Files
QIDISlicer/src/libslic3r/GCode/ExtrusionProcessor.cpp
2023-12-27 18:02:35 +08:00

216 lines
12 KiB
C++

#include "ExtrusionProcessor.hpp"
#include <string>
namespace Slic3r { namespace ExtrusionProcessor {
ExtrusionPaths calculate_and_split_overhanging_extrusions(const ExtrusionPath &path,
const AABBTreeLines::LinesDistancer<Linef> &unscaled_prev_layer,
const AABBTreeLines::LinesDistancer<CurledLine> &prev_layer_curled_lines)
{
std::vector<ExtendedPoint> extended_points = estimate_points_properties<true, true, true, true>(path.polyline.points,
unscaled_prev_layer, path.width());
std::vector<std::pair<float, float>> calculated_distances(extended_points.size());
for (size_t i = 0; i < extended_points.size(); i++) {
const ExtendedPoint &curr = extended_points[i];
const ExtendedPoint &next = extended_points[i + 1 < extended_points.size() ? i + 1 : i];
// The following code artifically increases the distance to provide slowdown for extrusions that are over curled lines
float proximity_to_curled_lines = 0.0;
const double dist_limit = 10.0 * path.width();
{
Vec2d middle = 0.5 * (curr.position + next.position);
auto line_indices = prev_layer_curled_lines.all_lines_in_radius(Point::new_scale(middle), scale_(dist_limit));
if (!line_indices.empty()) {
double len = (next.position - curr.position).norm();
// For long lines, there is a problem with the additional slowdown. If by accident, there is small curled line near the middle
// of this long line
// The whole segment gets slower unnecesarily. For these long lines, we do additional check whether it is worth slowing down.
// NOTE that this is still quite rough approximation, e.g. we are still checking lines only near the middle point
// TODO maybe split the lines into smaller segments before running this alg? but can be demanding, and GCode will be huge
if (len > 8) {
Vec2d dir = Vec2d(next.position - curr.position) / len;
Vec2d right = Vec2d(-dir.y(), dir.x());
Polygon box_of_influence = {
scaled(Vec2d(curr.position + right * dist_limit)),
scaled(Vec2d(next.position + right * dist_limit)),
scaled(Vec2d(next.position - right * dist_limit)),
scaled(Vec2d(curr.position - right * dist_limit)),
};
double projected_lengths_sum = 0;
for (size_t idx : line_indices) {
const CurledLine &line = prev_layer_curled_lines.get_line(idx);
Lines inside = intersection_ln({{line.a, line.b}}, {box_of_influence});
if (inside.empty())
continue;
double projected_length = abs(dir.dot(unscaled(Vec2d((inside.back().b - inside.back().a).cast<double>()))));
projected_lengths_sum += projected_length;
}
if (projected_lengths_sum < 0.4 * len) {
line_indices.clear();
}
}
for (size_t idx : line_indices) {
const CurledLine &line = prev_layer_curled_lines.get_line(idx);
float distance_from_curled = unscaled(line_alg::distance_to(line, Point::new_scale(middle)));
float proximity = (1.0 - (distance_from_curled / dist_limit)) * (1.0 - (distance_from_curled / dist_limit)) *
(line.curled_height / (path.height() * 10.0f)); // max_curled_height_factor from SupportSpotGenerator
proximity_to_curled_lines = std::max(proximity_to_curled_lines, proximity);
}
}
}
calculated_distances[i].first = std::max(curr.distance, next.distance);
calculated_distances[i].second = proximity_to_curled_lines;
}
ExtrusionPaths result;
ExtrusionAttributes new_attrs = path.attributes();
new_attrs.overhang_attributes = std::optional<OverhangAttributes>(
{calculated_distances[0].first, calculated_distances[0].first, calculated_distances[0].second});
result.emplace_back(new_attrs);
result.back().polyline.append(Point::new_scale(extended_points[0].position));
size_t sequence_start_index = 0;
for (size_t i = 1; i < extended_points.size(); i++) {
result.back().polyline.append(Point::new_scale(extended_points[i].position));
result.back().overhang_attributes_mutable()->end_distance_from_prev_layer = extended_points[i].distance;
if (std::abs(calculated_distances[sequence_start_index].first - calculated_distances[i].first) < 0.001 * path.attributes().width &&
std::abs(calculated_distances[sequence_start_index].second - calculated_distances[i].second) < 0.001) {
// do not start new path, the attributes are similar enough
// NOTE: a larger tolerance may be applied here. However, it makes the gcode preview much less smooth
// (But it has very likely zero impact on the print quality.)
} else if (i + 1 < extended_points.size()) { // do not start new path if this is last point!
// start new path, parameters differ
new_attrs.overhang_attributes->start_distance_from_prev_layer = calculated_distances[i].first;
new_attrs.overhang_attributes->end_distance_from_prev_layer = calculated_distances[i].first;
new_attrs.overhang_attributes->proximity_to_curled_lines = calculated_distances[i].second;
sequence_start_index = i;
result.emplace_back(new_attrs);
result.back().polyline.append(Point::new_scale(extended_points[i].position));
}
}
return result;
};
ExtrusionEntityCollection calculate_and_split_overhanging_extrusions(const ExtrusionEntityCollection *ecc,
const AABBTreeLines::LinesDistancer<Linef> &unscaled_prev_layer,
const AABBTreeLines::LinesDistancer<CurledLine> &prev_layer_curled_lines)
{
ExtrusionEntityCollection result{};
result.no_sort = ecc->no_sort;
for (const auto *e : ecc->entities) {
if (auto *col = dynamic_cast<const ExtrusionEntityCollection *>(e)) {
result.append(calculate_and_split_overhanging_extrusions(col, unscaled_prev_layer, prev_layer_curled_lines));
} else if (auto *loop = dynamic_cast<const ExtrusionLoop *>(e)) {
ExtrusionLoop new_loop = *loop;
new_loop.paths.clear();
for (const ExtrusionPath &p : loop->paths) {
auto paths = calculate_and_split_overhanging_extrusions(p, unscaled_prev_layer, prev_layer_curled_lines);
new_loop.paths.insert(new_loop.paths.end(), paths.begin(), paths.end());
}
result.append(new_loop);
} else if (auto *mp = dynamic_cast<const ExtrusionMultiPath *>(e)) {
ExtrusionMultiPath new_mp = *mp;
new_mp.paths.clear();
for (const ExtrusionPath &p : mp->paths) {
auto paths = calculate_and_split_overhanging_extrusions(p, unscaled_prev_layer, prev_layer_curled_lines);
new_mp.paths.insert(new_mp.paths.end(), paths.begin(), paths.end());
}
result.append(new_mp);
} else if (auto *op = dynamic_cast<const ExtrusionPathOriented *>(e)) {
auto paths = calculate_and_split_overhanging_extrusions(*op, unscaled_prev_layer, prev_layer_curled_lines);
for (const ExtrusionPath &p : paths) {
result.append(ExtrusionPathOriented(p.polyline, p.attributes()));
}
} else if (auto *p = dynamic_cast<const ExtrusionPath *>(e)) {
auto paths = calculate_and_split_overhanging_extrusions(*p, unscaled_prev_layer, prev_layer_curled_lines);
result.append(paths);
} else {
throw Slic3r::InvalidArgument("Unknown extrusion entity type");
}
}
return result;
};
std::pair<float,float> calculate_overhang_speed(const ExtrusionAttributes &attributes,
const FullPrintConfig &config,
size_t extruder_id,
float external_perim_reference_speed,
float default_speed)
{
assert(attributes.overhang_attributes.has_value());
std::vector<std::pair<int, ConfigOptionFloatOrPercent>> overhangs_with_speeds = {
{100, ConfigOptionFloatOrPercent{default_speed, false}}};
if (config.enable_dynamic_overhang_speeds) {
overhangs_with_speeds = {{0, config.overhang_speed_0},
{25, config.overhang_speed_1},
{50, config.overhang_speed_2},
{75, config.overhang_speed_3},
{100, ConfigOptionFloatOrPercent{default_speed, false}}};
}
std::vector<std::pair<int, ConfigOptionInts>> overhang_with_fan_speeds = {{100, ConfigOptionInts{0}}};
if (config.enable_dynamic_fan_speeds.get_at(extruder_id)) {
overhang_with_fan_speeds = {{0, config.overhang_fan_speed_0},
{25, config.overhang_fan_speed_1},
{50, config.overhang_fan_speed_2},
{75, config.overhang_fan_speed_3},
{100, ConfigOptionInts{0}}};
}
float speed_base = external_perim_reference_speed > 0 ? external_perim_reference_speed : default_speed;
std::map<float, float> speed_sections;
for (size_t i = 0; i < overhangs_with_speeds.size(); i++) {
float distance = attributes.width * (1.0 - (overhangs_with_speeds[i].first / 100.0));
float speed = overhangs_with_speeds[i].second.percent ? (speed_base * overhangs_with_speeds[i].second.value / 100.0) :
overhangs_with_speeds[i].second.value;
if (speed < EPSILON)
speed = speed_base;
speed_sections[distance] = speed;
}
std::map<float, float> fan_speed_sections;
for (size_t i = 0; i < overhang_with_fan_speeds.size(); i++) {
float distance = attributes.width * (1.0 - (overhang_with_fan_speeds[i].first / 100.0));
float fan_speed = overhang_with_fan_speeds[i].second.get_at(extruder_id);
fan_speed_sections[distance] = fan_speed;
}
auto interpolate_speed = [](const std::map<float, float> &values, float distance) {
auto upper_dist = values.lower_bound(distance);
if (upper_dist == values.end()) {
return values.rbegin()->second;
}
if (upper_dist == values.begin()) {
return upper_dist->second;
}
auto lower_dist = std::prev(upper_dist);
float t = (distance - lower_dist->first) / (upper_dist->first - lower_dist->first);
return (1.0f - t) * lower_dist->second + t * upper_dist->second;
};
float extrusion_speed = std::min(interpolate_speed(speed_sections, attributes.overhang_attributes->start_distance_from_prev_layer),
interpolate_speed(speed_sections, attributes.overhang_attributes->end_distance_from_prev_layer));
float curled_base_speed = interpolate_speed(speed_sections,
attributes.width * attributes.overhang_attributes->proximity_to_curled_lines);
float final_speed = std::min(curled_base_speed, extrusion_speed);
float fan_speed = std::min(interpolate_speed(fan_speed_sections, attributes.overhang_attributes->start_distance_from_prev_layer),
interpolate_speed(fan_speed_sections, attributes.overhang_attributes->end_distance_from_prev_layer));
if (!config.enable_dynamic_overhang_speeds) {
final_speed = -1;
}
if (!config.enable_dynamic_fan_speeds.get_at(extruder_id)) {
fan_speed = -1;
}
return {final_speed, fan_speed};
}
}} // namespace Slic3r::ExtrusionProcessor