#version 140 #define INTENSITY_CORRECTION 0.6 // normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31) const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); #define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) #define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION) #define LIGHT_TOP_SHININESS 20.0 // normalized values for (1./1.43, 0.2/1.43, 1./1.43) const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); #define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) #define INTENSITY_AMBIENT 0.3 const mat3 KTravel_Colors = mat3(0.505, 0.064, 0.028, 0.219, 0.282, 0.609, 0.112, 0.422, 0.103); uniform mat3 normal_matrix; uniform float emission_factor; uniform vec4 u_base_color; in vec3 frag_normal; in vec3 frag_pos; out vec4 frag_color; void main() { // x = tainted, y = specular; vec2 intensity = vec2(0.0, 0.0); float t_emission_factor = emission_factor; vec3 norm = normal_matrix * normalize(frag_normal); norm = normalize(norm); // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. float NdotL = max(dot(norm, LIGHT_TOP_DIR), 0.0); intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(frag_pos.xyz), reflect(-LIGHT_TOP_DIR, norm)), 0.0), LIGHT_TOP_SHININESS); // Perform the same lighting calculation for the 2nd light source (no specular applied). NdotL = max(dot(norm, LIGHT_FRONT_DIR), 0.0); intensity.x += NdotL * LIGHT_FRONT_DIFFUSE; frag_color = vec4(vec3(intensity.y) + u_base_color.rgb * (intensity.x + t_emission_factor), u_base_color.a); }