polylines),
ExtrusionAttributes{ surface_fill.params.extrusion_role,
ExtrusionFlow{ flow_mm3_per_mm, float(flow_width), surface_fill.params.flow.height() }
});
//w21
if (surface_fill.params.pattern == ipMonotonicLines && surface_fill.surface.surface_type == stTop) {
extrusion_entities_append_paths(eec->entities, std::move(polylines),
ExtrusionAttributes{surface_fill.params.extrusion_role,
ExtrusionFlow{flow_mm3_per_mm, float(flow_width),
surface_fill.params.flow.height()}});
// w21
if (surface_fill.params.pattern == ipMonotonicLines && surface_fill.surface.surface_type == stTop) {
ExPolygons unextruded_areas = diff_ex(f->no_overlap_expolygons, union_ex(eec->polygons_covered_by_spacing(10)));
ExPolygons gapfill_areas = union_ex(unextruded_areas);
ExPolygons gapfill_areas = union_ex(unextruded_areas);
if (!f->no_overlap_expolygons.empty())
gapfill_areas = intersection_ex(gapfill_areas, f->no_overlap_expolygons);
if (gapfill_areas.size() > 0 && params.density >= 1) {
@@ -650,7 +659,7 @@ void Layer::make_fills(FillAdaptive::Octree* adaptive_fill_octree, FillAdaptive:
double max = 2. * new_flow.scaled_spacing();
ExPolygons gaps_ex = diff_ex(opening_ex(gapfill_areas, float(min / 2.)),
offset2_ex(gapfill_areas, -float(max / 2.), float(max / 2. + ClipperSafetyOffset)));
Points ordering_points;
Points ordering_points;
ordering_points.reserve(gaps_ex.size());
ExPolygons gaps_ex_sorted;
gaps_ex_sorted.reserve(gaps_ex.size());
@@ -674,7 +683,8 @@ void Layer::make_fills(FillAdaptive::Octree* adaptive_fill_octree, FillAdaptive:
}),
polylines.end());
variable_width_gap(polylines, ExtrusionRole::GapFill, surface_fill.params.flow, gap_fill.entities,filter_gap_infill_value);
variable_width_gap(polylines, ExtrusionRole::GapFill, surface_fill.params.flow, gap_fill.entities,
filter_gap_infill_value);
eec->append(std::move(gap_fill.entities));
}
@@ -683,46 +693,49 @@ void Layer::make_fills(FillAdaptive::Octree* adaptive_fill_octree, FillAdaptive:
layerm.m_fills.entities.push_back(eec);
}
insert_fills_into_islands(*this, uint32_t(surface_fill.region_id), fill_begin, uint32_t(layerm.fills().size()));
}
}
}
}
}
for (LayerSlice &lslice : this->lslices_ex)
for (LayerIsland &island : lslice.islands) {
if (! island.thin_fills.empty()) {
// Copy thin fills into fills packed as a collection.
// Fills are always stored as collections, the rest of the pipeline (wipe into infill, G-code generator) relies on it.
LayerRegion &layerm = *this->get_region(island.perimeters.region());
ExtrusionEntityCollection &collection = *(new ExtrusionEntityCollection());
layerm.m_fills.entities.push_back(&collection);
collection.entities.reserve(island.thin_fills.size());
for (uint32_t fill_id : island.thin_fills)
collection.entities.push_back(layerm.thin_fills().entities[fill_id]->clone());
island.add_fill_range({ island.perimeters.region(), { uint32_t(layerm.m_fills.entities.size() - 1), uint32_t(layerm.m_fills.entities.size()) } });
}
// Sort the fills by region ID.
std::sort(island.fills.begin(), island.fills.end(), [](auto &l, auto &r){ return l.region() < r.region() || (l.region() == r.region() && *l.begin() < *r.begin()); });
// Compress continuous fill ranges of the same region.
{
size_t k = 0;
for (size_t i = 0; i < island.fills.size();) {
uint32_t region_id = island.fills[i].region();
uint32_t begin = *island.fills[i].begin();
uint32_t end = *island.fills[i].end();
size_t j = i + 1;
for (; j < island.fills.size() && island.fills[j].region() == region_id && *island.fills[j].begin() == end; ++ j)
end = *island.fills[j].end();
island.fills[k ++] = { region_id, { begin, end } };
i = j;
}
island.fills.erase(island.fills.begin() + k, island.fills.end());
}
}
for (LayerIsland &island : lslice.islands) {
if (!island.thin_fills.empty()) {
// Copy thin fills into fills packed as a collection.
// Fills are always stored as collections, the rest of the pipeline (wipe into infill, G-code generator) relies on it.
LayerRegion & layerm = *this->get_region(island.perimeters.region());
ExtrusionEntityCollection &collection = *(new ExtrusionEntityCollection());
layerm.m_fills.entities.push_back(&collection);
collection.entities.reserve(island.thin_fills.size());
for (uint32_t fill_id : island.thin_fills)
collection.entities.push_back(layerm.thin_fills().entities[fill_id]->clone());
island.add_fill_range(
{island.perimeters.region(), {uint32_t(layerm.m_fills.entities.size() - 1), uint32_t(layerm.m_fills.entities.size())}});
}
// Sort the fills by region ID.
std::sort(island.fills.begin(), island.fills.end(),
[](auto &l, auto &r) { return l.region() < r.region() || (l.region() == r.region() && *l.begin() < *r.begin()); });
// Compress continuous fill ranges of the same region.
{
size_t k = 0;
for (size_t i = 0; i < island.fills.size();) {
uint32_t region_id = island.fills[i].region();
uint32_t begin = *island.fills[i].begin();
uint32_t end = *island.fills[i].end();
size_t j = i + 1;
for (; j < island.fills.size() && island.fills[j].region() == region_id && *island.fills[j].begin() == end; ++j)
end = *island.fills[j].end();
island.fills[k++] = {region_id, {begin, end}};
i = j;
}
island.fills.erase(island.fills.begin() + k, island.fills.end());
}
}
#ifndef NDEBUG
for (LayerRegion *layerm : m_regions)
for (const ExtrusionEntity *e : layerm->fills())
assert(dynamic_cast<const ExtrusionEntityCollection*>(e) != nullptr);
for (LayerRegion *layerm : m_regions)
for (const ExtrusionEntity *e : layerm->fills())
assert(dynamic_cast<const ExtrusionEntityCollection *>(e) != nullptr);
#endif
}
//w21

View File

@@ -21,6 +21,8 @@
#include "FillAdaptive.hpp"
#include "FillLightning.hpp"
#include "FillEnsuring.hpp"
//w29
#include "FillConcentricInternal.hpp"
#include <boost/log/trivial.hpp>
@@ -53,7 +55,8 @@ Fill* Fill::new_from_type(const InfillPattern type)
case ipLightning: return new FillLightning::Filler();
case ipEnsuring: return new FillEnsuring();
//w14
case ipConcentricInternal: return new FillConcentric();
//w29
case ipConcentricInternal: return new FillConcentricInternal();
default: throw Slic3r::InvalidArgument("unknown type");
}
}
@@ -105,6 +108,156 @@ ThickPolylines Fill::fill_surface_arachne(const Surface *surface, const FillPara
return thick_polylines_out;
}
//w29
void Fill::fill_surface_extrusion(const Surface *surface, const FillParams &params, Polylines &polylines, ThickPolylines &thick_polylines)
{
try {
if (params.use_arachne)
thick_polylines = this->fill_surface_arachne(surface, params);
else
polylines = this->fill_surface(surface, params);
} catch (InfillFailedException &) {}
}
void Fill::variable_width(const ThickPolylines &polylines, ExtrusionRole role, const Flow &flow, std::vector<ExtrusionEntity *> &out)
{
const float tolerance = float(scale_(0.05));
for (const ThickPolyline &p : polylines) {
ExtrusionPaths paths = thick_polyline_to_extrusion_paths_2(p, role, flow, tolerance);
if (!paths.empty()) {
if (paths.front().first_point() == paths.back().last_point())
out.emplace_back(new ExtrusionLoop(std::move(paths)));
else {
for (ExtrusionPath &path : paths)
out.emplace_back(new ExtrusionPath(std::move(path)));
}
}
}
}
ExtrusionPaths Fill::thick_polyline_to_extrusion_paths_2(const ThickPolyline &thick_polyline,
ExtrusionRole role,
const Flow & flow,
const float tolerance)
{
ExtrusionPaths paths;
ExtrusionPath path(role);
ThickLines lines = thick_polyline.thicklines();
size_t start_index = 0;
double max_width, min_width;
for (int i = 0; i < (int) lines.size(); ++i) {
const ThickLine &line = lines[i];
if (i == 0) {
max_width = line.a_width;
min_width = line.a_width;
}
const coordf_t line_len = line.length();
if (line_len < SCALED_EPSILON)
continue;
double thickness_delta = std::max(fabs(max_width - line.b_width), fabs(min_width - line.b_width));
if (thickness_delta > tolerance) {
if (start_index != i) {
path = ExtrusionPath(role);
double length = lines[start_index].length();
double sum = lines[start_index].length() * 0.5 * (lines[start_index].a_width + lines[start_index].b_width);
path.polyline.append(lines[start_index].a);
for (int idx = start_index + 1; idx < i; idx++) {
length += lines[idx].length();
sum += lines[idx].length() * 0.5 * (lines[idx].a_width + lines[idx].b_width);
path.polyline.append(lines[idx].a);
}
path.polyline.append(lines[i].a);
if (length > SCALED_EPSILON) {
double w = sum / length;
Flow new_flow = flow.with_width(unscale<float>(w) + flow.height() * float(1. - 0.25 * PI));
// path.mm3_per_mm = new_flow.mm3_per_mm();
path.set_mm3_per_mm(new_flow.mm3_per_mm());
// path.width = new_flow.width();
path.set_width(new_flow.width());
// path.height = new_flow.height();
path.set_height(new_flow.height());
paths.emplace_back(std::move(path));
}
}
start_index = i;
max_width = line.a_width;
min_width = line.a_width;
thickness_delta = fabs(line.a_width - line.b_width);
if (thickness_delta > tolerance) {
const unsigned int segments = (unsigned int) ceil(thickness_delta / tolerance);
const coordf_t seg_len = line_len / segments;
Points pp;
std::vector<coordf_t> width;
{
pp.push_back(line.a);
width.push_back(line.a_width);
for (size_t j = 1; j < segments; ++j) {
pp.push_back(
(line.a.cast<double>() + (line.b - line.a).cast<double>().normalized() * (j * seg_len)).cast<coord_t>());
coordf_t w = line.a_width + (j * seg_len) * (line.b_width - line.a_width) / line_len;
width.push_back(w);
width.push_back(w);
}
pp.push_back(line.b);
width.push_back(line.b_width);
assert(pp.size() == segments + 1u);
assert(width.size() == segments * 2);
}
lines.erase(lines.begin() + i);
for (size_t j = 0; j < segments; ++j) {
ThickLine new_line(pp[j], pp[j + 1]);
new_line.a_width = width[2 * j];
new_line.b_width = width[2 * j + 1];
lines.insert(lines.begin() + i + j, new_line);
}
--i;
continue;
}
} else {
max_width = std::max(max_width, std::max(line.a_width, line.b_width));
min_width = std::min(min_width, std::min(line.a_width, line.b_width));
}
}
size_t final_size = lines.size();
if (start_index < final_size) {
path = ExtrusionPath(role);
double length = lines[start_index].length();
double sum = lines[start_index].length() * lines[start_index].a_width;
path.polyline.append(lines[start_index].a);
for (int idx = start_index + 1; idx < final_size; idx++) {
length += lines[idx].length();
sum += lines[idx].length() * lines[idx].a_width;
path.polyline.append(lines[idx].a);
}
path.polyline.append(lines[final_size - 1].b);
if (length > SCALED_EPSILON) {
double w = sum / length;
Flow new_flow = flow.with_width(unscale<float>(w) + flow.height() * float(1. - 0.25 * PI));
// path.mm3_per_mm = new_flow.mm3_per_mm();
path.set_mm3_per_mm(new_flow.mm3_per_mm());
// path.width = new_flow.width();
path.set_width(new_flow.width());
// path.height = new_flow.height();
path.set_height(new_flow.height());
paths.emplace_back(std::move(path));
}
}
return paths;
}
// Calculate a new spacing to fill width with possibly integer number of lines,
// the first and last line being centered at the interval ends.
// This function possibly increases the spacing, never decreases,

View File

@@ -15,6 +15,9 @@
#include "../Utils.hpp"
#include "../ExPolygon.hpp"
#include "../PrintConfig.hpp"
//w29
#include "../ExtrusionEntity.hpp"
#include "../ExtrusionEntityCollection.hpp"
namespace Slic3r {
@@ -63,6 +66,11 @@ struct FillParams
bool use_arachne { false };
// Layer height for Concentric infill with Arachne.
coordf_t layer_height { 0.f };
//w29
Flow flow;
ExtrusionRole extrusion_role{ExtrusionRole::None};
bool using_internal_flow{false};
//bool can_reverse{true};
};
static_assert(IsTriviallyCopyable<FillParams>::value, "FillParams class is not POD (and it should be - see constructor).");
@@ -116,6 +124,13 @@ public:
// Perform the fill.
virtual Polylines fill_surface(const Surface *surface, const FillParams &params);
virtual ThickPolylines fill_surface_arachne(const Surface *surface, const FillParams &params);
//w29
virtual void fill_surface_extrusion(const Surface *surface, const FillParams &params, Polylines &polylines,ThickPolylines &thick_polylines);
void variable_width(const ThickPolylines &polylines, ExtrusionRole role, const Flow &flow, std::vector<ExtrusionEntity *> &out);
ExtrusionPaths thick_polyline_to_extrusion_paths_2(const ThickPolyline &thick_polyline,
ExtrusionRole role,
const Flow & flow,
const float tolerance);
protected:
Fill() :

View File

@@ -0,0 +1,74 @@
#include "../ClipperUtils.hpp"
#include "../ExPolygon.hpp"
#include "../Surface.hpp"
#include "Arachne/WallToolPaths.hpp"
#include "FillConcentricInternal.hpp"
#include <libslic3r/ShortestPath.hpp>
namespace Slic3r {
void FillConcentricInternal::fill_surface_extrusion(const Surface * surface,
const FillParams &params,
Polylines & polylines,
ThickPolylines & thick_polylines_out)
{
assert(this->print_config != nullptr && this->print_object_config != nullptr);
for (size_t i = 0; i < this->no_overlap_expolygons.size(); ++i) {
ExPolygon &expolygon = this->no_overlap_expolygons[i];
Point bbox_size = expolygon.contour.bounding_box().size();
coord_t min_spacing = params.flow.scaled_spacing();
coord_t loops_count = std::max(bbox_size.x(), bbox_size.y()) / min_spacing + 1;
Polygons polygons = to_polygons(expolygon);
Arachne::WallToolPaths wallToolPaths(polygons, min_spacing, min_spacing, loops_count, 0, params.layer_height,
*this->print_object_config, *this->print_config);
std::vector<Arachne::VariableWidthLines> loops = wallToolPaths.getToolPaths();
std::vector<const Arachne::ExtrusionLine *> all_extrusions;
for (Arachne::VariableWidthLines &loop : loops) {
if (loop.empty())
continue;
for (const Arachne::ExtrusionLine &wall : loop)
all_extrusions.emplace_back(&wall);
}
size_t firts_poly_idx = thick_polylines_out.size();
Point last_pos(0, 0);
for (const Arachne::ExtrusionLine *extrusion : all_extrusions) {
if (extrusion->empty())
continue;
ThickPolyline thick_polyline = Arachne::to_thick_polyline(*extrusion);
if (extrusion->is_closed && thick_polyline.points.front() == thick_polyline.points.back() &&
thick_polyline.width.front() == thick_polyline.width.back()) {
thick_polyline.points.pop_back();
assert(thick_polyline.points.size() * 2 == thick_polyline.width.size());
int nearest_idx = last_pos.nearest_point_index(thick_polyline.points);
std::rotate(thick_polyline.points.begin(), thick_polyline.points.begin() + nearest_idx, thick_polyline.points.end());
std::rotate(thick_polyline.width.begin(), thick_polyline.width.begin() + 2 * nearest_idx, thick_polyline.width.end());
thick_polyline.points.emplace_back(thick_polyline.points.front());
}
thick_polylines_out.emplace_back(std::move(thick_polyline));
}
size_t j = firts_poly_idx;
for (size_t i = firts_poly_idx; i < thick_polylines_out.size(); ++i) {
thick_polylines_out[i].clip_end(this->loop_clipping);
if (thick_polylines_out[i].is_valid()) {
if (j < i)
thick_polylines_out[j] = std::move(thick_polylines_out[i]);
++j;
}
}
if (j < thick_polylines_out.size())
thick_polylines_out.erase(thick_polylines_out.begin() + int(j), thick_polylines_out.end());
reorder_by_shortest_traverse(thick_polylines_out);
}
}
} // namespace Slic3r

View File

@@ -0,0 +1,165 @@
#ifndef slic3r_FillConcentricInternal_hpp_
#define slic3r_FillConcentricInternal_hpp_
#include "FillBase.hpp"
namespace Slic3r {
class FillConcentricInternal : public Fill
{
public:
~FillConcentricInternal() override = default;
void fill_surface_extrusion(const Surface * surface,
const FillParams &params,
Polylines & polylines,
ThickPolylines & thick_polylines) override;
void variable_width(const ThickPolylines &polylines, ExtrusionRole role, const Flow &flow, std::vector<ExtrusionEntity *> &out)
{
const float tolerance = float(scale_(0.05));
for (const ThickPolyline &p : polylines) {
ExtrusionPaths paths = thick_polyline_to_extrusion_paths_2(p, role, flow, tolerance);
// Append paths to collection.
if (!paths.empty()) {
if (paths.front().first_point() == paths.back().last_point())
out.emplace_back(new ExtrusionLoop(std::move(paths)));
else {
for (ExtrusionPath &path : paths)
out.emplace_back(new ExtrusionPath(std::move(path)));
}
}
}
}
ExtrusionPaths thick_polyline_to_extrusion_paths_2(const ThickPolyline &thick_polyline,
ExtrusionRole role,
const Flow & flow,
const float tolerance)
{
ExtrusionPaths paths;
ExtrusionPath path(role);
ThickLines lines = thick_polyline.thicklines();
size_t start_index = 0;
double max_width, min_width;
for (int i = 0; i < (int) lines.size(); ++i) {
const ThickLine &line = lines[i];
if (i == 0) {
max_width = line.a_width;
min_width = line.a_width;
}
const coordf_t line_len = line.length();
if (line_len < SCALED_EPSILON)
continue;
double thickness_delta = std::max(fabs(max_width - line.b_width), fabs(min_width - line.b_width));
if (thickness_delta > tolerance) {
if (start_index != i) {
path = ExtrusionPath(role);
double length = lines[start_index].length();
double sum = lines[start_index].length() * 0.5 * (lines[start_index].a_width + lines[start_index].b_width);
path.polyline.append(lines[start_index].a);
for (int idx = start_index + 1; idx < i; idx++) {
length += lines[idx].length();
sum += lines[idx].length() * 0.5 * (lines[idx].a_width + lines[idx].b_width);
path.polyline.append(lines[idx].a);
}
path.polyline.append(lines[i].a);
if (length > SCALED_EPSILON) {
double w = sum / length;
Flow new_flow = flow.with_width(unscale<float>(w) + flow.height() * float(1. - 0.25 * PI));
// path.mm3_per_mm = new_flow.mm3_per_mm();
path.set_mm3_per_mm(new_flow.mm3_per_mm());
// path.width = new_flow.width();
path.set_width(new_flow.width());
// path.height = new_flow.height();
path.set_height(new_flow.height());
paths.emplace_back(std::move(path));
}
}
start_index = i;
max_width = line.a_width;
min_width = line.a_width;
thickness_delta = fabs(line.a_width - line.b_width);
if (thickness_delta > tolerance) {
const unsigned int segments = (unsigned int) ceil(thickness_delta / tolerance);
const coordf_t seg_len = line_len / segments;
Points pp;
std::vector<coordf_t> width;
{
pp.push_back(line.a);
width.push_back(line.a_width);
for (size_t j = 1; j < segments; ++j) {
pp.push_back(
(line.a.cast<double>() + (line.b - line.a).cast<double>().normalized() * (j * seg_len)).cast<coord_t>());
coordf_t w = line.a_width + (j * seg_len) * (line.b_width - line.a_width) / line_len;
width.push_back(w);
width.push_back(w);
}
pp.push_back(line.b);
width.push_back(line.b_width);
assert(pp.size() == segments + 1u);
assert(width.size() == segments * 2);
}
lines.erase(lines.begin() + i);
for (size_t j = 0; j < segments; ++j) {
ThickLine new_line(pp[j], pp[j + 1]);
new_line.a_width = width[2 * j];
new_line.b_width = width[2 * j + 1];
lines.insert(lines.begin() + i + j, new_line);
}
--i;
continue;
}
} else {
max_width = std::max(max_width, std::max(line.a_width, line.b_width));
min_width = std::min(min_width, std::min(line.a_width, line.b_width));
}
}
size_t final_size = lines.size();
if (start_index < final_size) {
path = ExtrusionPath(role);
double length = lines[start_index].length();
double sum = lines[start_index].length() * lines[start_index].a_width;
path.polyline.append(lines[start_index].a);
for (int idx = start_index + 1; idx < final_size; idx++) {
length += lines[idx].length();
sum += lines[idx].length() * lines[idx].a_width;
path.polyline.append(lines[idx].a);
}
path.polyline.append(lines[final_size - 1].b);
if (length > SCALED_EPSILON) {
double w = sum / length;
Flow new_flow = flow.with_width(unscale<float>(w) + flow.height() * float(1. - 0.25 * PI));
// path.mm3_per_mm = new_flow.mm3_per_mm();
path.set_mm3_per_mm(new_flow.mm3_per_mm());
// path.width = new_flow.width();
path.set_width(new_flow.width());
// path.height = new_flow.height();
path.set_height(new_flow.height());
paths.emplace_back(std::move(path));
}
}
return paths;
}
protected:
Fill *clone() const override { return new FillConcentricInternal(*this); };
bool no_sort() const override { return true; }
const PrintConfig * print_config = nullptr;
const PrintObjectConfig *print_object_config = nullptr;
friend class Layer;
};
} // namespace Slic3r
#endif // slic3r_FillConcentricInternal_hpp_

View File

@@ -81,6 +81,52 @@ Points collect_duplicates(Points pts /* Copy */)
}
return duplicits;
}
//w29
int Point::nearest_point_index(const Points &points) const
{
PointConstPtrs p;
p.reserve(points.size());
for (Points::const_iterator it = points.begin(); it != points.end(); ++it)
p.push_back(&*it);
return this->nearest_point_index(p);
}
int Point::nearest_point_index(const PointConstPtrs &points) const
{
int idx = -1;
double distance = -1; // double because long is limited to 2147483647 on some platforms and it's not enough
for (PointConstPtrs::const_iterator it = points.begin(); it != points.end(); ++it) {
/* If the X distance of the candidate is > than the total distance of the
best previous candidate, we know we don't want it */
double d = sqr<double>((*this) (0) - (*it)->x());
if (distance != -1 && d > distance)
continue;
/* If the Y distance of the candidate is > than the total distance of the
best previous candidate, we know we don't want it */
d += sqr<double>((*this) (1) - (*it)->y());
if (distance != -1 && d > distance)
continue;
idx = it - points.begin();
distance = d;
if (distance < EPSILON)
break;
}
return idx;
}
int Point::nearest_point_index(const PointPtrs &points) const
{
PointConstPtrs p;
p.reserve(points.size());
for (PointPtrs::const_iterator it = points.begin(); it != points.end(); ++it)
p.push_back(*it);
return this->nearest_point_index(p);
}
template<bool IncludeBoundary>
BoundingBox get_extents(const Points &pts)

View File

@@ -212,6 +212,10 @@ public:
Point rotated(double angle) const { Point res(*this); res.rotate(angle); return res; }
Point rotated(double cos_a, double sin_a) const { Point res(*this); res.rotate(cos_a, sin_a); return res; }
Point rotated(double angle, const Point &center) const { Point res(*this); res.rotate(angle, center); return res; }
//w29
int nearest_point_index(const Points &points) const;
int nearest_point_index(const PointConstPtrs &points) const;
int nearest_point_index(const PointPtrs &points) const;
};
inline bool operator<(const Point &l, const Point &r)

View File

@@ -42,6 +42,22 @@ void chain_and_reorder_extrusion_paths(std::vect
Polylines chain_polylines(Polylines &&src, const Point *start_near = nullptr);
inline Polylines chain_polylines(const Polylines& src, const Point* start_near = nullptr) { Polylines tmp(src); return chain_polylines(std::move(tmp), start_near); }
//w29
template<typename T> inline void reorder_by_shortest_traverse(std::vector<T> &polylines_out)
{
Points start_point;
start_point.reserve(polylines_out.size());
for (const T contour : polylines_out)
start_point.push_back(contour.points.front());
std::vector<Points::size_type> order = chain_points(start_point);
std::vector<T> Temp = polylines_out;
polylines_out.erase(polylines_out.begin(), polylines_out.end());
for (size_t i : order)
polylines_out.emplace_back(std::move(Temp[i]));
}
ClipperLib::PolyNodes chain_clipper_polynodes(const Points &points, const ClipperLib::PolyNodes &items);