mirror of
https://github.com/QIDITECH/QIDISlicer.git
synced 2026-02-03 09:28:44 +03:00
update bundled_deps
This commit is contained in:
688
bundled_deps/libigl/igl/copyleft/comiso/frame_field.cpp
Normal file
688
bundled_deps/libigl/igl/copyleft/comiso/frame_field.cpp
Normal file
@@ -0,0 +1,688 @@
|
||||
// This file is part of libigl, a simple c++ geometry processing library.
|
||||
//
|
||||
// Copyright (C) 2015 Daniele Panozzo <daniele.panozzo@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla Public License
|
||||
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
||||
// obtain one at http://mozilla.org/MPL/2.0/.
|
||||
#include "frame_field.h"
|
||||
|
||||
#include <igl/triangle_triangle_adjacency.h>
|
||||
#include <igl/edge_topology.h>
|
||||
#include <igl/per_face_normals.h>
|
||||
#include <igl/copyleft/comiso/nrosy.h>
|
||||
#include <iostream>
|
||||
|
||||
namespace igl
|
||||
{
|
||||
namespace copyleft
|
||||
{
|
||||
namespace comiso
|
||||
{
|
||||
|
||||
class FrameInterpolator
|
||||
{
|
||||
public:
|
||||
// Init
|
||||
IGL_INLINE FrameInterpolator(const Eigen::MatrixXd& _V, const Eigen::MatrixXi& _F);
|
||||
IGL_INLINE ~FrameInterpolator();
|
||||
|
||||
// Reset constraints (at least one constraint must be present or solve will fail)
|
||||
IGL_INLINE void resetConstraints();
|
||||
|
||||
IGL_INLINE void setConstraint(const int fid, const Eigen::VectorXd& v);
|
||||
|
||||
IGL_INLINE void interpolateSymmetric();
|
||||
|
||||
// Generate the frame field
|
||||
IGL_INLINE void solve();
|
||||
|
||||
// Convert the frame field in the canonical representation
|
||||
IGL_INLINE void frame2canonical(const Eigen::MatrixXd& TP, const Eigen::RowVectorXd& v, double& theta, Eigen::VectorXd& S);
|
||||
|
||||
// Convert the canonical representation in a frame field
|
||||
IGL_INLINE void canonical2frame(const Eigen::MatrixXd& TP, const double theta, const Eigen::VectorXd& S, Eigen::RowVectorXd& v);
|
||||
|
||||
IGL_INLINE Eigen::MatrixXd getFieldPerFace();
|
||||
|
||||
IGL_INLINE void PolarDecomposition(Eigen::MatrixXd V, Eigen::MatrixXd& U, Eigen::MatrixXd& P);
|
||||
|
||||
// Symmetric
|
||||
Eigen::MatrixXd S;
|
||||
std::vector<bool> S_c;
|
||||
|
||||
// -------------------------------------------------
|
||||
|
||||
// Face Topology
|
||||
Eigen::MatrixXi TT, TTi;
|
||||
|
||||
// Two faces are consistent if their representative vector are taken modulo PI
|
||||
std::vector<bool> edge_consistency;
|
||||
Eigen::MatrixXi edge_consistency_TT;
|
||||
|
||||
private:
|
||||
IGL_INLINE double mod2pi(double d);
|
||||
IGL_INLINE double modpi2(double d);
|
||||
IGL_INLINE double modpi(double d);
|
||||
|
||||
// Convert a direction on the tangent space into an angle
|
||||
IGL_INLINE double vector2theta(const Eigen::MatrixXd& TP, const Eigen::RowVectorXd& v);
|
||||
|
||||
// Convert an angle in a vector in the tangent space
|
||||
IGL_INLINE Eigen::RowVectorXd theta2vector(const Eigen::MatrixXd& TP, const double theta);
|
||||
|
||||
// Interpolate the cross field (theta)
|
||||
IGL_INLINE void interpolateCross();
|
||||
|
||||
// Compute difference between reference frames
|
||||
IGL_INLINE void computek();
|
||||
|
||||
// Compute edge consistency
|
||||
IGL_INLINE void compute_edge_consistency();
|
||||
|
||||
// Cross field direction
|
||||
Eigen::VectorXd thetas;
|
||||
std::vector<bool> thetas_c;
|
||||
|
||||
// Edge Topology
|
||||
Eigen::MatrixXi EV, FE, EF;
|
||||
std::vector<bool> isBorderEdge;
|
||||
|
||||
// Angle between two reference frames
|
||||
// R(k) * t0 = t1
|
||||
Eigen::VectorXd k;
|
||||
|
||||
// Mesh
|
||||
Eigen::MatrixXd V;
|
||||
Eigen::MatrixXi F;
|
||||
|
||||
// Normals per face
|
||||
Eigen::MatrixXd N;
|
||||
|
||||
// Reference frame per triangle
|
||||
std::vector<Eigen::MatrixXd> TPs;
|
||||
|
||||
};
|
||||
|
||||
FrameInterpolator::FrameInterpolator(const Eigen::MatrixXd& _V, const Eigen::MatrixXi& _F)
|
||||
{
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
V = _V;
|
||||
F = _F;
|
||||
|
||||
assert(V.rows() > 0);
|
||||
assert(F.rows() > 0);
|
||||
|
||||
|
||||
// Generate topological relations
|
||||
igl::triangle_triangle_adjacency(F,TT,TTi);
|
||||
igl::edge_topology(V,F, EV, FE, EF);
|
||||
|
||||
// Flag border edges
|
||||
isBorderEdge.resize(EV.rows());
|
||||
for(unsigned i=0; i<EV.rows(); ++i)
|
||||
isBorderEdge[i] = (EF(i,0) == -1) || ((EF(i,1) == -1));
|
||||
|
||||
// Generate normals per face
|
||||
igl::per_face_normals(V, F, N);
|
||||
|
||||
// Generate reference frames
|
||||
for(unsigned fid=0; fid<F.rows(); ++fid)
|
||||
{
|
||||
// First edge
|
||||
Vector3d e1 = V.row(F(fid,1)) - V.row(F(fid,0));
|
||||
e1.normalize();
|
||||
Vector3d e2 = N.row(fid);
|
||||
e2 = e2.cross(e1);
|
||||
e2.normalize();
|
||||
|
||||
MatrixXd TP(2,3);
|
||||
TP << e1.transpose(), e2.transpose();
|
||||
TPs.push_back(TP);
|
||||
}
|
||||
|
||||
// Reset the constraints
|
||||
resetConstraints();
|
||||
|
||||
// Compute k, differences between reference frames
|
||||
computek();
|
||||
|
||||
// Alloc internal variables
|
||||
thetas = VectorXd::Zero(F.rows());
|
||||
S = MatrixXd::Zero(F.rows(),3);
|
||||
|
||||
compute_edge_consistency();
|
||||
}
|
||||
|
||||
FrameInterpolator::~FrameInterpolator()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
double FrameInterpolator::mod2pi(double d)
|
||||
{
|
||||
while(d<0)
|
||||
d = d + (2.0*igl::PI);
|
||||
|
||||
return fmod(d, (2.0*igl::PI));
|
||||
}
|
||||
|
||||
double FrameInterpolator::modpi2(double d)
|
||||
{
|
||||
while(d<0)
|
||||
d = d + (igl::PI/2.0);
|
||||
|
||||
return fmod(d, (igl::PI/2.0));
|
||||
}
|
||||
|
||||
double FrameInterpolator::modpi(double d)
|
||||
{
|
||||
while(d<0)
|
||||
d = d + (igl::PI);
|
||||
|
||||
return fmod(d, (igl::PI));
|
||||
}
|
||||
|
||||
|
||||
double FrameInterpolator::vector2theta(const Eigen::MatrixXd& TP, const Eigen::RowVectorXd& v)
|
||||
{
|
||||
// Project onto the tangent plane
|
||||
Eigen::Vector2d vp = TP * v.transpose();
|
||||
|
||||
// Convert to angle
|
||||
double theta = atan2(vp(1),vp(0));
|
||||
return theta;
|
||||
}
|
||||
|
||||
Eigen::RowVectorXd FrameInterpolator::theta2vector(const Eigen::MatrixXd& TP, const double theta)
|
||||
{
|
||||
Eigen::Vector2d vp(cos(theta),sin(theta));
|
||||
return vp.transpose() * TP;
|
||||
}
|
||||
|
||||
void FrameInterpolator::interpolateCross()
|
||||
{
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
//olga: was
|
||||
// NRosyField nrosy(V,F);
|
||||
// for (unsigned i=0; i<F.rows(); ++i)
|
||||
// if(thetas_c[i])
|
||||
// nrosy.setConstraintHard(i,theta2vector(TPs[i],thetas(i)));
|
||||
// nrosy.solve(4);
|
||||
// MatrixXd R = nrosy.getFieldPerFace();
|
||||
|
||||
//olga: is
|
||||
Eigen::MatrixXd R;
|
||||
Eigen::VectorXd S;
|
||||
Eigen::VectorXi b; b.resize(F.rows(),1);
|
||||
Eigen::MatrixXd bc; bc.resize(F.rows(),3);
|
||||
int num = 0;
|
||||
for (unsigned i=0; i<F.rows(); ++i)
|
||||
if(thetas_c[i])
|
||||
{
|
||||
b[num] = i;
|
||||
bc.row(num) = theta2vector(TPs[i],thetas(i));
|
||||
num++;
|
||||
}
|
||||
b.conservativeResize(num,Eigen::NoChange);
|
||||
bc.conservativeResize(num,Eigen::NoChange);
|
||||
|
||||
igl::copyleft::comiso::nrosy(V, F, b, bc, 4, R, S);
|
||||
//olga:end
|
||||
assert(R.rows() == F.rows());
|
||||
|
||||
for (unsigned i=0; i<F.rows(); ++i)
|
||||
thetas(i) = vector2theta(TPs[i],R.row(i));
|
||||
}
|
||||
|
||||
void FrameInterpolator::resetConstraints()
|
||||
{
|
||||
thetas_c.resize(F.rows());
|
||||
S_c.resize(F.rows());
|
||||
|
||||
for(unsigned i=0; i<F.rows(); ++i)
|
||||
{
|
||||
thetas_c[i] = false;
|
||||
S_c[i] = false;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void FrameInterpolator::compute_edge_consistency()
|
||||
{
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
// Compute per-edge consistency
|
||||
edge_consistency.resize(EF.rows());
|
||||
edge_consistency_TT = MatrixXi::Constant(TT.rows(),3,-1);
|
||||
|
||||
// For every non-border edge
|
||||
for (unsigned eid=0; eid<EF.rows(); ++eid)
|
||||
{
|
||||
if (!isBorderEdge[eid])
|
||||
{
|
||||
int fid0 = EF(eid,0);
|
||||
int fid1 = EF(eid,1);
|
||||
|
||||
double theta0 = thetas(fid0);
|
||||
double theta1 = thetas(fid1);
|
||||
|
||||
theta0 = theta0 + k(eid);
|
||||
|
||||
double r = modpi(theta0-theta1);
|
||||
|
||||
edge_consistency[eid] = r < igl::PI/4.0 || r > 3*(igl::PI/4.0);
|
||||
|
||||
// Copy it into edge_consistency_TT
|
||||
int i1 = -1;
|
||||
int i2 = -1;
|
||||
for (unsigned i=0; i<3; ++i)
|
||||
{
|
||||
if (TT(fid0,i) == fid1)
|
||||
i1 = i;
|
||||
if (TT(fid1,i) == fid0)
|
||||
i2 = i;
|
||||
}
|
||||
assert(i1 != -1);
|
||||
assert(i2 != -1);
|
||||
|
||||
edge_consistency_TT(fid0,i1) = edge_consistency[eid];
|
||||
edge_consistency_TT(fid1,i2) = edge_consistency[eid];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void FrameInterpolator::computek()
|
||||
{
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
k.resize(EF.rows());
|
||||
|
||||
// For every non-border edge
|
||||
for (unsigned eid=0; eid<EF.rows(); ++eid)
|
||||
{
|
||||
if (!isBorderEdge[eid])
|
||||
{
|
||||
int fid0 = EF(eid,0);
|
||||
int fid1 = EF(eid,1);
|
||||
|
||||
Vector3d N0 = N.row(fid0);
|
||||
//Vector3d N1 = N.row(fid1);
|
||||
|
||||
// find common edge on triangle 0 and 1
|
||||
int fid0_vc = -1;
|
||||
int fid1_vc = -1;
|
||||
for (unsigned i=0;i<3;++i)
|
||||
{
|
||||
if (EV(eid,0) == F(fid0,i))
|
||||
fid0_vc = i;
|
||||
if (EV(eid,1) == F(fid1,i))
|
||||
fid1_vc = i;
|
||||
}
|
||||
assert(fid0_vc != -1);
|
||||
assert(fid1_vc != -1);
|
||||
|
||||
Vector3d common_edge = V.row(F(fid0,(fid0_vc+1)%3)) - V.row(F(fid0,fid0_vc));
|
||||
common_edge.normalize();
|
||||
|
||||
// Map the two triangles in a new space where the common edge is the x axis and the N0 the z axis
|
||||
MatrixXd P(3,3);
|
||||
VectorXd o = V.row(F(fid0,fid0_vc));
|
||||
VectorXd tmp = -N0.cross(common_edge);
|
||||
P << common_edge, tmp, N0;
|
||||
P.transposeInPlace();
|
||||
|
||||
|
||||
MatrixXd V0(3,3);
|
||||
V0.row(0) = V.row(F(fid0,0)).transpose() -o;
|
||||
V0.row(1) = V.row(F(fid0,1)).transpose() -o;
|
||||
V0.row(2) = V.row(F(fid0,2)).transpose() -o;
|
||||
|
||||
V0 = (P*V0.transpose()).transpose();
|
||||
|
||||
assert(V0(0,2) < 10e-10);
|
||||
assert(V0(1,2) < 10e-10);
|
||||
assert(V0(2,2) < 10e-10);
|
||||
|
||||
MatrixXd V1(3,3);
|
||||
V1.row(0) = V.row(F(fid1,0)).transpose() -o;
|
||||
V1.row(1) = V.row(F(fid1,1)).transpose() -o;
|
||||
V1.row(2) = V.row(F(fid1,2)).transpose() -o;
|
||||
V1 = (P*V1.transpose()).transpose();
|
||||
|
||||
assert(V1(fid1_vc,2) < 10e-10);
|
||||
assert(V1((fid1_vc+1)%3,2) < 10e-10);
|
||||
|
||||
// compute rotation R such that R * N1 = N0
|
||||
// i.e. map both triangles to the same plane
|
||||
double alpha = -atan2(V1((fid1_vc+2)%3,2),V1((fid1_vc+2)%3,1));
|
||||
|
||||
MatrixXd R(3,3);
|
||||
R << 1, 0, 0,
|
||||
0, cos(alpha), -sin(alpha) ,
|
||||
0, sin(alpha), cos(alpha);
|
||||
V1 = (R*V1.transpose()).transpose();
|
||||
|
||||
assert(V1(0,2) < 10e-10);
|
||||
assert(V1(1,2) < 10e-10);
|
||||
assert(V1(2,2) < 10e-10);
|
||||
|
||||
// measure the angle between the reference frames
|
||||
// k_ij is the angle between the triangle on the left and the one on the right
|
||||
VectorXd ref0 = V0.row(1) - V0.row(0);
|
||||
VectorXd ref1 = V1.row(1) - V1.row(0);
|
||||
|
||||
ref0.normalize();
|
||||
ref1.normalize();
|
||||
|
||||
double ktemp = atan2(ref1(1),ref1(0)) - atan2(ref0(1),ref0(0));
|
||||
|
||||
// just to be sure, rotate ref0 using angle ktemp...
|
||||
MatrixXd R2(2,2);
|
||||
R2 << cos(ktemp), -sin(ktemp), sin(ktemp), cos(ktemp);
|
||||
|
||||
tmp = R2*ref0.head<2>();
|
||||
|
||||
assert(tmp(0) - ref1(0) < (0.000001));
|
||||
assert(tmp(1) - ref1(1) < (0.000001));
|
||||
|
||||
k[eid] = ktemp;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void FrameInterpolator::frame2canonical(const Eigen::MatrixXd& TP, const Eigen::RowVectorXd& v, double& theta, Eigen::VectorXd& S_v)
|
||||
{
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
RowVectorXd v0 = v.segment<3>(0);
|
||||
RowVectorXd v1 = v.segment<3>(3);
|
||||
|
||||
// Project onto the tangent plane
|
||||
Vector2d vp0 = TP * v0.transpose();
|
||||
Vector2d vp1 = TP * v1.transpose();
|
||||
|
||||
// Assemble matrix
|
||||
MatrixXd M(2,2);
|
||||
M << vp0, vp1;
|
||||
|
||||
if (M.determinant() < 0)
|
||||
M.col(1) = -M.col(1);
|
||||
|
||||
assert(M.determinant() > 0);
|
||||
|
||||
// cerr << "M: " << M << endl;
|
||||
|
||||
MatrixXd R,S;
|
||||
PolarDecomposition(M,R,S);
|
||||
|
||||
// Finally, express the cross field as an angle
|
||||
theta = atan2(R(1,0),R(0,0));
|
||||
|
||||
MatrixXd R2(2,2);
|
||||
R2 << cos(theta), -sin(theta), sin(theta), cos(theta);
|
||||
|
||||
assert((R2-R).norm() < 10e-8);
|
||||
|
||||
// Convert into rotation invariant form
|
||||
S = R * S * R.inverse();
|
||||
|
||||
// Copy in vector form
|
||||
S_v = VectorXd(3);
|
||||
S_v << S(0,0), S(0,1), S(1,1);
|
||||
}
|
||||
|
||||
void FrameInterpolator::canonical2frame(const Eigen::MatrixXd& TP, const double theta, const Eigen::VectorXd& S_v, Eigen::RowVectorXd& v)
|
||||
{
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
assert(S_v.size() == 3);
|
||||
|
||||
MatrixXd S_temp(2,2);
|
||||
S_temp << S_v(0), S_v(1), S_v(1), S_v(2);
|
||||
|
||||
// Convert angle in vector in the tangent plane
|
||||
// Vector2d vp(cos(theta),sin(theta));
|
||||
|
||||
// First reconstruct R
|
||||
MatrixXd R(2,2);
|
||||
|
||||
R << cos(theta), -sin(theta), sin(theta), cos(theta);
|
||||
|
||||
// Rotation invariant reconstruction
|
||||
MatrixXd M = S_temp * R;
|
||||
|
||||
Vector2d vp0(M(0,0),M(1,0));
|
||||
Vector2d vp1(M(0,1),M(1,1));
|
||||
|
||||
// Unproject the vectors
|
||||
RowVectorXd v0 = vp0.transpose() * TP;
|
||||
RowVectorXd v1 = vp1.transpose() * TP;
|
||||
|
||||
v.resize(6);
|
||||
v << v0, v1;
|
||||
}
|
||||
|
||||
void FrameInterpolator::solve()
|
||||
{
|
||||
interpolateCross();
|
||||
interpolateSymmetric();
|
||||
}
|
||||
|
||||
void FrameInterpolator::interpolateSymmetric()
|
||||
{
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
// Generate uniform Laplacian matrix
|
||||
typedef Eigen::Triplet<double> triplet;
|
||||
std::vector<triplet> triplets;
|
||||
|
||||
// Variables are stacked as x1,y1,z1,x2,y2,z2
|
||||
triplets.reserve(3*4*F.rows());
|
||||
|
||||
MatrixXd b = MatrixXd::Zero(3*F.rows(),1);
|
||||
|
||||
// Build L and b
|
||||
for (unsigned eid=0; eid<EF.rows(); ++eid)
|
||||
{
|
||||
if (!isBorderEdge[eid])
|
||||
{
|
||||
for (int z=0;z<2;++z)
|
||||
{
|
||||
// W = [w_a, w_b
|
||||
// w_b, w_c]
|
||||
//
|
||||
|
||||
// It is not symmetric
|
||||
int i = EF(eid,z==0?0:1);
|
||||
int j = EF(eid,z==0?1:0);
|
||||
|
||||
int w_a_0 = (i*3)+0;
|
||||
int w_b_0 = (i*3)+1;
|
||||
int w_c_0 = (i*3)+2;
|
||||
|
||||
int w_a_1 = (j*3)+0;
|
||||
int w_b_1 = (j*3)+1;
|
||||
int w_c_1 = (j*3)+2;
|
||||
|
||||
// Rotation to change frame
|
||||
double r_a = cos(z==1?k(eid):-k(eid));
|
||||
double r_b = -sin(z==1?k(eid):-k(eid));
|
||||
double r_c = sin(z==1?k(eid):-k(eid));
|
||||
double r_d = cos(z==1?k(eid):-k(eid));
|
||||
|
||||
// First term
|
||||
// w_a_0 = r_a^2 w_a_1 + 2 r_a r_b w_b_1 + r_b^2 w_c_1 = 0
|
||||
triplets.push_back(triplet(w_a_0,w_a_0, -1 ));
|
||||
triplets.push_back(triplet(w_a_0,w_a_1, r_a*r_a ));
|
||||
triplets.push_back(triplet(w_a_0,w_b_1, 2 * r_a*r_b ));
|
||||
triplets.push_back(triplet(w_a_0,w_c_1, r_b*r_b ));
|
||||
|
||||
// Second term
|
||||
// w_b_0 = r_a r_c w_a + (r_b r_c + r_a r_d) w_b + r_b r_d w_c
|
||||
triplets.push_back(triplet(w_b_0,w_b_0, -1 ));
|
||||
triplets.push_back(triplet(w_b_0,w_a_1, r_a*r_c ));
|
||||
triplets.push_back(triplet(w_b_0,w_b_1, r_b*r_c + r_a*r_d ));
|
||||
triplets.push_back(triplet(w_b_0,w_c_1, r_b*r_d ));
|
||||
|
||||
// Third term
|
||||
// w_c_0 = r_c^2 w_a + 2 r_c r_d w_b + r_d^2 w_c
|
||||
triplets.push_back(triplet(w_c_0,w_c_0, -1 ));
|
||||
triplets.push_back(triplet(w_c_0,w_a_1, r_c*r_c ));
|
||||
triplets.push_back(triplet(w_c_0,w_b_1, 2 * r_c*r_d ));
|
||||
triplets.push_back(triplet(w_c_0,w_c_1, r_d*r_d ));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
SparseMatrix<double> L(3*F.rows(),3*F.rows());
|
||||
L.setFromTriplets(triplets.begin(), triplets.end());
|
||||
|
||||
triplets.clear();
|
||||
|
||||
// Add soft constraints
|
||||
double w = 100000;
|
||||
for (unsigned fid=0; fid < F.rows(); ++fid)
|
||||
{
|
||||
if (S_c[fid])
|
||||
{
|
||||
for (unsigned i=0;i<3;++i)
|
||||
{
|
||||
triplets.push_back(triplet(3*fid + i,3*fid + i,w));
|
||||
b(3*fid + i) += w*S(fid,i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
SparseMatrix<double> soft(3*F.rows(),3*F.rows());
|
||||
soft.setFromTriplets(triplets.begin(), triplets.end());
|
||||
|
||||
SparseMatrix<double> M;
|
||||
|
||||
M = L + soft;
|
||||
|
||||
// Solve Lx = b;
|
||||
|
||||
SparseLU<SparseMatrix<double> > solver;
|
||||
|
||||
solver.compute(M);
|
||||
|
||||
if(solver.info()!=Success)
|
||||
{
|
||||
std::cerr << "LU failed - frame_interpolator.cpp" << std::endl;
|
||||
assert(0);
|
||||
}
|
||||
|
||||
MatrixXd x;
|
||||
x = solver.solve(b);
|
||||
|
||||
if(solver.info()!=Success)
|
||||
{
|
||||
std::cerr << "Linear solve failed - frame_interpolator.cpp" << std::endl;
|
||||
assert(0);
|
||||
}
|
||||
|
||||
S = MatrixXd::Zero(F.rows(),3);
|
||||
|
||||
// Copy back the result
|
||||
for (unsigned i=0;i<F.rows();++i)
|
||||
S.row(i) << x(i*3+0), x(i*3+1), x(i*3+2);
|
||||
|
||||
}
|
||||
|
||||
void FrameInterpolator::setConstraint(const int fid, const Eigen::VectorXd& v)
|
||||
{
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
double t_;
|
||||
VectorXd S_;
|
||||
|
||||
frame2canonical(TPs[fid],v,t_,S_);
|
||||
|
||||
Eigen::RowVectorXd v2;
|
||||
canonical2frame(TPs[fid], t_, S_, v2);
|
||||
|
||||
thetas(fid) = t_;
|
||||
thetas_c[fid] = true;
|
||||
|
||||
S.row(fid) = S_;
|
||||
S_c[fid] = true;
|
||||
|
||||
}
|
||||
|
||||
Eigen::MatrixXd FrameInterpolator::getFieldPerFace()
|
||||
{
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
MatrixXd R(F.rows(),6);
|
||||
for (unsigned i=0; i<F.rows(); ++i)
|
||||
{
|
||||
RowVectorXd v;
|
||||
canonical2frame(TPs[i],thetas(i),S.row(i),v);
|
||||
R.row(i) = v;
|
||||
}
|
||||
return R;
|
||||
}
|
||||
|
||||
void FrameInterpolator::PolarDecomposition(Eigen::MatrixXd V, Eigen::MatrixXd& U, Eigen::MatrixXd& P)
|
||||
{
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
// Polar Decomposition
|
||||
JacobiSVD<MatrixXd> svd(V,Eigen::ComputeFullU | Eigen::ComputeFullV);
|
||||
|
||||
U = svd.matrixU() * svd.matrixV().transpose();
|
||||
P = svd.matrixV() * svd.singularValues().asDiagonal() * svd.matrixV().transpose();
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
IGL_INLINE void igl::copyleft::comiso::frame_field(
|
||||
const Eigen::MatrixXd& V,
|
||||
const Eigen::MatrixXi& F,
|
||||
const Eigen::VectorXi& b,
|
||||
const Eigen::MatrixXd& bc1,
|
||||
const Eigen::MatrixXd& bc2,
|
||||
Eigen::MatrixXd& FF1,
|
||||
Eigen::MatrixXd& FF2
|
||||
)
|
||||
|
||||
{
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
assert(b.size() > 0);
|
||||
|
||||
// Init Solver
|
||||
FrameInterpolator field(V,F);
|
||||
|
||||
for (unsigned i=0; i<b.size(); ++i)
|
||||
{
|
||||
VectorXd t(6); t << bc1.row(i).transpose(), bc2.row(i).transpose();
|
||||
field.setConstraint(b(i), t);
|
||||
}
|
||||
|
||||
// Solve
|
||||
field.solve();
|
||||
|
||||
// Copy back
|
||||
MatrixXd R = field.getFieldPerFace();
|
||||
FF1 = R.block(0, 0, R.rows(), 3);
|
||||
FF2 = R.block(0, 3, R.rows(), 3);
|
||||
}
|
||||
Reference in New Issue
Block a user