update slic3r

This commit is contained in:
QIDI TECH
2025-08-04 16:30:53 +08:00
parent 8d4d60ec48
commit 661b112a68
287 changed files with 22250 additions and 7322 deletions

27
src/earcut/CHANGELOG.md Normal file
View File

@@ -0,0 +1,27 @@
## Earcut.hpp changelog
### master
- Fixed a bunch of rare edge cases that led to bad triangulation (parity with Earcut v2.2.2)
- Removed use of deprecated `std::allocator::construct`
- Fixed a minor z-order hashing bug
- Improved visualization app, better docs
### v0.12.4
- Fixed a crash in Crash in Earcut::findHoleBridge
- Added coverage checks
- Added macOS, MinGW builds
### v0.12.3
- Fixed -Wunused-lambda-capture
### v0.12.2
- Fixed potential division by zero
- Fixed -fsanitize=integer warning
### v0.12.1
- Fixed cast precision warning

151
src/earcut/CMakeLists.txt Normal file
View File

@@ -0,0 +1,151 @@
cmake_minimum_required(VERSION 3.2)
project(earcut_hpp LANGUAGES CXX C)
option(EARCUT_BUILD_TESTS "Build the earcut test program" ON)
option(EARCUT_BUILD_BENCH "Build the earcut benchmark program" ON)
option(EARCUT_BUILD_VIZ "Build the earcut visualizer program" ON)
option(EARCUT_WARNING_IS_ERROR "Treat warnings as errors" OFF)
if (NOT CMAKE_BUILD_TYPE AND NOT GENERATOR_IS_MULTI_CONFIG)
message(STATUS "No build type specified. Setting to 'Release'")
set(CMAKE_BUILD_TYPE "Release" CACHE STRING "The type of build." FORCE)
endif()
include(GNUInstallDirs)
add_library(earcut_hpp INTERFACE)
add_library(earcut_hpp::earcut_hpp ALIAS earcut_hpp)
target_include_directories(earcut_hpp INTERFACE
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>
)
set(CMAKE_CXX_STANDARD 11)
if("${CMAKE_MAJOR_VERSION}.${CMAKE_MINOR_VERSION}" GREATER 3.7)
# Allow C++11 requirements to propagate when using recent CMake versions
target_compile_features(earcut_hpp INTERFACE cxx_std_11)
endif()
file(GLOB FIXTURE_SOURCE_FILES test/fixtures/*.cpp test/fixtures/*.hpp)
source_group(fixtures FILES ${FIXTURE_SOURCE_FILES})
add_library(fixtures OBJECT ${FIXTURE_SOURCE_FILES})
target_compile_options(fixtures PRIVATE $<$<CXX_COMPILER_ID:MSVC>:/Od>)
# In CMake 3.12, use target_link_libraries(fixtures PUBLIC earcut_hpp libtess2).
# Since we support down to CMake 3.2, we need to manually propagate usage requirements of earcut_hpp
target_include_directories(fixtures PRIVATE "$<TARGET_PROPERTY:earcut_hpp,INTERFACE_INCLUDE_DIRECTORIES>")
target_compile_features(fixtures PRIVATE "$<TARGET_PROPERTY:earcut_hpp,INTERFACE_COMPILE_FEATURES>")
file(GLOB COMPARISON_SOURCE_FILES test/comparison/*.cpp test/comparison/*.hpp)
source_group(comparison FILES ${COMPARISON_SOURCE_FILES})
# this is interface since there is no cpp files in the comparison directory
add_library(comparison INTERFACE)
file(GLOB LIBTESS2_SOURCE_FILES test/comparison/libtess2/*.c test/comparison/libtess2/*.h)
source_group(comparison/libtess2 FILES ${LIBTESS2_SOURCE_FILES})
add_library(libtess2 ${LIBTESS2_SOURCE_FILES})
target_compile_options(libtess2 PRIVATE
$<$<CXX_COMPILER_ID:MSVC>:/wd4244 /wd4267>
$<$<NOT:$<CXX_COMPILER_ID:MSVC>>:-w>
)
add_library(common INTERFACE)
target_link_libraries(common INTERFACE libtess2 comparison)
# optional: -march=native (builds with the optimizations available on the build machine (only for local use!))
target_compile_options(common INTERFACE
$<$<NOT:$<CXX_COMPILER_ID:MSVC>>:-pipe -Wall -Wextra -Wconversion -Wpedantic>
)
if ("${CMAKE_CXX_COMPILER_ID}" MATCHES "Clang$" OR CMAKE_COMPILER_IS_GNUCXX)
if ("${CMAKE_CXX_FLAGS}" MATCHES "--coverage")
# We disable debug code for the coverage so it won't see assertion and other things only enabled for debugging
target_compile_definitions(common INTERFACE NDEBUG)
else()
# Here we enable the undefined behavior sanitizer for the tests, benchmarks and the viz
include(CheckCXXCompilerFlag)
check_cxx_compiler_flag("-fsanitize=undefined" HAVE_FLAG_SANITIZE_UNDEFINED)
if(HAVE_FLAG_SANITIZE_UNDEFINED)
target_compile_options(common INTERFACE $<$<CONFIG:Debug>:-fsanitize=undefined>)
# TODO: Replace with target link option once we support CMake 3.13
target_link_libraries(common INTERFACE $<$<CONFIG:Debug>:-fsanitize=undefined>)
endif()
endif()
endif()
if (EARCUT_WARNING_IS_ERROR)
target_compile_options(common INTERFACE
$<$<CXX_COMPILER_ID:MSVC>:/WX>
$<$<NOT:$<CXX_COMPILER_ID:MSVC>>:-Werror>
)
endif()
if (EARCUT_BUILD_TESTS)
enable_testing()
add_executable(tests test/tap.cpp test/tap.hpp test/test.cpp $<TARGET_OBJECTS:fixtures>)
target_link_libraries(tests PRIVATE earcut_hpp common)
add_test(NAME earcut_tests COMMAND tests)
endif()
if (EARCUT_BUILD_BENCH)
add_executable(bench test/bench.cpp $<TARGET_OBJECTS:fixtures>)
target_link_libraries(bench PRIVATE earcut_hpp common)
endif()
if (EARCUT_BUILD_VIZ)
add_executable(viz test/viz.cpp $<TARGET_OBJECTS:fixtures>)
# Setup viz target
# OpenGL
# linux: xorg-dev libgl1-mesa-glx libgl1-mesa-dev
# windows: in the windows sdk
find_package(OpenGL REQUIRED)
# GLFW3
find_package(glfw3 QUIET) # try to use the system default
if (NOT glfw3_FOUND)
if(EXISTS "${PROJECT_SOURCE_DIR}/.gitmodules")
find_package(Git REQUIRED)
execute_process(
COMMAND ${GIT_EXECUTABLE} submodule update --init --recursive
WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}
OUTPUT_QUIET
ERROR_QUIET
)
endif()
set(GLFW_BUILD_EXAMPLES OFF CACHE BOOL "Build the GLFW example programs" FORCE)
set(GLFW_BUILD_TESTS OFF CACHE BOOL "Build the GLFW test programs" FORCE)
set(GLFW_BUILD_DOCS OFF CACHE BOOL "Build the GLFW documentation" FORCE)
set(GLFW_INSTALL OFF CACHE BOOL "Generate installation target" FORCE)
add_subdirectory(glfw)
endif()
target_compile_definitions(viz PRIVATE GL_SILENCE_DEPRECATION)
# TODO: Using old variables for OpenGL package since they were added in CMake 3.8
target_link_libraries(viz PRIVATE earcut_hpp common glfw ${OPENGL_LIBRARIES})
target_include_directories(viz PRIVATE ${OPENGL_INCLUDE_DIR})
endif()
install(
DIRECTORY include/mapbox
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR} FILES_MATCHING PATTERN "*.hpp"
)
install(TARGETS earcut_hpp EXPORT earcut_hpp-config)
# Since there is two projects, we need to export into the parent directory
export(
TARGETS earcut_hpp
NAMESPACE earcut_hpp::
FILE "${PROJECT_BINARY_DIR}/earcut_hpp-config.cmake"
)
install(EXPORT earcut_hpp-config
DESTINATION "${CMAKE_INSTALL_DATADIR}/cmake/earcut_hpp"
NAMESPACE earcut_hpp::
)

15
src/earcut/LICENSE Normal file
View File

@@ -0,0 +1,15 @@
ISC License
Copyright (c) 2015, Mapbox
Permission to use, copy, modify, and/or distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright notice
and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.

131
src/earcut/README.md Normal file
View File

@@ -0,0 +1,131 @@
## Earcut
A C++ port of [earcut.js](https://github.com/mapbox/earcut), a fast, [header-only](https://github.com/mapbox/earcut.hpp/blob/master/include/mapbox/earcut.hpp) polygon triangulation library.
[![Travis](https://img.shields.io/travis/com/mapbox/earcut.hpp.svg)](https://travis-ci.com/github/mapbox/earcut.hpp)
[![AppVeyor](https://ci.appveyor.com/api/projects/status/a1ysrqd69mqn7coo/branch/master?svg=true)](https://ci.appveyor.com/project/Mapbox/earcut-hpp-8wm4o/branch/master)
[![Coverage](https://img.shields.io/coveralls/github/mapbox/earcut.hpp.svg)](https://coveralls.io/github/mapbox/earcut.hpp)
[![Coverity Scan](https://img.shields.io/coverity/scan/14000.svg)](https://scan.coverity.com/projects/14000)
[![Average time to resolve an issue](http://isitmaintained.com/badge/resolution/mapbox/earcut.hpp.svg)](http://isitmaintained.com/project/mapbox/earcut.hpp "Average time to resolve an issue")
[![Percentage of issues still open](http://isitmaintained.com/badge/open/mapbox/earcut.hpp.svg)](http://isitmaintained.com/project/mapbox/earcut.hpp "Percentage of issues still open")
[![Mourner](https://img.shields.io/badge/simply-awesome-brightgreen.svg)](https://github.com/mourner/projects)
The library implements a modified ear slicing algorithm, optimized by [z-order curve](http://en.wikipedia.org/wiki/Z-order_curve) hashing and extended to handle holes, twisted polygons, degeneracies and self-intersections in a way that doesn't _guarantee_ correctness of triangulation, but attempts to always produce acceptable results for practical data like geographical shapes.
It's based on ideas from [FIST: Fast Industrial-Strength Triangulation of Polygons](http://www.cosy.sbg.ac.at/~held/projects/triang/triang.html) by Martin Held and [Triangulation by Ear Clipping](http://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf) by David Eberly.
## Usage
```cpp
#include <earcut.hpp>
```
```cpp
// The number type to use for tessellation
using Coord = double;
// The index type. Defaults to uint32_t, but you can also pass uint16_t if you know that your
// data won't have more than 65536 vertices.
using N = uint32_t;
// Create array
using Point = std::array<Coord, 2>;
std::vector<std::vector<Point>> polygon;
// Fill polygon structure with actual data. Any winding order works.
// The first polyline defines the main polygon.
polygon.push_back({{100, 0}, {100, 100}, {0, 100}, {0, 0}});
// Following polylines define holes.
polygon.push_back({{75, 25}, {75, 75}, {25, 75}, {25, 25}});
// Run tessellation
// Returns array of indices that refer to the vertices of the input polygon.
// e.g: the index 6 would refer to {25, 75} in this example.
// Three subsequent indices form a triangle. Output triangles are clockwise.
std::vector<N> indices = mapbox::earcut<N>(polygon);
```
Earcut can triangulate a simple, planar polygon of any winding order including holes. It will even return a robust, acceptable solution for non-simple poygons. Earcut works on a 2D plane. If you have three or more dimensions, you can project them onto a 2D surface before triangulation, or use a more suitable library for the task (e.g [CGAL](https://doc.cgal.org/latest/Triangulation_3/index.html)).
It is also possible to use your custom point type as input. There are default accessors defined for `std::tuple`, `std::pair`, and `std::array`. For a custom type (like Clipper's `IntPoint` type), do this:
```cpp
// struct IntPoint {
// int64_t X, Y;
// };
namespace mapbox {
namespace util {
template <>
struct nth<0, IntPoint> {
inline static auto get(const IntPoint &t) {
return t.X;
};
};
template <>
struct nth<1, IntPoint> {
inline static auto get(const IntPoint &t) {
return t.Y;
};
};
} // namespace util
} // namespace mapbox
```
You can also use a custom container type for your polygon. Similar to std::vector<T>, it has to meet the requirements of [Container](https://en.cppreference.com/w/cpp/named_req/Container), in particular `size()`, `empty()` and `operator[]`.
<p align="center">
<img src="https://camo.githubusercontent.com/01836f8ba21af844c93d8d3145f4e9976025a696/68747470733a2f2f692e696d6775722e636f6d2f67314e704c54712e706e67" alt="example triangulation"/>
</p>
## Additional build instructions
In case you just want to use the earcut triangulation library; copy and include the header file [`<earcut.hpp>`](https://github.com/mapbox/earcut.hpp/blob/master/include/mapbox/earcut.hpp) in your project and follow the steps documented in the section [Usage](#usage).
If you want to build the test, benchmark and visualization programs instead, follow these instructions:
### Dependencies
Before you continue, make sure to have the following tools and libraries installed:
* git ([Ubuntu](https://help.ubuntu.com/lts/serverguide/git.html)/[Windows/macOS](http://git-scm.com/downloads))
* cmake 3.2+ ([Ubuntu](https://launchpad.net/~george-edison55/+archive/ubuntu/cmake-3.x)/[Windows/macOS](https://cmake.org/download/))
* OpenGL SDK ([Ubuntu](http://packages.ubuntu.com/de/trusty/libgl1-mesa-dev)/[Windows](https://dev.windows.com/en-us/downloads/windows-10-sdk)/[macOS](https://developer.apple.com/opengl/))
* Compiler such as [GCC 4.9+, Clang 3.4+](https://launchpad.net/~ubuntu-toolchain-r/+archive/ubuntu/test), [MSVC12+](https://www.visualstudio.com/)
Note: On some operating systems such as Windows, manual steps are required to add cmake and [git](http://blog.countableset.ch/2012/06/07/adding-git-to-windows-7-path/) to your PATH environment variable.
### Manual compilation
```bash
git clone --recursive https://github.com/mapbox/earcut.hpp.git
cd earcut.hpp
mkdir build
cd build
cmake ..
make
# ./tests
# ./bench
# ./viz
```
### [Visual Studio](https://www.visualstudio.com/), [Eclipse](https://eclipse.org/), [XCode](https://developer.apple.com/xcode/), ...
```batch
git clone --recursive https://github.com/mapbox/earcut.hpp.git
cd earcut.hpp
mkdir project
cd project
cmake .. -G "Visual Studio 14 2015"
::you can also generate projects for "Visual Studio 12 2013", "XCode", "Eclipse CDT4 - Unix Makefiles"
```
After completion, open the generated project with your IDE.
### [CLion](https://www.jetbrains.com/clion/), [Visual Studio 2017+](https://www.visualstudio.com/)
Import the project from https://github.com/mapbox/earcut.hpp.git and you should be good to go!
## Status
This is currently based on [earcut 2.2.4](https://github.com/mapbox/earcut#224-jul-5-2022).

814
src/earcut/earcut.hpp Normal file
View File

@@ -0,0 +1,814 @@
#pragma once
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <memory>
#include <utility>
#include <vector>
namespace mapbox {
namespace util {
template <std::size_t I, typename T> struct nth {
inline static typename std::tuple_element<I, T>::type
get(const T& t) { return std::get<I>(t); };
};
}
namespace detail {
template <typename N = uint32_t>
class Earcut {
public:
std::vector<N> indices;
std::size_t vertices = 0;
template <typename Polygon>
void operator()(const Polygon& points);
private:
struct Node {
Node(N index, double x_, double y_) : i(index), x(x_), y(y_) {}
Node(const Node&) = delete;
Node& operator=(const Node&) = delete;
Node(Node&&) = delete;
Node& operator=(Node&&) = delete;
const N i;
const double x;
const double y;
// previous and next vertice nodes in a polygon ring
Node* prev = nullptr;
Node* next = nullptr;
// z-order curve value
int32_t z = 0;
// previous and next nodes in z-order
Node* prevZ = nullptr;
Node* nextZ = nullptr;
// indicates whether this is a steiner point
bool steiner = false;
};
template <typename Ring> Node* linkedList(const Ring& points, const bool clockwise);
Node* filterPoints(Node* start, Node* end = nullptr);
void earcutLinked(Node* ear, int pass = 0);
bool isEar(Node* ear);
bool isEarHashed(Node* ear);
Node* cureLocalIntersections(Node* start);
void splitEarcut(Node* start);
template <typename Polygon> Node* eliminateHoles(const Polygon& points, Node* outerNode);
Node* eliminateHole(Node* hole, Node* outerNode);
Node* findHoleBridge(Node* hole, Node* outerNode);
bool sectorContainsSector(const Node* m, const Node* p);
void indexCurve(Node* start);
Node* sortLinked(Node* list);
int32_t zOrder(const double x_, const double y_);
Node* getLeftmost(Node* start);
bool pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const;
bool isValidDiagonal(Node* a, Node* b);
double area(const Node* p, const Node* q, const Node* r) const;
bool equals(const Node* p1, const Node* p2);
bool intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2);
bool onSegment(const Node* p, const Node* q, const Node* r);
int sign(double val);
bool intersectsPolygon(const Node* a, const Node* b);
bool locallyInside(const Node* a, const Node* b);
bool middleInside(const Node* a, const Node* b);
Node* splitPolygon(Node* a, Node* b);
template <typename Point> Node* insertNode(std::size_t i, const Point& p, Node* last);
void removeNode(Node* p);
bool hashing;
double minX, maxX;
double minY, maxY;
double inv_size = 0;
template <typename T, typename Alloc = std::allocator<T>>
class ObjectPool {
public:
ObjectPool() { }
ObjectPool(std::size_t blockSize_) {
reset(blockSize_);
}
~ObjectPool() {
clear();
}
template <typename... Args>
T* construct(Args&&... args) {
if (currentIndex >= blockSize) {
currentBlock = alloc_traits::allocate(alloc, blockSize);
allocations.emplace_back(currentBlock);
currentIndex = 0;
}
T* object = &currentBlock[currentIndex++];
alloc_traits::construct(alloc, object, std::forward<Args>(args)...);
return object;
}
void reset(std::size_t newBlockSize) {
for (auto allocation : allocations) {
alloc_traits::deallocate(alloc, allocation, blockSize);
}
allocations.clear();
blockSize = std::max<std::size_t>(1, newBlockSize);
currentBlock = nullptr;
currentIndex = blockSize;
}
void clear() { reset(blockSize); }
private:
T* currentBlock = nullptr;
std::size_t currentIndex = 1;
std::size_t blockSize = 1;
std::vector<T*> allocations;
Alloc alloc;
typedef typename std::allocator_traits<Alloc> alloc_traits;
};
ObjectPool<Node> nodes;
};
template <typename N> template <typename Polygon>
void Earcut<N>::operator()(const Polygon& points) {
// reset
indices.clear();
vertices = 0;
if (points.empty()) return;
double x;
double y;
int threshold = 80;
std::size_t len = 0;
for (size_t i = 0; threshold >= 0 && i < points.size(); i++) {
threshold -= static_cast<int>(points[i].size());
len += points[i].size();
}
//estimate size of nodes and indices
nodes.reset(len * 3 / 2);
indices.reserve(len + points[0].size());
Node* outerNode = linkedList(points[0], true);
if (!outerNode || outerNode->prev == outerNode->next) return;
if (points.size() > 1) outerNode = eliminateHoles(points, outerNode);
// if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
hashing = threshold < 0;
if (hashing) {
Node* p = outerNode->next;
minX = maxX = outerNode->x;
minY = maxY = outerNode->y;
do {
x = p->x;
y = p->y;
minX = std::min<double>(minX, x);
minY = std::min<double>(minY, y);
maxX = std::max<double>(maxX, x);
maxY = std::max<double>(maxY, y);
p = p->next;
} while (p != outerNode);
// minX, minY and inv_size are later used to transform coords into integers for z-order calculation
inv_size = std::max<double>(maxX - minX, maxY - minY);
inv_size = inv_size != .0 ? (32767. / inv_size) : .0;
}
earcutLinked(outerNode);
nodes.clear();
}
// create a circular doubly linked list from polygon points in the specified winding order
template <typename N> template <typename Ring>
typename Earcut<N>::Node*
Earcut<N>::linkedList(const Ring& points, const bool clockwise) {
using Point = typename Ring::value_type;
double sum = 0;
const std::size_t len = points.size();
std::size_t i, j;
Node* last = nullptr;
// calculate original winding order of a polygon ring
for (i = 0, j = len > 0 ? len - 1 : 0; i < len; j = i++) {
const auto& p1 = points[i];
const auto& p2 = points[j];
const double p20 = util::nth<0, Point>::get(p2);
const double p10 = util::nth<0, Point>::get(p1);
const double p11 = util::nth<1, Point>::get(p1);
const double p21 = util::nth<1, Point>::get(p2);
sum += (p20 - p10) * (p11 + p21);
}
// link points into circular doubly-linked list in the specified winding order
if (clockwise == (sum > 0)) {
for (i = 0; i < len; i++) last = insertNode(vertices + i, points[i], last);
} else {
for (i = len; i-- > 0;) last = insertNode(vertices + i, points[i], last);
}
if (last && equals(last, last->next)) {
removeNode(last);
last = last->next;
}
vertices += len;
return last;
}
// eliminate colinear or duplicate points
template <typename N>
typename Earcut<N>::Node*
Earcut<N>::filterPoints(Node* start, Node* end) {
if (!end) end = start;
Node* p = start;
bool again;
do {
again = false;
if (!p->steiner && (equals(p, p->next) || area(p->prev, p, p->next) == 0)) {
removeNode(p);
p = end = p->prev;
if (p == p->next) break;
again = true;
} else {
p = p->next;
}
} while (again || p != end);
return end;
}
// main ear slicing loop which triangulates a polygon (given as a linked list)
template <typename N>
void Earcut<N>::earcutLinked(Node* ear, int pass) {
if (!ear) return;
// interlink polygon nodes in z-order
if (!pass && hashing) indexCurve(ear);
Node* stop = ear;
Node* prev;
Node* next;
// iterate through ears, slicing them one by one
while (ear->prev != ear->next) {
prev = ear->prev;
next = ear->next;
if (hashing ? isEarHashed(ear) : isEar(ear)) {
// cut off the triangle
indices.emplace_back(prev->i);
indices.emplace_back(ear->i);
indices.emplace_back(next->i);
removeNode(ear);
// skipping the next vertice leads to less sliver triangles
ear = next->next;
stop = next->next;
continue;
}
ear = next;
// if we looped through the whole remaining polygon and can't find any more ears
if (ear == stop) {
// try filtering points and slicing again
if (!pass) earcutLinked(filterPoints(ear), 1);
// if this didn't work, try curing all small self-intersections locally
else if (pass == 1) {
ear = cureLocalIntersections(filterPoints(ear));
earcutLinked(ear, 2);
// as a last resort, try splitting the remaining polygon into two
} else if (pass == 2) splitEarcut(ear);
break;
}
}
}
// check whether a polygon node forms a valid ear with adjacent nodes
template <typename N>
bool Earcut<N>::isEar(Node* ear) {
const Node* a = ear->prev;
const Node* b = ear;
const Node* c = ear->next;
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
// now make sure we don't have other points inside the potential ear
Node* p = ear->next->next;
while (p != ear->prev) {
if (pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
area(p->prev, p, p->next) >= 0) return false;
p = p->next;
}
return true;
}
template <typename N>
bool Earcut<N>::isEarHashed(Node* ear) {
const Node* a = ear->prev;
const Node* b = ear;
const Node* c = ear->next;
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
// triangle bbox; min & max are calculated like this for speed
const double minTX = std::min<double>(a->x, std::min<double>(b->x, c->x));
const double minTY = std::min<double>(a->y, std::min<double>(b->y, c->y));
const double maxTX = std::max<double>(a->x, std::max<double>(b->x, c->x));
const double maxTY = std::max<double>(a->y, std::max<double>(b->y, c->y));
// z-order range for the current triangle bbox;
const int32_t minZ = zOrder(minTX, minTY);
const int32_t maxZ = zOrder(maxTX, maxTY);
// first look for points inside the triangle in increasing z-order
Node* p = ear->nextZ;
while (p && p->z <= maxZ) {
if (p != ear->prev && p != ear->next &&
pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
area(p->prev, p, p->next) >= 0) return false;
p = p->nextZ;
}
// then look for points in decreasing z-order
p = ear->prevZ;
while (p && p->z >= minZ) {
if (p != ear->prev && p != ear->next &&
pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
area(p->prev, p, p->next) >= 0) return false;
p = p->prevZ;
}
return true;
}
// go through all polygon nodes and cure small local self-intersections
template <typename N>
typename Earcut<N>::Node*
Earcut<N>::cureLocalIntersections(Node* start) {
Node* p = start;
do {
Node* a = p->prev;
Node* b = p->next->next;
// a self-intersection where edge (v[i-1],v[i]) intersects (v[i+1],v[i+2])
if (!equals(a, b) && intersects(a, p, p->next, b) && locallyInside(a, b) && locallyInside(b, a)) {
indices.emplace_back(a->i);
indices.emplace_back(p->i);
indices.emplace_back(b->i);
// remove two nodes involved
removeNode(p);
removeNode(p->next);
p = start = b;
}
p = p->next;
} while (p != start);
return filterPoints(p);
}
// try splitting polygon into two and triangulate them independently
template <typename N>
void Earcut<N>::splitEarcut(Node* start) {
// look for a valid diagonal that divides the polygon into two
Node* a = start;
do {
Node* b = a->next->next;
while (b != a->prev) {
if (a->i != b->i && isValidDiagonal(a, b)) {
// split the polygon in two by the diagonal
Node* c = splitPolygon(a, b);
// filter colinear points around the cuts
a = filterPoints(a, a->next);
c = filterPoints(c, c->next);
// run earcut on each half
earcutLinked(a);
earcutLinked(c);
return;
}
b = b->next;
}
a = a->next;
} while (a != start);
}
// link every hole into the outer loop, producing a single-ring polygon without holes
template <typename N> template <typename Polygon>
typename Earcut<N>::Node*
Earcut<N>::eliminateHoles(const Polygon& points, Node* outerNode) {
const size_t len = points.size();
std::vector<Node*> queue;
for (size_t i = 1; i < len; i++) {
Node* list = linkedList(points[i], false);
if (list) {
if (list == list->next) list->steiner = true;
queue.push_back(getLeftmost(list));
}
}
std::sort(queue.begin(), queue.end(), [](const Node* a, const Node* b) {
return a->x < b->x;
});
// process holes from left to right
for (size_t i = 0; i < queue.size(); i++) {
outerNode = eliminateHole(queue[i], outerNode);
}
return outerNode;
}
// find a bridge between vertices that connects hole with an outer ring and and link it
template <typename N>
typename Earcut<N>::Node*
Earcut<N>::eliminateHole(Node* hole, Node* outerNode) {
Node* bridge = findHoleBridge(hole, outerNode);
if (!bridge) {
return outerNode;
}
Node* bridgeReverse = splitPolygon(bridge, hole);
// filter collinear points around the cuts
filterPoints(bridgeReverse, bridgeReverse->next);
// Check if input node was removed by the filtering
return filterPoints(bridge, bridge->next);
}
// David Eberly's algorithm for finding a bridge between hole and outer polygon
template <typename N>
typename Earcut<N>::Node*
Earcut<N>::findHoleBridge(Node* hole, Node* outerNode) {
Node* p = outerNode;
double hx = hole->x;
double hy = hole->y;
double qx = -std::numeric_limits<double>::infinity();
Node* m = nullptr;
// find a segment intersected by a ray from the hole's leftmost Vertex to the left;
// segment's endpoint with lesser x will be potential connection Vertex
do {
if (hy <= p->y && hy >= p->next->y && p->next->y != p->y) {
double x = p->x + (hy - p->y) * (p->next->x - p->x) / (p->next->y - p->y);
if (x <= hx && x > qx) {
qx = x;
m = p->x < p->next->x ? p : p->next;
if (x == hx) return m; // hole touches outer segment; pick leftmost endpoint
}
}
p = p->next;
} while (p != outerNode);
if (!m) return 0;
// look for points inside the triangle of hole Vertex, segment intersection and endpoint;
// if there are no points found, we have a valid connection;
// otherwise choose the Vertex of the minimum angle with the ray as connection Vertex
const Node* stop = m;
double tanMin = std::numeric_limits<double>::infinity();
double tanCur = 0;
p = m;
double mx = m->x;
double my = m->y;
do {
if (hx >= p->x && p->x >= mx && hx != p->x &&
pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p->x, p->y)) {
tanCur = std::abs(hy - p->y) / (hx - p->x); // tangential
if (locallyInside(p, hole) &&
(tanCur < tanMin || (tanCur == tanMin && (p->x > m->x || sectorContainsSector(m, p))))) {
m = p;
tanMin = tanCur;
}
}
p = p->next;
} while (p != stop);
return m;
}
// whether sector in vertex m contains sector in vertex p in the same coordinates
template <typename N>
bool Earcut<N>::sectorContainsSector(const Node* m, const Node* p) {
return area(m->prev, m, p->prev) < 0 && area(p->next, m, m->next) < 0;
}
// interlink polygon nodes in z-order
template <typename N>
void Earcut<N>::indexCurve(Node* start) {
assert(start);
Node* p = start;
do {
p->z = p->z ? p->z : zOrder(p->x, p->y);
p->prevZ = p->prev;
p->nextZ = p->next;
p = p->next;
} while (p != start);
p->prevZ->nextZ = nullptr;
p->prevZ = nullptr;
sortLinked(p);
}
// Simon Tatham's linked list merge sort algorithm
// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
template <typename N>
typename Earcut<N>::Node*
Earcut<N>::sortLinked(Node* list) {
assert(list);
Node* p;
Node* q;
Node* e;
Node* tail;
int i, numMerges, pSize, qSize;
int inSize = 1;
for (;;) {
p = list;
list = nullptr;
tail = nullptr;
numMerges = 0;
while (p) {
numMerges++;
q = p;
pSize = 0;
for (i = 0; i < inSize; i++) {
pSize++;
q = q->nextZ;
if (!q) break;
}
qSize = inSize;
while (pSize > 0 || (qSize > 0 && q)) {
if (pSize == 0) {
e = q;
q = q->nextZ;
qSize--;
} else if (qSize == 0 || !q) {
e = p;
p = p->nextZ;
pSize--;
} else if (p->z <= q->z) {
e = p;
p = p->nextZ;
pSize--;
} else {
e = q;
q = q->nextZ;
qSize--;
}
if (tail) tail->nextZ = e;
else list = e;
e->prevZ = tail;
tail = e;
}
p = q;
}
tail->nextZ = nullptr;
if (numMerges <= 1) return list;
inSize *= 2;
}
}
// z-order of a Vertex given coords and size of the data bounding box
template <typename N>
int32_t Earcut<N>::zOrder(const double x_, const double y_) {
// coords are transformed into non-negative 15-bit integer range
int32_t x = static_cast<int32_t>((x_ - minX) * inv_size);
int32_t y = static_cast<int32_t>((y_ - minY) * inv_size);
x = (x | (x << 8)) & 0x00FF00FF;
x = (x | (x << 4)) & 0x0F0F0F0F;
x = (x | (x << 2)) & 0x33333333;
x = (x | (x << 1)) & 0x55555555;
y = (y | (y << 8)) & 0x00FF00FF;
y = (y | (y << 4)) & 0x0F0F0F0F;
y = (y | (y << 2)) & 0x33333333;
y = (y | (y << 1)) & 0x55555555;
return x | (y << 1);
}
// find the leftmost node of a polygon ring
template <typename N>
typename Earcut<N>::Node*
Earcut<N>::getLeftmost(Node* start) {
Node* p = start;
Node* leftmost = start;
do {
if (p->x < leftmost->x || (p->x == leftmost->x && p->y < leftmost->y))
leftmost = p;
p = p->next;
} while (p != start);
return leftmost;
}
// check if a point lies within a convex triangle
template <typename N>
bool Earcut<N>::pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const {
return (cx - px) * (ay - py) >= (ax - px) * (cy - py) &&
(ax - px) * (by - py) >= (bx - px) * (ay - py) &&
(bx - px) * (cy - py) >= (cx - px) * (by - py);
}
// check if a diagonal between two polygon nodes is valid (lies in polygon interior)
template <typename N>
bool Earcut<N>::isValidDiagonal(Node* a, Node* b) {
return a->next->i != b->i && a->prev->i != b->i && !intersectsPolygon(a, b) && // dones't intersect other edges
((locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && // locally visible
(area(a->prev, a, b->prev) != 0.0 || area(a, b->prev, b) != 0.0)) || // does not create opposite-facing sectors
(equals(a, b) && area(a->prev, a, a->next) > 0 && area(b->prev, b, b->next) > 0)); // special zero-length case
}
// signed area of a triangle
template <typename N>
double Earcut<N>::area(const Node* p, const Node* q, const Node* r) const {
return (q->y - p->y) * (r->x - q->x) - (q->x - p->x) * (r->y - q->y);
}
// check if two points are equal
template <typename N>
bool Earcut<N>::equals(const Node* p1, const Node* p2) {
return p1->x == p2->x && p1->y == p2->y;
}
// check if two segments intersect
template <typename N>
bool Earcut<N>::intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2) {
int o1 = sign(area(p1, q1, p2));
int o2 = sign(area(p1, q1, q2));
int o3 = sign(area(p2, q2, p1));
int o4 = sign(area(p2, q2, q1));
if (o1 != o2 && o3 != o4) return true; // general case
if (o1 == 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
if (o2 == 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
if (o3 == 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
if (o4 == 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2
return false;
}
// for collinear points p, q, r, check if point q lies on segment pr
template <typename N>
bool Earcut<N>::onSegment(const Node* p, const Node* q, const Node* r) {
return q->x <= std::max<double>(p->x, r->x) &&
q->x >= std::min<double>(p->x, r->x) &&
q->y <= std::max<double>(p->y, r->y) &&
q->y >= std::min<double>(p->y, r->y);
}
template <typename N>
int Earcut<N>::sign(double val) {
return (0.0 < val) - (val < 0.0);
}
// check if a polygon diagonal intersects any polygon segments
template <typename N>
bool Earcut<N>::intersectsPolygon(const Node* a, const Node* b) {
const Node* p = a;
do {
if (p->i != a->i && p->next->i != a->i && p->i != b->i && p->next->i != b->i &&
intersects(p, p->next, a, b)) return true;
p = p->next;
} while (p != a);
return false;
}
// check if a polygon diagonal is locally inside the polygon
template <typename N>
bool Earcut<N>::locallyInside(const Node* a, const Node* b) {
return area(a->prev, a, a->next) < 0 ?
area(a, b, a->next) >= 0 && area(a, a->prev, b) >= 0 :
area(a, b, a->prev) < 0 || area(a, a->next, b) < 0;
}
// check if the middle Vertex of a polygon diagonal is inside the polygon
template <typename N>
bool Earcut<N>::middleInside(const Node* a, const Node* b) {
const Node* p = a;
bool inside = false;
double px = (a->x + b->x) / 2;
double py = (a->y + b->y) / 2;
do {
if (((p->y > py) != (p->next->y > py)) && p->next->y != p->y &&
(px < (p->next->x - p->x) * (py - p->y) / (p->next->y - p->y) + p->x))
inside = !inside;
p = p->next;
} while (p != a);
return inside;
}
// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits
// polygon into two; if one belongs to the outer ring and another to a hole, it merges it into a
// single ring
template <typename N>
typename Earcut<N>::Node*
Earcut<N>::splitPolygon(Node* a, Node* b) {
Node* a2 = nodes.construct(a->i, a->x, a->y);
Node* b2 = nodes.construct(b->i, b->x, b->y);
Node* an = a->next;
Node* bp = b->prev;
a->next = b;
b->prev = a;
a2->next = an;
an->prev = a2;
b2->next = a2;
a2->prev = b2;
bp->next = b2;
b2->prev = bp;
return b2;
}
// create a node and util::optionally link it with previous one (in a circular doubly linked list)
template <typename N> template <typename Point>
typename Earcut<N>::Node*
Earcut<N>::insertNode(std::size_t i, const Point& pt, Node* last) {
Node* p = nodes.construct(static_cast<N>(i), util::nth<0, Point>::get(pt), util::nth<1, Point>::get(pt));
if (!last) {
p->prev = p;
p->next = p;
} else {
assert(last);
p->next = last->next;
p->prev = last;
last->next->prev = p;
last->next = p;
}
return p;
}
template <typename N>
void Earcut<N>::removeNode(Node* p) {
p->next->prev = p->prev;
p->prev->next = p->next;
if (p->prevZ) p->prevZ->nextZ = p->nextZ;
if (p->nextZ) p->nextZ->prevZ = p->prevZ;
}
}
template <typename N = uint32_t, typename Polygon>
std::vector<N> earcut(const Polygon& poly) {
mapbox::detail::Earcut<N> earcut;
earcut(poly);
return std::move(earcut.indices);
}
}