#ifndef slic3r_FillConcentricInternal_hpp_ #define slic3r_FillConcentricInternal_hpp_ #include "FillBase.hpp" namespace Slic3r { class FillConcentricInternal : public Fill { public: ~FillConcentricInternal() override = default; void fill_surface_extrusion(const Surface * surface, const FillParams ¶ms, Polylines & polylines, ThickPolylines & thick_polylines) override; void variable_width(const ThickPolylines &polylines, ExtrusionRole role, const Flow &flow, std::vector &out) { const float tolerance = float(scale_(0.05)); for (const ThickPolyline &p : polylines) { ExtrusionPaths paths = thick_polyline_to_extrusion_paths_2(p, role, flow, tolerance); // Append paths to collection. if (!paths.empty()) { if (paths.front().first_point() == paths.back().last_point()) out.emplace_back(new ExtrusionLoop(std::move(paths))); else { for (ExtrusionPath &path : paths) out.emplace_back(new ExtrusionPath(std::move(path))); } } } } ExtrusionPaths thick_polyline_to_extrusion_paths_2(const ThickPolyline &thick_polyline, ExtrusionRole role, const Flow & flow, const float tolerance) { ExtrusionPaths paths; ExtrusionPath path(role); ThickLines lines = thick_polyline.thicklines(); size_t start_index = 0; double max_width, min_width; for (int i = 0; i < (int) lines.size(); ++i) { const ThickLine &line = lines[i]; if (i == 0) { max_width = line.a_width; min_width = line.a_width; } const coordf_t line_len = line.length(); if (line_len < SCALED_EPSILON) continue; double thickness_delta = std::max(fabs(max_width - line.b_width), fabs(min_width - line.b_width)); if (thickness_delta > tolerance) { if (start_index != i) { path = ExtrusionPath(role); double length = lines[start_index].length(); double sum = lines[start_index].length() * 0.5 * (lines[start_index].a_width + lines[start_index].b_width); path.polyline.append(lines[start_index].a); for (int idx = start_index + 1; idx < i; idx++) { length += lines[idx].length(); sum += lines[idx].length() * 0.5 * (lines[idx].a_width + lines[idx].b_width); path.polyline.append(lines[idx].a); } path.polyline.append(lines[i].a); if (length > SCALED_EPSILON) { double w = sum / length; Flow new_flow = flow.with_width(unscale(w) + flow.height() * float(1. - 0.25 * PI)); // path.mm3_per_mm = new_flow.mm3_per_mm(); path.set_mm3_per_mm(new_flow.mm3_per_mm()); // path.width = new_flow.width(); path.set_width(new_flow.width()); // path.height = new_flow.height(); path.set_height(new_flow.height()); paths.emplace_back(std::move(path)); } } start_index = i; max_width = line.a_width; min_width = line.a_width; thickness_delta = fabs(line.a_width - line.b_width); if (thickness_delta > tolerance) { const unsigned int segments = (unsigned int) ceil(thickness_delta / tolerance); const coordf_t seg_len = line_len / segments; Points pp; std::vector width; { pp.push_back(line.a); width.push_back(line.a_width); for (size_t j = 1; j < segments; ++j) { pp.push_back( (line.a.cast() + (line.b - line.a).cast().normalized() * (j * seg_len)).cast()); coordf_t w = line.a_width + (j * seg_len) * (line.b_width - line.a_width) / line_len; width.push_back(w); width.push_back(w); } pp.push_back(line.b); width.push_back(line.b_width); assert(pp.size() == segments + 1u); assert(width.size() == segments * 2); } lines.erase(lines.begin() + i); for (size_t j = 0; j < segments; ++j) { ThickLine new_line(pp[j], pp[j + 1]); new_line.a_width = width[2 * j]; new_line.b_width = width[2 * j + 1]; lines.insert(lines.begin() + i + j, new_line); } --i; continue; } } else { max_width = std::max(max_width, std::max(line.a_width, line.b_width)); min_width = std::min(min_width, std::min(line.a_width, line.b_width)); } } size_t final_size = lines.size(); if (start_index < final_size) { path = ExtrusionPath(role); double length = lines[start_index].length(); double sum = lines[start_index].length() * lines[start_index].a_width; path.polyline.append(lines[start_index].a); for (int idx = start_index + 1; idx < final_size; idx++) { length += lines[idx].length(); sum += lines[idx].length() * lines[idx].a_width; path.polyline.append(lines[idx].a); } path.polyline.append(lines[final_size - 1].b); if (length > SCALED_EPSILON) { double w = sum / length; Flow new_flow = flow.with_width(unscale(w) + flow.height() * float(1. - 0.25 * PI)); // path.mm3_per_mm = new_flow.mm3_per_mm(); path.set_mm3_per_mm(new_flow.mm3_per_mm()); // path.width = new_flow.width(); path.set_width(new_flow.width()); // path.height = new_flow.height(); path.set_height(new_flow.height()); paths.emplace_back(std::move(path)); } } return paths; } protected: Fill *clone() const override { return new FillConcentricInternal(*this); }; bool no_sort() const override { return true; } const PrintConfig * print_config = nullptr; const PrintObjectConfig *print_object_config = nullptr; friend class Layer; }; } // namespace Slic3r #endif // slic3r_FillConcentricInternal_hpp_