plus4的klipper版本

This commit is contained in:
whb0514
2024-09-02 13:37:34 +08:00
parent 653d7a8f6e
commit b90736975b
1006 changed files with 1195894 additions and 11114 deletions

View File

@@ -1,6 +1,6 @@
// Software CANbus implementation for rp2040
//
// Copyright (C) 2022 Kevin O'Connor <kevin@koconnor.net>
// Copyright (C) 2022,2023 Kevin O'Connor <kevin@koconnor.net>
//
// This file may be distributed under the terms of the GNU GPLv3 license.
@@ -67,6 +67,7 @@ rp2040_gpio_peripheral(uint32_t gpio, int func, int pull_up)
****************************************************************/
#define PIO_CLOCK_PER_BIT 32
#define PIO_RX_WAKE_BITS 10
#define can2040_offset_sync_found_end_of_message 2u
#define can2040_offset_sync_signal_start 4u
@@ -75,21 +76,21 @@ rp2040_gpio_peripheral(uint32_t gpio, int func, int pull_up)
#define can2040_offset_shared_rx_read 13u
#define can2040_offset_shared_rx_end 15u
#define can2040_offset_match_load_next 18u
#define can2040_offset_tx_conflict 24u
#define can2040_offset_match_end 25u
#define can2040_offset_tx_got_recessive 25u
#define can2040_offset_tx_start 26u
#define can2040_offset_tx_conflict 31u
#define can2040_offset_tx_write_pin 27u
static const uint16_t can2040_program_instructions[] = {
0x0085, // 0: jmp y--, 5
0x0048, // 1: jmp x--, 8
0xe13a, // 2: set x, 26 [1]
0xe029, // 2: set x, 9
0x00cc, // 3: jmp pin, 12
0xc000, // 4: irq nowait 0
0x00c0, // 5: jmp pin, 0
0xc040, // 6: irq clear 0
0xe228, // 7: set x, 8 [2]
0xf242, // 8: set y, 2 [18]
0xe429, // 7: set x, 9 [4]
0xf043, // 8: set y, 3 [16]
0xc104, // 9: irq nowait 4 [1]
0x03c5, // 10: jmp pin, 5 [3]
0x0307, // 11: jmp 7 [3]
@@ -97,7 +98,7 @@ static const uint16_t can2040_program_instructions[] = {
0x20c4, // 13: wait 1 irq, 4
0x4001, // 14: in pins, 1
0xa046, // 15: mov y, isr
0x00b2, // 16: jmp x != y, 18
0x01b2, // 16: jmp x != y, 18 [1]
0xc002, // 17: irq nowait 2
0x40eb, // 18: in osr, 11
0x4054, // 19: in y, 20
@@ -106,15 +107,22 @@ static const uint16_t can2040_program_instructions[] = {
0xa027, // 22: mov x, osr
0x0098, // 23: jmp y--, 24
0xa0e2, // 24: mov osr, y
0xa242, // 25: nop [2]
0x6021, // 26: out x, 1
0xa001, // 27: mov pins, x
0x20c4, // 28: wait 1 irq, 4
0x00d9, // 29: jmp pin, 25
0x023a, // 30: jmp !x, 26 [2]
0xc027, // 31: irq wait 7
0x6021, // 25: out x, 1
0x00df, // 26: jmp pin, 31
0xb801, // 27: mov pins, x [24]
0x02d9, // 28: jmp pin, 25 [2]
0x0058, // 29: jmp x--, 24
0x6021, // 30: out x, 1
0x011b, // 31: jmp 27 [1]
};
// Local names for PIO state machine IRQs
#define SI_MAYTX PIO_IRQ0_INTE_SM0_BITS
#define SI_MATCHED PIO_IRQ0_INTE_SM2_BITS
#define SI_ACKDONE PIO_IRQ0_INTE_SM3_BITS
#define SI_RX_DATA PIO_IRQ0_INTE_SM1_RXNEMPTY_BITS
#define SI_TXPENDING PIO_IRQ0_INTE_SM1_BITS // Misc bit manually forced
// Setup PIO "sync" state machine (state machine 0)
static void
pio_sync_setup(struct can2040 *cd)
@@ -130,7 +138,7 @@ pio_sync_setup(struct can2040 *cd)
| cd->gpio_rx << PIO_SM0_PINCTRL_SET_BASE_LSB);
sm->instr = 0xe080; // set pindirs, 0
sm->pinctrl = 0;
pio_hw->txf[0] = PIO_CLOCK_PER_BIT / 2 * 8 - 5 - 1;
pio_hw->txf[0] = 9 + 6 * PIO_CLOCK_PER_BIT / 2;
sm->instr = 0x80a0; // pull block
sm->instr = can2040_offset_sync_entry; // jmp sync_entry
}
@@ -147,7 +155,7 @@ pio_rx_setup(struct can2040 *cd)
sm->pinctrl = cd->gpio_rx << PIO_SM0_PINCTRL_IN_BASE_LSB;
sm->shiftctrl = 0; // flush fifo on a restart
sm->shiftctrl = (PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS
| 8 << PIO_SM0_SHIFTCTRL_PUSH_THRESH_LSB
| PIO_RX_WAKE_BITS << PIO_SM0_SHIFTCTRL_PUSH_THRESH_LSB
| PIO_SM0_SHIFTCTRL_AUTOPUSH_BITS);
sm->instr = can2040_offset_shared_rx_read; // jmp shared_rx_read
}
@@ -175,7 +183,10 @@ pio_tx_setup(struct can2040 *cd)
{
pio_hw_t *pio_hw = cd->pio_hw;
struct pio_sm_hw *sm = &pio_hw->sm[3];
sm->execctrl = cd->gpio_rx << PIO_SM0_EXECCTRL_JMP_PIN_LSB;
sm->execctrl = (
cd->gpio_rx << PIO_SM0_EXECCTRL_JMP_PIN_LSB
| can2040_offset_tx_conflict << PIO_SM0_EXECCTRL_WRAP_TOP_LSB
| can2040_offset_tx_conflict << PIO_SM0_EXECCTRL_WRAP_BOTTOM_LSB);
sm->shiftctrl = (PIO_SM0_SHIFTCTRL_FJOIN_TX_BITS
| PIO_SM0_SHIFTCTRL_AUTOPULL_BITS);
sm->pinctrl = (1 << PIO_SM0_PINCTRL_SET_COUNT_LSB
@@ -192,7 +203,7 @@ pio_sync_normal_start_signal(struct can2040 *cd)
{
pio_hw_t *pio_hw = cd->pio_hw;
uint32_t eom_idx = can2040_offset_sync_found_end_of_message;
pio_hw->instr_mem[eom_idx] = 0xe13a; // set x, 26 [1]
pio_hw->instr_mem[eom_idx] = 0xe12a; // set x, 10 [1]
}
// Set PIO "sync" machine to signal "may transmit" (sm irq 0) on 17 idle bits
@@ -212,14 +223,6 @@ pio_rx_check_stall(struct can2040 *cd)
return pio_hw->fdebug & (1 << (PIO_FDEBUG_RXSTALL_LSB + 1));
}
// Report number of bytes still pending in PIO "rx" fifo queue
static int
pio_rx_fifo_level(struct can2040 *cd)
{
pio_hw_t *pio_hw = cd->pio_hw;
return (pio_hw->flevel & PIO_FLEVEL_RX1_BITS) >> PIO_FLEVEL_RX1_LSB;
}
// Set PIO "match" state machine to raise a "matched" signal on a bit sequence
static void
pio_match_check(struct can2040 *cd, uint32_t match_key)
@@ -247,17 +250,15 @@ static void
pio_tx_reset(struct can2040 *cd)
{
pio_hw_t *pio_hw = cd->pio_hw;
pio_hw->ctrl = 0x07 << PIO_CTRL_SM_ENABLE_LSB;
pio_hw->ctrl = ((0x07 << PIO_CTRL_SM_ENABLE_LSB)
| (0x08 << PIO_CTRL_SM_RESTART_LSB));
pio_hw->irq = (1 << 2) | (1<< 3); // clear "matched" and "ack done" signals
pio_hw->irq = (SI_MATCHED | SI_ACKDONE) >> 8; // clear PIO irq flags
// Clear tx fifo
struct pio_sm_hw *sm = &pio_hw->sm[3];
sm->shiftctrl = 0;
sm->shiftctrl = (PIO_SM0_SHIFTCTRL_FJOIN_TX_BITS
| PIO_SM0_SHIFTCTRL_AUTOPULL_BITS);
// Must reset again after clearing fifo
pio_hw->ctrl = ((0x07 << PIO_CTRL_SM_ENABLE_LSB)
| (0x08 << PIO_CTRL_SM_RESTART_LSB));
}
// Queue a message for transmission on PIO "tx" state machine
@@ -266,13 +267,14 @@ pio_tx_send(struct can2040 *cd, uint32_t *data, uint32_t count)
{
pio_hw_t *pio_hw = cd->pio_hw;
pio_tx_reset(cd);
pio_hw->instr_mem[can2040_offset_tx_got_recessive] = 0xa242; // nop [2]
int i;
pio_hw->instr_mem[can2040_offset_tx_got_recessive] = 0x6021; // out x, 1
uint32_t i;
for (i=0; i<count; i++)
pio_hw->txf[3] = data[i];
struct pio_sm_hw *sm = &pio_hw->sm[3];
sm->instr = 0xe001; // set pins, 1
sm->instr = can2040_offset_tx_start; // jmp tx_start
sm->instr = 0x6021; // out x, 1
sm->instr = can2040_offset_tx_write_pin; // jmp tx_write_pin
sm->instr = 0x20c0; // wait 1 irq, 0
pio_hw->ctrl = 0x0f << PIO_CTRL_SM_ENABLE_LSB;
}
@@ -287,61 +289,65 @@ pio_tx_inject_ack(struct can2040 *cd, uint32_t match_key)
pio_hw->txf[3] = 0x7fffffff;
struct pio_sm_hw *sm = &pio_hw->sm[3];
sm->instr = 0xe001; // set pins, 1
sm->instr = can2040_offset_tx_start; // jmp tx_start
sm->instr = 0x6021; // out x, 1
sm->instr = can2040_offset_tx_write_pin; // jmp tx_write_pin
sm->instr = 0x20c2; // wait 1 irq, 2
pio_hw->ctrl = 0x0f << PIO_CTRL_SM_ENABLE_LSB;
pio_match_check(cd, match_key);
}
// Check if the PIO "tx" state machine stopped due to passive/dominant conflict
// Did PIO "tx" state machine unexpectedly finish a transmit attempt?
static int
pio_tx_did_conflict(struct can2040 *cd)
pio_tx_did_fail(struct can2040 *cd)
{
pio_hw_t *pio_hw = cd->pio_hw;
return pio_hw->sm[3].addr == can2040_offset_tx_conflict;
// Check for passive/dominant bit conflict without parser noticing
if (pio_hw->sm[3].addr == can2040_offset_tx_conflict)
return !(pio_hw->intr & SI_RX_DATA);
// Check for unexpected drain of transmit queue without parser noticing
return (!(pio_hw->flevel & PIO_FLEVEL_TX3_BITS)
&& (pio_hw->intr & (SI_MAYTX | SI_RX_DATA)) == SI_MAYTX);
}
// Enable host irq on a "may transmit" signal (sm irq 0)
// Enable host irqs for state machine signals
static void
pio_irq_set_maytx(struct can2040 *cd)
pio_irq_set(struct can2040 *cd, uint32_t sm_irqs)
{
pio_hw_t *pio_hw = cd->pio_hw;
pio_hw->inte0 = PIO_IRQ0_INTE_SM0_BITS | PIO_IRQ0_INTE_SM1_RXNEMPTY_BITS;
pio_hw->inte0 = sm_irqs | SI_RX_DATA;
}
// Enable host irq on a "may transmit" or "matched" signal (sm irq 0 or 2)
// Completely disable host irqs
static void
pio_irq_set_maytx_matched(struct can2040 *cd)
pio_irq_disable(struct can2040 *cd)
{
pio_hw_t *pio_hw = cd->pio_hw;
pio_hw->inte0 = (PIO_IRQ0_INTE_SM0_BITS | PIO_IRQ0_INTE_SM2_BITS
| PIO_IRQ0_INTE_SM1_RXNEMPTY_BITS);
pio_hw->inte0 = 0;
}
// Enable host irq on a "may transmit" or "ack done" signal (sm irq 0 or 3)
static void
pio_irq_set_maytx_ackdone(struct can2040 *cd)
// Return current host irq mask
static uint32_t
pio_irq_get(struct can2040 *cd)
{
pio_hw_t *pio_hw = cd->pio_hw;
pio_hw->inte0 = (PIO_IRQ0_INTE_SM0_BITS | PIO_IRQ0_INTE_SM3_BITS
| PIO_IRQ0_INTE_SM1_RXNEMPTY_BITS);
return pio_hw->inte0;
}
// Atomically enable "may transmit" signal (sm irq 0)
// Raise the txpending flag
static void
pio_irq_atomic_set_maytx(struct can2040 *cd)
pio_signal_set_txpending(struct can2040 *cd)
{
pio_hw_t *pio_hw = cd->pio_hw;
hw_set_bits(&pio_hw->inte0, PIO_IRQ0_INTE_SM0_BITS);
pio_hw->irq_force = SI_TXPENDING >> 8;
}
// Disable PIO host irqs (except for normal data read irq)
// Clear the txpending flag
static void
pio_irq_set_none(struct can2040 *cd)
pio_signal_clear_txpending(struct can2040 *cd)
{
pio_hw_t *pio_hw = cd->pio_hw;
pio_hw->inte0 = PIO_IRQ0_INTE_SM1_RXNEMPTY_BITS;
pio_hw->irq = SI_TXPENDING >> 8;
}
// Setup PIO state machines
@@ -352,9 +358,11 @@ pio_sm_setup(struct can2040 *cd)
pio_hw_t *pio_hw = cd->pio_hw;
pio_hw->ctrl = PIO_CTRL_SM_RESTART_BITS | PIO_CTRL_CLKDIV_RESTART_BITS;
pio_hw->fdebug = 0xffffffff;
pio_hw->irq = 0xff;
pio_signal_set_txpending(cd);
// Load pio program
int i;
uint32_t i;
for (i=0; i<ARRAY_SIZE(can2040_program_instructions); i++)
pio_hw->instr_mem[i] = can2040_program_instructions[i];
@@ -368,8 +376,6 @@ pio_sm_setup(struct can2040 *cd)
pio_hw->ctrl = 0x07 << PIO_CTRL_SM_ENABLE_LSB;
}
#define PIO_FUNC 6
// Initial setup of gpio pins and PIO state machines
static void
pio_setup(struct can2040 *cd, uint32_t sys_clock, uint32_t bitrate)
@@ -389,8 +395,9 @@ pio_setup(struct can2040 *cd, uint32_t sys_clock, uint32_t bitrate)
pio_sm_setup(cd);
// Map Rx/Tx gpios
rp2040_gpio_peripheral(cd->gpio_rx, PIO_FUNC, 1);
rp2040_gpio_peripheral(cd->gpio_tx, PIO_FUNC, 0);
uint32_t pio_func = cd->pio_num ? 7 : 6;
rp2040_gpio_peripheral(cd->gpio_rx, pio_func, 1);
rp2040_gpio_peripheral(cd->gpio_tx, pio_func, 0);
}
@@ -440,9 +447,9 @@ static inline uint32_t
crc_bytes(uint32_t crc, uint32_t data, uint32_t num)
{
switch (num) {
default: crc = crc_byte(crc, data >> 24);
case 3: crc = crc_byte(crc, data >> 16);
case 2: crc = crc_byte(crc, data >> 8);
default: crc = crc_byte(crc, data >> 24); /* FALLTHRU */
case 3: crc = crc_byte(crc, data >> 16); /* FALLTHRU */
case 2: crc = crc_byte(crc, data >> 8); /* FALLTHRU */
case 1: crc = crc_byte(crc, data);
}
return crc;
@@ -462,12 +469,12 @@ unstuf_add_bits(struct can2040_bitunstuffer *bu, uint32_t data, uint32_t count)
bu->count_stuff = count;
}
// Reset state and set the next desired 'count' unstuffed bits to extract
// Reset state and set the next desired 'num_bits' unstuffed bits to extract
static void
unstuf_set_count(struct can2040_bitunstuffer *bu, uint32_t count)
unstuf_set_count(struct can2040_bitunstuffer *bu, uint32_t num_bits)
{
bu->unstuffed_bits = 0;
bu->count_unstuff = count;
bu->count_unstuff = num_bits;
}
// Clear bitstuffing state (used after crc field to avoid bitstuffing ack field)
@@ -475,7 +482,15 @@ static void
unstuf_clear_state(struct can2040_bitunstuffer *bu)
{
uint32_t lb = 1 << bu->count_stuff;
bu->stuffed_bits = (bu->stuffed_bits & (lb - 1)) | lb;
bu->stuffed_bits = (bu->stuffed_bits & (lb - 1)) | (lb << 1);
}
// Restore raw bitstuffing state (used to undo unstuf_clear_state() )
static void
unstuf_restore_state(struct can2040_bitunstuffer *bu, uint32_t data)
{
uint32_t cs = bu->count_stuff;
bu->stuffed_bits = (bu->stuffed_bits & ((1 << cs) - 1)) | (data << cs);
}
// Pull bits from unstuffer (as specified in unstuf_set_count() )
@@ -504,10 +519,10 @@ unstuf_pull_bits(struct can2040_bitunstuffer *bu)
}
bu->count_stuff = cs = cs - 1;
if (rm_bits & (1 << (cs + 1))) {
// High bit of try_cnt a stuff bit
// High bit is a stuff bit
if (unlikely(rm_bits & (1 << cs))) {
// Six consecutive bits - a bitstuff error
if ((sb >> cs) & 1)
if (sb & (1 << cs))
return -1;
return -2;
}
@@ -524,6 +539,13 @@ unstuf_pull_bits(struct can2040_bitunstuffer *bu)
}
}
// Return most recent raw (still stuffed) bits
static uint32_t
unstuf_get_raw(struct can2040_bitunstuffer *bu)
{
return bu->stuffed_bits >> bu->count_stuff;
}
/****************************************************************
* Bit stuffing
@@ -630,33 +652,36 @@ tx_qpos(struct can2040 *cd, uint32_t pos)
}
// Queue the next message for transmission in the PIO
static void
static uint32_t
tx_schedule_transmit(struct can2040 *cd)
{
if (cd->tx_state == TS_QUEUED && !pio_tx_did_conflict(cd))
if (cd->tx_state == TS_QUEUED && !pio_tx_did_fail(cd))
// Already queued or actively transmitting
return;
if (cd->tx_push_pos == cd->tx_pull_pos) {
return 0;
uint32_t tx_pull_pos = cd->tx_pull_pos;
if (readl(&cd->tx_push_pos) == tx_pull_pos) {
// No new messages to transmit
cd->tx_state = TS_IDLE;
return;
pio_signal_clear_txpending(cd);
__DMB();
if (likely(readl(&cd->tx_push_pos) == tx_pull_pos))
return SI_TXPENDING;
// Raced with can2040_transmit() - msg is now available for transmit
pio_signal_set_txpending(cd);
}
cd->tx_state = TS_QUEUED;
struct can2040_transmit *qt = &cd->tx_queue[tx_qpos(cd, cd->tx_pull_pos)];
cd->stats.tx_attempt++;
struct can2040_transmit *qt = &cd->tx_queue[tx_qpos(cd, tx_pull_pos)];
pio_tx_send(cd, qt->stuffed_data, qt->stuffed_words);
return 0;
}
// Setup PIO state for ack injection
static int
static void
tx_inject_ack(struct can2040 *cd, uint32_t match_key)
{
if (cd->tx_state == TS_QUEUED && !pio_tx_did_conflict(cd)
&& pio_rx_fifo_level(cd) > 1)
// Rx state is behind - acking wont succeed and may halt active tx
return -1;
cd->tx_state = TS_ACKING_RX;
pio_tx_inject_ack(cd, match_key);
return 0;
}
// Check if the current parsed message is feedback from current transmit
@@ -667,8 +692,11 @@ tx_check_local_message(struct can2040 *cd)
return 0;
struct can2040_transmit *qt = &cd->tx_queue[tx_qpos(cd, cd->tx_pull_pos)];
struct can2040_msg *pm = &cd->parse_msg, *tm = &qt->msg;
if (qt->crc == cd->parse_crc && tm->id == pm->id && tm->dlc == pm->dlc
&& tm->data32[0] == pm->data32[0] && tm->data32[1] == pm->data32[1]) {
if (tm->id == pm->id) {
if (qt->crc != cd->parse_crc || tm->dlc != pm->dlc
|| tm->data32[0] != pm->data32[0] || tm->data32[1] != pm->data32[1])
// Message with same id that differs in content - an error
return -1;
// This is a self transmit
cd->tx_state = TS_CONFIRM_TX;
return 1;
@@ -683,7 +711,11 @@ tx_check_local_message(struct can2040 *cd)
// Report state flags (stored in cd->report_state)
enum {
RS_IDLE = 0, RS_IS_TX = 1, RS_IN_MSG = 2, RS_AWAIT_EOF = 4,
RS_NEED_EOF_FLAG = 1<<2,
// States
RS_IDLE = 0, RS_NEED_RX_ACK = 1, RS_NEED_TX_ACK = 2,
RS_NEED_RX_EOF = RS_NEED_RX_ACK | RS_NEED_EOF_FLAG,
RS_NEED_TX_EOF = RS_NEED_TX_ACK | RS_NEED_EOF_FLAG,
};
// Report error to calling code (via callback interface)
@@ -698,6 +730,7 @@ report_callback_error(struct can2040 *cd, uint32_t error_code)
static void
report_callback_rx_msg(struct can2040 *cd)
{
cd->stats.rx_total++;
cd->rx_cb(cd, CAN2040_NOTIFY_RX, &cd->parse_msg);
}
@@ -705,7 +738,8 @@ report_callback_rx_msg(struct can2040 *cd)
static void
report_callback_tx_msg(struct can2040 *cd)
{
cd->tx_pull_pos++;
writel(&cd->tx_pull_pos, cd->tx_pull_pos + 1);
cd->stats.tx_total++;
cd->rx_cb(cd, CAN2040_NOTIFY_TX, &cd->parse_msg);
}
@@ -713,13 +747,10 @@ report_callback_tx_msg(struct can2040 *cd)
static void
report_handle_eof(struct can2040 *cd)
{
if (cd->report_state == RS_IDLE)
// Message already reported or an unexpected EOF
return;
if (cd->report_state & RS_AWAIT_EOF) {
if (cd->report_state & RS_NEED_EOF_FLAG) { // RS_NEED_xX_EOF
// Successfully processed a new message - report to calling code
pio_sync_normal_start_signal(cd);
if (cd->report_state & RS_IS_TX)
if (cd->report_state == RS_NEED_TX_EOF)
report_callback_tx_msg(cd);
else
report_callback_rx_msg(cd);
@@ -728,109 +759,110 @@ report_handle_eof(struct can2040 *cd)
pio_match_clear(cd);
}
// Check if in an rx ack is pending
// Check if message being processed is an rx message (not self feedback from tx)
static int
report_is_acking_rx(struct can2040 *cd)
report_is_not_in_tx(struct can2040 *cd)
{
return cd->report_state == (RS_IN_MSG | RS_AWAIT_EOF);
return !(cd->report_state & RS_NEED_TX_ACK);
}
// Parser found a new message start
static void
report_note_message_start(struct can2040 *cd)
{
pio_irq_set_maytx(cd);
pio_irq_set(cd, SI_MAYTX);
}
// Setup for ack injection (if receiving) or ack confirmation (if transmit)
static void
static int
report_note_crc_start(struct can2040 *cd)
{
uint32_t cs = cd->unstuf.count_stuff;
uint32_t crcstart_bitpos = cd->raw_bit_count - cs - 1;
uint32_t last = ((cd->unstuf.stuffed_bits >> cs) << 15) | cd->parse_crc;
uint32_t crc_bitcount = bitstuff(&last, 15 + 1) - 1;
uint32_t crcend_bitpos = crcstart_bitpos + crc_bitcount;
int ret = tx_check_local_message(cd);
if (ret) {
if (ret < 0)
return -1;
// This is a self transmit - setup tx eof "matched" signal
cd->report_state = RS_IN_MSG | RS_IS_TX;
last = (last << 10) | 0x02ff;
pio_match_check(cd, pio_match_calc_key(last, crcend_bitpos + 10));
return;
cd->report_state = RS_NEED_TX_ACK;
uint32_t bits = (cd->parse_crc_bits << 9) | 0x0ff;
pio_match_check(cd, pio_match_calc_key(bits, cd->parse_crc_pos + 9));
return 0;
}
// Inject ack
cd->report_state = RS_IN_MSG;
last = (last << 1) | 0x01;
ret = tx_inject_ack(cd, pio_match_calc_key(last, crcend_bitpos + 1));
if (ret)
// Ack couldn't be scheduled (due to lagged parsing state)
return;
pio_irq_set_maytx_ackdone(cd);
// Setup for future rx eof "matched" signal
last = (last << 8) | 0x7f;
cd->report_eof_key = pio_match_calc_key(last, crcend_bitpos + 9);
// Setup for ack inject (after rx fifos fully drained)
cd->report_state = RS_NEED_RX_ACK;
pio_signal_set_txpending(cd);
pio_irq_set(cd, SI_MAYTX | SI_TXPENDING);
return 0;
}
// Parser successfully found matching crc
static void
report_note_crc_success(struct can2040 *cd)
{
if (cd->report_state == RS_NEED_TX_ACK)
// Enable "matched" irq for fast back-to-back transmit scheduling
pio_irq_set(cd, SI_MAYTX | SI_MATCHED);
}
// Parser found successful ack
static void
report_note_ack_success(struct can2040 *cd)
{
if (!(cd->report_state & RS_IN_MSG))
// Got rx "ackdone" and "matched" signals already
if (cd->report_state == RS_IDLE)
// Got "matched" signal already
return;
cd->report_state |= RS_AWAIT_EOF;
if (cd->report_state & RS_IS_TX)
// Enable "matched" irq for fast back-to-back transmit scheduling
pio_irq_set_maytx_matched(cd);
// Transition RS_NEED_xX_ACK to RS_NEED_xX_EOF
cd->report_state |= RS_NEED_EOF_FLAG;
}
// Parser found successful EOF
static void
report_note_eof_success(struct can2040 *cd)
{
if (cd->report_state == RS_IDLE)
// Got "matched" signal already
return;
report_handle_eof(cd);
pio_irq_set(cd, SI_TXPENDING);
}
// Parser found unexpected data on input
static void
report_note_parse_error(struct can2040 *cd)
report_note_discarding(struct can2040 *cd)
{
if (cd->report_state != RS_IDLE) {
cd->report_state = RS_IDLE;
pio_match_clear(cd);
}
pio_sync_slow_start_signal(cd);
pio_irq_set_maytx(cd);
pio_irq_set(cd, SI_MAYTX | SI_TXPENDING);
}
// Received PIO rx "ackdone" irq
static void
report_line_ackdone(struct can2040 *cd)
{
if (!(cd->report_state & RS_IN_MSG)) {
// Parser already processed ack and eof bits
pio_irq_set_maytx(cd);
return;
}
// Setup "matched" irq for fast rx callbacks
cd->report_state = RS_IN_MSG | RS_AWAIT_EOF;
pio_match_check(cd, cd->report_eof_key);
pio_irq_set_maytx_matched(cd);
uint32_t bits = (cd->parse_crc_bits << 8) | 0x7f;
pio_match_check(cd, pio_match_calc_key(bits, cd->parse_crc_pos + 8));
// Schedule next transmit (so it is ready for next frame line arbitration)
tx_schedule_transmit(cd);
uint32_t check_txpending = tx_schedule_transmit(cd);
pio_irq_set(cd, SI_MAYTX | SI_MATCHED | check_txpending);
}
// Received PIO "matched" irq
static void
report_line_matched(struct can2040 *cd)
{
// Implement fast rx callback and/or fast back-to-back tx scheduling
report_handle_eof(cd);
pio_irq_set_none(cd);
tx_schedule_transmit(cd);
// A match event indicates an ack and eof are present
if (cd->report_state != RS_IDLE) {
// Transition RS_NEED_xX_ACK to RS_NEED_xX_EOF (if not already there)
cd->report_state |= RS_NEED_EOF_FLAG;
report_handle_eof(cd);
}
// Implement fast back-to-back tx scheduling (if applicable)
uint32_t check_txpending = tx_schedule_transmit(cd);
pio_irq_set(cd, check_txpending);
}
// Received 10+ passive bits on the line (between 10 and 17 bits)
@@ -838,10 +870,30 @@ static void
report_line_maytx(struct can2040 *cd)
{
// Line is idle - may be unexpected EOF, missed ack injection,
// missed "matched" signal, or can2040_transmit() kick.
report_handle_eof(cd);
pio_irq_set_none(cd);
tx_schedule_transmit(cd);
// or missed "matched" signal.
if (cd->report_state != RS_IDLE)
report_handle_eof(cd);
uint32_t check_txpending = tx_schedule_transmit(cd);
pio_irq_set(cd, check_txpending);
}
// Schedule a transmit
static void
report_line_txpending(struct can2040 *cd)
{
uint32_t pio_irqs = pio_irq_get(cd);
if (pio_irqs == (SI_MAYTX | SI_TXPENDING | SI_RX_DATA)
&& cd->report_state == RS_NEED_RX_ACK) {
// Ack inject request from report_note_crc_start()
uint32_t mk = pio_match_calc_key(cd->parse_crc_bits, cd->parse_crc_pos);
tx_inject_ack(cd, mk);
pio_irq_set(cd, SI_MAYTX | SI_ACKDONE);
return;
}
// Tx request from can2040_transmit(), report_note_eof_success(),
// or report_note_discarding().
uint32_t check_txpending = tx_schedule_transmit(cd);
pio_irq_set(cd, (pio_irqs & ~SI_TXPENDING) | check_txpending);
}
@@ -855,58 +907,78 @@ enum {
MS_CRC, MS_ACK, MS_EOF0, MS_EOF1, MS_DISCARD
};
// Reset any bits in the incoming parsing state
static void
data_state_clear_bits(struct can2040 *cd)
{
cd->raw_bit_count = cd->unstuf.stuffed_bits = cd->unstuf.count_stuff = 0;
}
// Transition to the next parsing state
static void
data_state_go_next(struct can2040 *cd, uint32_t state, uint32_t bits)
data_state_go_next(struct can2040 *cd, uint32_t state, uint32_t num_bits)
{
cd->parse_state = state;
unstuf_set_count(&cd->unstuf, bits);
unstuf_set_count(&cd->unstuf, num_bits);
}
// Transition to the MS_DISCARD state - drop all bits until 6 passive bits
static void
data_state_go_discard(struct can2040 *cd)
{
report_note_parse_error(cd);
if (pio_rx_check_stall(cd)) {
// CPU couldn't keep up for some read data - must reset pio state
cd->raw_bit_count = cd->unstuf.count_stuff = 0;
data_state_clear_bits(cd);
pio_sm_setup(cd);
report_callback_error(cd, 0);
}
data_state_go_next(cd, MS_DISCARD, 32);
// Clear report state and update hw irqs after transition to MS_DISCARD
report_note_discarding(cd);
}
// Note a data parse error and transition to discard state
static void
data_state_go_error(struct can2040 *cd)
{
cd->stats.parse_error++;
data_state_go_discard(cd);
}
// Received six dominant bits on the line
static void
data_state_line_error(struct can2040 *cd)
{
data_state_go_discard(cd);
if (cd->parse_state == MS_DISCARD)
data_state_go_discard(cd);
else
data_state_go_error(cd);
}
// Received six passive bits on the line
// Received six unexpected passive bits on the line
static void
data_state_line_passive(struct can2040 *cd)
{
if (cd->parse_state != MS_DISCARD) {
if (cd->parse_state != MS_DISCARD && cd->parse_state != MS_START) {
// Bitstuff error
data_state_go_discard(cd);
data_state_go_error(cd);
return;
}
uint32_t stuffed_bits = cd->unstuf.stuffed_bits >> cd->unstuf.count_stuff;
if (stuffed_bits == 0xffffffff) {
uint32_t stuffed_bits = unstuf_get_raw(&cd->unstuf);
uint32_t dom_bits = ~stuffed_bits;
if (!dom_bits) {
// Counter overflow in "sync" state machine - reset it
pio_sync_setup(cd);
cd->unstuf.stuffed_bits = 0;
data_state_clear_bits(cd);
pio_sm_setup(cd);
data_state_go_discard(cd);
return;
}
// Look for sof after 9 passive bits (most "PIO sync" will produce)
if (((stuffed_bits + 1) & 0x1ff) == 0) {
// Look for sof after 10 passive bits (most "PIO sync" will produce)
if (!(dom_bits & 0x3ff)) {
data_state_go_next(cd, MS_START, 1);
return;
}
@@ -919,7 +991,19 @@ static void
data_state_go_crc(struct can2040 *cd)
{
cd->parse_crc &= 0x7fff;
report_note_crc_start(cd);
// Calculate raw stuffed bits after crc and crc delimiter
uint32_t crcstart_bitpos = cd->raw_bit_count - cd->unstuf.count_stuff - 1;
uint32_t crc_bits = (unstuf_get_raw(&cd->unstuf) << 15) | cd->parse_crc;
uint32_t crc_bitcount = bitstuff(&crc_bits, 15 + 1) - 1;
cd->parse_crc_bits = (crc_bits << 1) | 0x01; // Add crc delimiter
cd->parse_crc_pos = crcstart_bitpos + crc_bitcount + 1;
int ret = report_note_crc_start(cd);
if (ret) {
data_state_go_error(cd);
return;
}
data_state_go_next(cd, MS_CRC, 16);
}
@@ -1010,10 +1094,11 @@ static void
data_state_update_crc(struct can2040 *cd, uint32_t data)
{
if (((cd->parse_crc << 1) | 1) != data) {
data_state_go_discard(cd);
data_state_go_error(cd);
return;
}
report_note_crc_success(cd);
unstuf_clear_state(&cd->unstuf);
data_state_go_next(cd, MS_ACK, 2);
}
@@ -1023,7 +1108,11 @@ static void
data_state_update_ack(struct can2040 *cd, uint32_t data)
{
if (data != 0x01) {
data_state_go_discard(cd);
// Undo unstuf_clear_state() for correct SOF detection in
// data_state_line_passive()
unstuf_restore_state(&cd->unstuf, (cd->parse_crc_bits << 2) | data);
data_state_go_error(cd);
return;
}
report_note_ack_success(cd);
@@ -1035,25 +1124,28 @@ static void
data_state_update_eof0(struct can2040 *cd, uint32_t data)
{
if (data != 0x0f || pio_rx_check_stall(cd)) {
data_state_go_discard(cd);
data_state_go_error(cd);
return;
}
unstuf_clear_state(&cd->unstuf);
data_state_go_next(cd, MS_EOF1, 4);
data_state_go_next(cd, MS_EOF1, 5);
}
// Handle reception of end-of-frame (EOF) bits 5-7 and first IFS bit
// Handle reception of end-of-frame (EOF) bits 5-7 and first two IFS bits
static void
data_state_update_eof1(struct can2040 *cd, uint32_t data)
{
if (data >= 0x0e || (data >= 0x0c && report_is_acking_rx(cd)))
// Message is considered fully transmitted
if (data == 0x1f) {
// Success
report_note_eof_success(cd);
if (data == 0x0f)
data_state_go_next(cd, MS_START, 1);
else
} else if (data >= 0x1c || (data >= 0x18 && report_is_not_in_tx(cd))) {
// Message fully transmitted - followed by "overload frame"
report_note_eof_success(cd);
data_state_go_discard(cd);
} else {
data_state_go_error(cd);
}
}
// Handle data received while in MS_DISCARD state
@@ -1086,12 +1178,12 @@ data_state_update(struct can2040 *cd, uint32_t data)
* Input processing
****************************************************************/
// Process an incoming byte of data from PIO "rx" state machine
// Process incoming data from PIO "rx" state machine
static void
process_rx(struct can2040 *cd, uint32_t rx_byte)
process_rx(struct can2040 *cd, uint32_t rx_data)
{
unstuf_add_bits(&cd->unstuf, rx_byte, 8);
cd->raw_bit_count += 8;
unstuf_add_bits(&cd->unstuf, rx_data, PIO_RX_WAKE_BITS);
cd->raw_bit_count += PIO_RX_WAKE_BITS;
// undo bit stuffing
for (;;) {
@@ -1119,23 +1211,26 @@ can2040_pio_irq_handler(struct can2040 *cd)
{
pio_hw_t *pio_hw = cd->pio_hw;
uint32_t ints = pio_hw->ints0;
while (likely(ints & PIO_IRQ0_INTE_SM1_RXNEMPTY_BITS)) {
uint8_t rx_byte = pio_hw->rxf[1];
process_rx(cd, rx_byte);
while (likely(ints & SI_RX_DATA)) {
uint32_t rx_data = pio_hw->rxf[1];
process_rx(cd, rx_data);
ints = pio_hw->ints0;
if (likely(!ints))
return;
}
if (ints & PIO_IRQ0_INTE_SM3_BITS)
if (ints & SI_ACKDONE)
// Ack of received message completed successfully
report_line_ackdone(cd);
else if (ints & PIO_IRQ0_INTE_SM2_BITS)
else if (ints & SI_MATCHED)
// Transmit message completed successfully
report_line_matched(cd);
else if (ints & PIO_IRQ0_INTE_SM0_BITS)
else if (ints & SI_MAYTX)
// Bus is idle, but not all bits may have been flushed yet
report_line_maytx(cd);
else if (ints & SI_TXPENDING)
// Schedule a transmit
report_line_txpending(cd);
}
@@ -1198,7 +1293,7 @@ can2040_transmit(struct can2040 *cd, struct can2040_msg *msg)
crc = crc_bytes(crc, hdr, 3);
bs_push(&bs, hdr, 19);
}
int i;
uint32_t i;
for (i=0; i<data_len; i++) {
uint32_t v = qt->msg.data[i];
crc = crc_byte(crc, v);
@@ -1213,7 +1308,8 @@ can2040_transmit(struct can2040 *cd, struct can2040_msg *msg)
writel(&cd->tx_push_pos, tx_push_pos + 1);
// Wakeup if in TS_IDLE state
pio_irq_atomic_set_maytx(cd);
__DMB();
pio_signal_set_txpending(cd);
return 0;
}
@@ -1246,13 +1342,28 @@ can2040_start(struct can2040 *cd, uint32_t sys_clock, uint32_t bitrate
{
cd->gpio_rx = gpio_rx;
cd->gpio_tx = gpio_tx;
data_state_clear_bits(cd);
pio_setup(cd, sys_clock, bitrate);
data_state_go_discard(cd);
}
// API function to stop and uninitialize can2040 code
// API function to stop can2040 code
void
can2040_shutdown(struct can2040 *cd)
can2040_stop(struct can2040 *cd)
{
// XXX
pio_irq_disable(cd);
pio_sm_setup(cd);
}
// API function to access can2040 statistics
void
can2040_get_statistics(struct can2040 *cd, struct can2040_stats *stats)
{
for (;;) {
memcpy(stats, &cd->stats, sizeof(*stats));
if (memcmp(stats, &cd->stats, sizeof(*stats)) == 0)
// Successfully copied data
return;
// Raced with irq handler update - retry copy
}
}

View File

@@ -26,11 +26,18 @@ struct can2040;
typedef void (*can2040_rx_cb)(struct can2040 *cd, uint32_t notify
, struct can2040_msg *msg);
struct can2040_stats {
uint32_t rx_total, tx_total;
uint32_t tx_attempt;
uint32_t parse_error;
};
void can2040_setup(struct can2040 *cd, uint32_t pio_num);
void can2040_callback_config(struct can2040 *cd, can2040_rx_cb rx_cb);
void can2040_start(struct can2040 *cd, uint32_t sys_clock, uint32_t bitrate
, uint32_t gpio_rx, uint32_t gpio_tx);
void can2040_shutdown(struct can2040 *cd);
void can2040_stop(struct can2040 *cd);
void can2040_get_statistics(struct can2040 *cd, struct can2040_stats *stats);
void can2040_pio_irq_handler(struct can2040 *cd);
int can2040_check_transmit(struct can2040 *cd);
int can2040_transmit(struct can2040 *cd, struct can2040_msg *msg);
@@ -56,6 +63,7 @@ struct can2040 {
void *pio_hw;
uint32_t gpio_rx, gpio_tx;
can2040_rx_cb rx_cb;
struct can2040_stats stats;
// Bit unstuffing
struct can2040_bitunstuffer unstuf;
@@ -63,12 +71,11 @@ struct can2040 {
// Input data state
uint32_t parse_state;
uint32_t parse_crc;
uint32_t parse_crc, parse_crc_bits, parse_crc_pos;
struct can2040_msg parse_msg;
// Reporting
uint32_t report_state;
uint32_t report_eof_key;
// Transmits
uint32_t tx_state;