mirror of
https://github.com/QIDITECH/QIDISlicer.git
synced 2026-02-04 18:08:44 +03:00
update bundled_deps
This commit is contained in:
395
bundled_deps/libigl/igl/copyleft/cgal/minkowski_sum.cpp
Normal file
395
bundled_deps/libigl/igl/copyleft/cgal/minkowski_sum.cpp
Normal file
@@ -0,0 +1,395 @@
|
||||
// This file is part of libigl, a simple c++ geometry processing library.
|
||||
//
|
||||
// Copyright (C) 2016 Alec Jacobson <alecjacobson@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla Public License
|
||||
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
||||
// obtain one at http://mozilla.org/MPL/2.0/.
|
||||
#include "minkowski_sum.h"
|
||||
#include "mesh_boolean.h"
|
||||
|
||||
#include "../../slice.h"
|
||||
#include "../../slice_mask.h"
|
||||
#include "../../LinSpaced.h"
|
||||
#include "../../unique_rows.h"
|
||||
#include "../../get_seconds.h"
|
||||
#include "../../edges.h"
|
||||
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
|
||||
#include <cassert>
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
|
||||
|
||||
template <
|
||||
typename DerivedVA,
|
||||
typename DerivedFA,
|
||||
typename DerivedVB,
|
||||
typename DerivedFB,
|
||||
typename DerivedW,
|
||||
typename DerivedG,
|
||||
typename DerivedJ>
|
||||
IGL_INLINE void igl::copyleft::cgal::minkowski_sum(
|
||||
const Eigen::MatrixBase<DerivedVA> & VA,
|
||||
const Eigen::MatrixBase<DerivedFA> & FA,
|
||||
const Eigen::MatrixBase<DerivedVB> & VB,
|
||||
const Eigen::MatrixBase<DerivedFB> & FB,
|
||||
const bool resolve_overlaps,
|
||||
Eigen::PlainObjectBase<DerivedW> & W,
|
||||
Eigen::PlainObjectBase<DerivedG> & G,
|
||||
Eigen::PlainObjectBase<DerivedJ> & J)
|
||||
{
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
assert(FA.cols() == 3 && "FA must contain a closed triangle mesh");
|
||||
assert(FB.cols() <= FA.cols() &&
|
||||
"FB must contain lower diemnsional simplices than FA");
|
||||
const auto tictoc = []()->double
|
||||
{
|
||||
static double t_start;
|
||||
double now = igl::get_seconds();
|
||||
double interval = now-t_start;
|
||||
t_start = now;
|
||||
return interval;
|
||||
};
|
||||
tictoc();
|
||||
Matrix<typename DerivedFB::Scalar,Dynamic,2> EB;
|
||||
edges(FB,EB);
|
||||
Matrix<typename DerivedFA::Scalar,Dynamic,2> EA(0,2);
|
||||
if(FB.cols() == 3)
|
||||
{
|
||||
edges(FA,EA);
|
||||
}
|
||||
// number of copies of A along edges of B
|
||||
const int n_ab = EB.rows();
|
||||
// number of copies of B along edges of A
|
||||
const int n_ba = EA.rows();
|
||||
|
||||
vector<DerivedW> vW(n_ab + n_ba);
|
||||
vector<DerivedG> vG(n_ab + n_ba);
|
||||
vector<DerivedJ> vJ(n_ab + n_ba);
|
||||
vector<int> offsets(n_ab + n_ba + 1);
|
||||
offsets[0] = 0;
|
||||
// sweep A along edges of B
|
||||
for(int e = 0;e<n_ab;e++)
|
||||
{
|
||||
Matrix<typename DerivedJ::Scalar,Dynamic,1> eJ;
|
||||
minkowski_sum(
|
||||
VA,
|
||||
FA,
|
||||
VB.row(EB(e,0)).eval(),
|
||||
VB.row(EB(e,1)).eval(),
|
||||
false,
|
||||
vW[e],
|
||||
vG[e],
|
||||
eJ);
|
||||
assert(vG[e].rows() == eJ.rows());
|
||||
assert(eJ.cols() == 1);
|
||||
vJ[e].resize(vG[e].rows(),2);
|
||||
vJ[e].col(0) = eJ;
|
||||
vJ[e].col(1).setConstant(e);
|
||||
offsets[e+1] = offsets[e] + vW[e].rows();
|
||||
}
|
||||
// sweep B along edges of A
|
||||
for(int e = 0;e<n_ba;e++)
|
||||
{
|
||||
Matrix<typename DerivedJ::Scalar,Dynamic,1> eJ;
|
||||
const int ee = n_ab+e;
|
||||
minkowski_sum(
|
||||
VB,
|
||||
FB,
|
||||
VA.row(EA(e,0)).eval(),
|
||||
VA.row(EA(e,1)).eval(),
|
||||
false,
|
||||
vW[ee],
|
||||
vG[ee],
|
||||
eJ);
|
||||
vJ[ee].resize(vG[ee].rows(),2);
|
||||
vJ[ee].col(0) = eJ.array() + (FA.rows()+1);
|
||||
vJ[ee].col(1).setConstant(ee);
|
||||
offsets[ee+1] = offsets[ee] + vW[ee].rows();
|
||||
}
|
||||
// Combine meshes
|
||||
int n=0,m=0;
|
||||
for_each(vW.begin(),vW.end(),[&n](const DerivedW & w){n+=w.rows();});
|
||||
for_each(vG.begin(),vG.end(),[&m](const DerivedG & g){m+=g.rows();});
|
||||
assert(n == offsets.back());
|
||||
|
||||
W.resize(n,3);
|
||||
G.resize(m,3);
|
||||
J.resize(m,2);
|
||||
{
|
||||
int m_off = 0,n_off = 0;
|
||||
for(int i = 0;i<vG.size();i++)
|
||||
{
|
||||
W.block(n_off,0,vW[i].rows(),3) = vW[i];
|
||||
G.block(m_off,0,vG[i].rows(),3) = vG[i].array()+offsets[i];
|
||||
J.block(m_off,0,vJ[i].rows(),2) = vJ[i];
|
||||
n_off += vW[i].rows();
|
||||
m_off += vG[i].rows();
|
||||
}
|
||||
assert(n == n_off);
|
||||
assert(m == m_off);
|
||||
}
|
||||
if(resolve_overlaps)
|
||||
{
|
||||
Eigen::Matrix<typename DerivedJ::Scalar, Eigen::Dynamic,1> SJ;
|
||||
mesh_boolean(
|
||||
DerivedW(W),
|
||||
DerivedG(G),
|
||||
Matrix<typename DerivedW::Scalar,Dynamic,Dynamic>(),
|
||||
Matrix<typename DerivedG::Scalar,Dynamic,Dynamic>(),
|
||||
MESH_BOOLEAN_TYPE_UNION,
|
||||
W,
|
||||
G,
|
||||
SJ);
|
||||
slice(DerivedJ(J),SJ,1,J);
|
||||
}
|
||||
}
|
||||
|
||||
template <
|
||||
typename DerivedVA,
|
||||
typename DerivedFA,
|
||||
typename sType, int sCols, int sOptions,
|
||||
typename dType, int dCols, int dOptions,
|
||||
typename DerivedW,
|
||||
typename DerivedG,
|
||||
typename DerivedJ>
|
||||
IGL_INLINE void igl::copyleft::cgal::minkowski_sum(
|
||||
const Eigen::MatrixBase<DerivedVA> & VA,
|
||||
const Eigen::MatrixBase<DerivedFA> & FA,
|
||||
const Eigen::Matrix<sType,1,sCols,sOptions> & s,
|
||||
const Eigen::Matrix<dType,1,dCols,dOptions> & d,
|
||||
const bool resolve_overlaps,
|
||||
Eigen::PlainObjectBase<DerivedW> & W,
|
||||
Eigen::PlainObjectBase<DerivedG> & G,
|
||||
Eigen::PlainObjectBase<DerivedJ> & J)
|
||||
{
|
||||
using namespace Eigen;
|
||||
using namespace std;
|
||||
assert(s.cols() == 3 && "s should be a 3d point");
|
||||
assert(d.cols() == 3 && "d should be a 3d point");
|
||||
// silly base case
|
||||
if(FA.size() == 0)
|
||||
{
|
||||
W.resize(0,3);
|
||||
G.resize(0,3);
|
||||
return;
|
||||
}
|
||||
const int dim = VA.cols();
|
||||
assert(dim == 3 && "dim must be 3D");
|
||||
assert(s.size() == 3 && "s must be 3D point");
|
||||
assert(d.size() == 3 && "d must be 3D point");
|
||||
// segment vector
|
||||
const CGAL::Vector_3<CGAL::Epeck> v(d(0)-s(0),d(1)-s(1),d(2)-s(2));
|
||||
// number of vertices
|
||||
const int n = VA.rows();
|
||||
// duplicate vertices at s and d, we'll remove unreferernced later
|
||||
W.resize(2*n,dim);
|
||||
for(int i = 0;i<n;i++)
|
||||
{
|
||||
for(int j = 0;j<dim;j++)
|
||||
{
|
||||
W (i,j) = VA(i,j) + s(j);
|
||||
W(i+n,j) = VA(i,j) + d(j);
|
||||
}
|
||||
}
|
||||
// number of faces
|
||||
const int m = FA.rows();
|
||||
//// Mask whether positive dot product, or negative: because of exactly zero,
|
||||
//// these are not necessarily complementary
|
||||
// Nevermind, actually P = !N
|
||||
Matrix<bool,Dynamic,1> P(m,1),N(m,1);
|
||||
// loop over faces
|
||||
int mp = 0,mn = 0;
|
||||
for(int f = 0;f<m;f++)
|
||||
{
|
||||
const CGAL::Plane_3<CGAL::Epeck> plane(
|
||||
CGAL::Point_3<CGAL::Epeck>(VA(FA(f,0),0),VA(FA(f,0),1),VA(FA(f,0),2)),
|
||||
CGAL::Point_3<CGAL::Epeck>(VA(FA(f,1),0),VA(FA(f,1),1),VA(FA(f,1),2)),
|
||||
CGAL::Point_3<CGAL::Epeck>(VA(FA(f,2),0),VA(FA(f,2),1),VA(FA(f,2),2)));
|
||||
const auto normal = plane.orthogonal_vector();
|
||||
const auto dt = normal * v;
|
||||
if(dt > 0)
|
||||
{
|
||||
P(f) = true;
|
||||
N(f) = false;
|
||||
mp++;
|
||||
}else
|
||||
//}else if(dt < 0)
|
||||
{
|
||||
P(f) = false;
|
||||
N(f) = true;
|
||||
mn++;
|
||||
//}else
|
||||
//{
|
||||
// P(f) = false;
|
||||
// N(f) = false;
|
||||
}
|
||||
}
|
||||
|
||||
typedef Matrix<typename DerivedG::Scalar,Dynamic,Dynamic> MatrixXI;
|
||||
typedef Matrix<typename DerivedG::Scalar,Dynamic,1> VectorXI;
|
||||
MatrixXI GT(mp+mn,3);
|
||||
GT<< slice_mask(FA,N,1), slice_mask((FA.array()+n).eval(),P,1);
|
||||
// J indexes FA for parts at s and m+FA for parts at d
|
||||
J.derived() = igl::LinSpaced<DerivedJ >(m,0,m-1);
|
||||
DerivedJ JT(mp+mn);
|
||||
JT << slice_mask(J,P,1), slice_mask(J,N,1);
|
||||
JT.block(mp,0,mn,1).array()+=m;
|
||||
|
||||
// Original non-co-planar faces with positively oriented reversed
|
||||
MatrixXI BA(mp+mn,3);
|
||||
BA << slice_mask(FA,P,1).rowwise().reverse(), slice_mask(FA,N,1);
|
||||
// Quads along **all** sides
|
||||
MatrixXI GQ((mp+mn)*3,4);
|
||||
GQ<<
|
||||
BA.col(1), BA.col(0), BA.col(0).array()+n, BA.col(1).array()+n,
|
||||
BA.col(2), BA.col(1), BA.col(1).array()+n, BA.col(2).array()+n,
|
||||
BA.col(0), BA.col(2), BA.col(2).array()+n, BA.col(0).array()+n;
|
||||
|
||||
MatrixXI uGQ;
|
||||
VectorXI S,sI,sJ;
|
||||
// Inputs:
|
||||
// F #F by d list of polygons
|
||||
// Outputs:
|
||||
// S #uF list of signed incidences for each unique face
|
||||
// uF #uF by d list of unique faces
|
||||
// I #uF index vector so that uF = sort(F,2)(I,:)
|
||||
// J #F index vector so that sort(F,2) = uF(J,:)
|
||||
[](
|
||||
const MatrixXI & F,
|
||||
VectorXI & S,
|
||||
MatrixXI & uF,
|
||||
VectorXI & I,
|
||||
VectorXI & J)
|
||||
{
|
||||
const int m = F.rows();
|
||||
const int d = F.cols();
|
||||
MatrixXI sF = F;
|
||||
const auto MN = sF.rowwise().minCoeff().eval();
|
||||
// rotate until smallest index is first
|
||||
for(int p = 0;p<d;p++)
|
||||
{
|
||||
for(int f = 0;f<m;f++)
|
||||
{
|
||||
if(sF(f,0) != MN(f))
|
||||
{
|
||||
for(int r = 0;r<d-1;r++)
|
||||
{
|
||||
std::swap(sF(f,r),sF(f,r+1));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// swap orienation so that last index is greater than first
|
||||
for(int f = 0;f<m;f++)
|
||||
{
|
||||
if(sF(f,d-1) < sF(f,1))
|
||||
{
|
||||
sF.block(f,1,1,d-1) = sF.block(f,1,1,d-1).reverse().eval();
|
||||
}
|
||||
}
|
||||
Matrix<bool,Dynamic,1> M = Matrix<bool,Dynamic,1>::Zero(m,1);
|
||||
{
|
||||
VectorXI P = igl::LinSpaced<VectorXI >(d,0,d-1);
|
||||
for(int p = 0;p<d;p++)
|
||||
{
|
||||
for(int f = 0;f<m;f++)
|
||||
{
|
||||
bool all = true;
|
||||
for(int r = 0;r<d;r++)
|
||||
{
|
||||
all = all && (sF(f,P(r)) == F(f,r));
|
||||
}
|
||||
M(f) = M(f) || all;
|
||||
}
|
||||
for(int r = 0;r<d-1;r++)
|
||||
{
|
||||
std::swap(P(r),P(r+1));
|
||||
}
|
||||
}
|
||||
}
|
||||
unique_rows(sF,uF,I,J);
|
||||
S = VectorXI::Zero(uF.rows(),1);
|
||||
assert(m == J.rows());
|
||||
for(int f = 0;f<m;f++)
|
||||
{
|
||||
S(J(f)) += M(f) ? 1 : -1;
|
||||
}
|
||||
}(MatrixXI(GQ),S,uGQ,sI,sJ);
|
||||
assert(S.rows() == uGQ.rows());
|
||||
const int nq = (S.array().abs()==2).count();
|
||||
GQ.resize(nq,4);
|
||||
{
|
||||
int k = 0;
|
||||
for(int q = 0;q<uGQ.rows();q++)
|
||||
{
|
||||
switch(S(q))
|
||||
{
|
||||
case -2:
|
||||
GQ.row(k++) = uGQ.row(q).reverse().eval();
|
||||
break;
|
||||
case 2:
|
||||
GQ.row(k++) = uGQ.row(q);
|
||||
break;
|
||||
default:
|
||||
// do not add
|
||||
break;
|
||||
}
|
||||
}
|
||||
assert(nq == k);
|
||||
}
|
||||
|
||||
G.resize(GT.rows()+2*GQ.rows(),3);
|
||||
G<<
|
||||
GT,
|
||||
GQ.col(0), GQ.col(1), GQ.col(2),
|
||||
GQ.col(0), GQ.col(2), GQ.col(3);
|
||||
J.resize(JT.rows()+2*GQ.rows(),1);
|
||||
J<<JT,DerivedJ::Constant(2*GQ.rows(),1,2*m+1);
|
||||
if(resolve_overlaps)
|
||||
{
|
||||
Eigen::Matrix<typename DerivedJ::Scalar, Eigen::Dynamic,1> SJ;
|
||||
mesh_boolean(
|
||||
DerivedW(W),DerivedG(G),
|
||||
Matrix<typename DerivedVA::Scalar,Dynamic,Dynamic>(),MatrixXI(),
|
||||
MESH_BOOLEAN_TYPE_UNION,
|
||||
W,G,SJ);
|
||||
J.derived() = slice(DerivedJ(J),SJ,1);
|
||||
}
|
||||
}
|
||||
|
||||
template <
|
||||
typename DerivedVA,
|
||||
typename DerivedFA,
|
||||
typename sType, int sCols, int sOptions,
|
||||
typename dType, int dCols, int dOptions,
|
||||
typename DerivedW,
|
||||
typename DerivedG,
|
||||
typename DerivedJ>
|
||||
IGL_INLINE void igl::copyleft::cgal::minkowski_sum(
|
||||
const Eigen::MatrixBase<DerivedVA> & VA,
|
||||
const Eigen::MatrixBase<DerivedFA> & FA,
|
||||
const Eigen::Matrix<sType,1,sCols,sOptions> & s,
|
||||
const Eigen::Matrix<dType,1,dCols,dOptions> & d,
|
||||
Eigen::PlainObjectBase<DerivedW> & W,
|
||||
Eigen::PlainObjectBase<DerivedG> & G,
|
||||
Eigen::PlainObjectBase<DerivedJ> & J)
|
||||
{
|
||||
return minkowski_sum(VA,FA,s,d,true,W,G,J);
|
||||
}
|
||||
|
||||
#ifdef IGL_STATIC_LIBRARY
|
||||
// Explicit template instantiation
|
||||
// generated by autoexplicit.sh
|
||||
template void igl::copyleft::cgal::minkowski_sum<Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, -1, -1, 1, -1, -1>, Eigen::Matrix<int, -1, 3, 1, -1, 3>, CGAL::Lazy_exact_nt<CGAL::Gmpq>, 3, 1, CGAL::Lazy_exact_nt<CGAL::Gmpq>, 3, 1, Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, -1, -1, 1, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, -1, -1, 1, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 3, 1, -1, 3> > const&, Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, 1, 3, 1, 1, 3> const&, Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, 1, 3, 1, 1, 3> const&, bool, Eigen::PlainObjectBase<Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, -1, -1, 1, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&);
|
||||
// generated by autoexplicit.sh
|
||||
template void igl::copyleft::cgal::minkowski_sum<
|
||||
Eigen::Matrix<float, -1, 3, 1, -1, 3>,
|
||||
Eigen::Matrix<int, -1, 3, 1, -1, 3>,
|
||||
double, 3, 1,
|
||||
float, 3, 1,
|
||||
Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, -1, -1, 1, -1, -1>,
|
||||
Eigen::Matrix<int, -1, -1, 0, -1, -1>,
|
||||
Eigen::Matrix<int, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<float, -1, 3, 1, -1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 3, 1, -1, 3> > const&, Eigen::Matrix<double, 1, 3, 1, 1, 3> const&, Eigen::Matrix<float, 1, 3, 1, 1, 3> const&, bool, Eigen::PlainObjectBase<Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, -1, -1, 1, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&);
|
||||
#endif
|
||||
Reference in New Issue
Block a user