QIDISlicer1.0.0

This commit is contained in:
sunsets
2023-06-10 10:14:12 +08:00
parent f2e20e1a90
commit b4cd486f2d
3475 changed files with 1973675 additions and 0 deletions

View File

@@ -0,0 +1,173 @@
//Copyright (c) 2021 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#include "DistanceField.hpp" //Class we're implementing.
#include "../FillRectilinear.hpp"
#include "../../ClipperUtils.hpp"
#include <tbb/parallel_for.h>
#ifdef LIGHTNING_DISTANCE_FIELD_DEBUG_OUTPUT
#include "../../SVG.hpp"
#endif
namespace Slic3r::FillLightning
{
constexpr coord_t radius_per_cell_size = 6; // The cell-size should be small compared to the radius, but not so small as to be inefficient.
#ifdef LIGHTNING_DISTANCE_FIELD_DEBUG_OUTPUT
void export_distance_field_to_svg(const std::string &path, const Polygons &outline, const Polygons &overhang, const std::vector<DistanceField::UnsupportedCell> &unsupported_points, const Points &points = {})
{
coordf_t stroke_width = scaled<coordf_t>(0.01);
BoundingBox bbox = get_extents(outline);
bbox.offset(SCALED_EPSILON);
SVG svg(path, bbox);
svg.draw_outline(outline, "green", stroke_width);
svg.draw_outline(overhang, "blue", stroke_width);
for (const DistanceField::UnsupportedCell &cell : unsupported_points)
svg.draw(cell.loc, "cyan", coord_t(stroke_width));
for (const Point &pt : points)
svg.draw(pt, "red", coord_t(stroke_width));
}
#endif
DistanceField::DistanceField(const coord_t& radius, const Polygons& current_outline, const BoundingBox& current_outlines_bbox, const Polygons& current_overhang) :
m_cell_size(radius / radius_per_cell_size),
m_supporting_radius(radius),
m_unsupported_points_bbox(current_outlines_bbox)
{
m_supporting_radius2 = Slic3r::sqr(int64_t(radius));
// Sample source polygons with a regular grid sampling pattern.
const BoundingBox overhang_bbox = get_extents(current_overhang);
for (const ExPolygon &expoly : union_ex(current_overhang)) {
const Points sampled_points = sample_grid_pattern(expoly, m_cell_size, overhang_bbox);
const size_t unsupported_points_prev_size = m_unsupported_points.size();
m_unsupported_points.resize(unsupported_points_prev_size + sampled_points.size());
tbb::parallel_for(tbb::blocked_range<size_t>(0, sampled_points.size()), [&self = *this, &expoly = std::as_const(expoly), &sampled_points = std::as_const(sampled_points), &unsupported_points_prev_size = std::as_const(unsupported_points_prev_size)](const tbb::blocked_range<size_t> &range) -> void {
for (size_t sp_idx = range.begin(); sp_idx < range.end(); ++sp_idx) {
const Point &sp = sampled_points[sp_idx];
// Find a squared distance to the source expolygon boundary.
double d2 = std::numeric_limits<double>::max();
for (size_t icontour = 0; icontour <= expoly.holes.size(); ++icontour) {
const Polygon &contour = icontour == 0 ? expoly.contour : expoly.holes[icontour - 1];
if (contour.size() > 2) {
Point prev = contour.points.back();
for (const Point &p2 : contour.points) {
d2 = std::min(d2, Line::distance_to_squared(sp, prev, p2));
prev = p2;
}
}
}
self.m_unsupported_points[unsupported_points_prev_size + sp_idx] = {sp, coord_t(std::sqrt(d2))};
assert(self.m_unsupported_points_bbox.contains(sp));
}
}); // end of parallel_for
}
std::stable_sort(m_unsupported_points.begin(), m_unsupported_points.end(), [&radius](const UnsupportedCell &a, const UnsupportedCell &b) {
constexpr coord_t prime_for_hash = 191;
return std::abs(b.dist_to_boundary - a.dist_to_boundary) > radius ?
a.dist_to_boundary < b.dist_to_boundary :
(PointHash{}(a.loc) % prime_for_hash) < (PointHash{}(b.loc) % prime_for_hash);
});
m_unsupported_points_erased.resize(m_unsupported_points.size());
std::fill(m_unsupported_points_erased.begin(), m_unsupported_points_erased.end(), false);
m_unsupported_points_grid.initialize(m_unsupported_points, [&self = std::as_const(*this)](const Point &p) -> Point { return self.to_grid_point(p); });
// Because the distance between two points is at least one axis equal to m_cell_size, every cell
// in m_unsupported_points_grid contains exactly one point.
assert(m_unsupported_points.size() == m_unsupported_points_grid.size());
#ifdef LIGHTNING_DISTANCE_FIELD_DEBUG_OUTPUT
{
static int iRun = 0;
export_distance_field_to_svg(debug_out_path("FillLightning-DistanceField-%d.svg", iRun++), current_outline, current_overhang, m_unsupported_points);
}
#endif
}
void DistanceField::update(const Point& to_node, const Point& added_leaf)
{
Vec2d v = (added_leaf - to_node).cast<double>();
auto l2 = v.squaredNorm();
Vec2d extent = Vec2d(-v.y(), v.x()) * m_supporting_radius / sqrt(l2);
BoundingBox grid;
{
Point diagonal(m_supporting_radius, m_supporting_radius);
Point iextent(extent.cast<coord_t>());
grid = BoundingBox(added_leaf - diagonal, added_leaf + diagonal);
grid.merge(to_node - iextent);
grid.merge(to_node + iextent);
grid.merge(added_leaf - iextent);
grid.merge(added_leaf + iextent);
// Clip grid by m_unsupported_points_bbox. Mainly to ensure that grid.min is a non-negative value.
grid.min.x() = std::max(grid.min.x(), m_unsupported_points_bbox.min.x());
grid.min.y() = std::max(grid.min.y(), m_unsupported_points_bbox.min.y());
grid.max.x() = std::min(grid.max.x(), m_unsupported_points_bbox.max.x());
grid.max.y() = std::min(grid.max.y(), m_unsupported_points_bbox.max.y());
grid.min = this->to_grid_point(grid.min);
grid.max = this->to_grid_point(grid.max);
}
Point grid_addr;
Point grid_loc;
for (grid_addr.y() = grid.min.y(); grid_addr.y() <= grid.max.y(); ++grid_addr.y()) {
for (grid_addr.x() = grid.min.x(); grid_addr.x() <= grid.max.x(); ++grid_addr.x()) {
grid_loc = this->from_grid_point(grid_addr);
// Test inside a circle at the new leaf.
if ((grid_loc - added_leaf).cast<int64_t>().squaredNorm() > m_supporting_radius2) {
// Not inside a circle at the end of the new leaf.
// Test inside a rotated rectangle.
Vec2d vx = (grid_loc - to_node).cast<double>();
double d = v.dot(vx);
if (d >= 0 && d <= l2) {
d = extent.dot(vx);
if (d < -1. || d > 1.)
// Not inside a rotated rectangle.
continue;
}
}
// Inside a circle at the end of the new leaf, or inside a rotated rectangle.
// Remove unsupported leafs at this grid location.
if (const size_t cell_idx = m_unsupported_points_grid.find_cell_idx(grid_addr); cell_idx != std::numeric_limits<size_t>::max()) {
const UnsupportedCell &cell = m_unsupported_points[cell_idx];
if ((cell.loc - added_leaf).cast<int64_t>().squaredNorm() <= m_supporting_radius2) {
m_unsupported_points_erased[cell_idx] = true;
m_unsupported_points_grid.mark_erased(grid_addr);
}
}
}
}
}
#if 0
void DistanceField::update(const Point &to_node, const Point &added_leaf)
{
const Point supporting_radius_point(m_supporting_radius, m_supporting_radius);
const BoundingBox grid(this->to_grid_point(added_leaf - supporting_radius_point), this->to_grid_point(added_leaf + supporting_radius_point));
for (coord_t grid_y = grid.min.y(); grid_y <= grid.max.y(); ++grid_y) {
for (coord_t grid_x = grid.min.x(); grid_x <= grid.max.x(); ++grid_x) {
if (auto it = m_unsupported_points_grid.find({grid_x, grid_y}); it != m_unsupported_points_grid.end()) {
std::list<UnsupportedCell>::iterator &list_it = it->second;
UnsupportedCell &cell = *list_it;
if ((cell.loc - added_leaf).cast<int64_t>().squaredNorm() <= m_supporting_radius2) {
m_unsupported_points.erase(list_it);
m_unsupported_points_grid.erase(it);
}
}
}
}
}
#endif
} // namespace Slic3r::FillLightning

View File

@@ -0,0 +1,209 @@
//Copyright (c) 2021 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#ifndef LIGHTNING_DISTANCE_FIELD_H
#define LIGHTNING_DISTANCE_FIELD_H
#include "../../BoundingBox.hpp"
#include "../../Point.hpp"
#include "../../Polygon.hpp"
//#define LIGHTNING_DISTANCE_FIELD_DEBUG_OUTPUT
namespace Slic3r::FillLightning
{
/*!
* 2D field that maintains locations which need to be supported for Lightning
* Infill.
*
* This field contains a set of "cells", spaced out in a grid. Each cell
* maintains how far it is removed from the edge, which is used to determine
* how it gets supported by Lightning Infill.
*/
class DistanceField
{
public:
/*!
* Construct a new field to calculate Lightning Infill with.
* \param radius The radius of influence that an infill line is expected to
* support in the layer above.
* \param current_outline The total infill area on this layer.
* \param current_overhang The overhang that needs to be supported on this
* layer.
*/
DistanceField(const coord_t& radius, const Polygons& current_outline, const BoundingBox& current_outlines_bbox, const Polygons& current_overhang);
/*!
* Gets the next unsupported location to be supported by a new branch.
* \param p Output variable for the next point to support.
* \return ``true`` if successful, or ``false`` if there are no more points
* to consider.
*/
bool tryGetNextPoint(Point *out_unsupported_location, size_t *out_unsupported_cell_idx, const size_t start_idx = 0) const
{
for (size_t point_idx = start_idx; point_idx < m_unsupported_points.size(); ++point_idx) {
if (!m_unsupported_points_erased[point_idx]) {
*out_unsupported_cell_idx = point_idx;
*out_unsupported_location = m_unsupported_points[point_idx].loc;
return true;
}
}
return false;
}
/*!
* Update the distance field with a newly added branch.
*
* The branch is a line extending from \p to_node to \p added_leaf . This
* function updates the grid cells so that the distance field knows how far
* off it is from being supported by the current pattern. Grid points are
* updated with sampling points spaced out by the supporting radius along
* the line.
* \param to_node The node endpoint of the newly added branch.
* \param added_leaf The location of the leaf of the newly added branch,
* drawing a straight line to the node.
*/
void update(const Point& to_node, const Point& added_leaf);
protected:
/*!
* Spacing between grid points to consider supporting.
*/
coord_t m_cell_size;
/*!
* The radius of the area of the layer above supported by a point on a
* branch of a tree.
*/
coord_t m_supporting_radius;
int64_t m_supporting_radius2;
/*!
* Represents a small discrete area of infill that needs to be supported.
*/
struct UnsupportedCell
{
// The position of the center of this cell.
Point loc;
// How far this cell is removed from the ``current_outline`` polygon, the edge of the infill area.
coord_t dist_to_boundary;
};
/*!
* Cells which still need to be supported at some point.
*/
std::vector<UnsupportedCell> m_unsupported_points;
std::vector<bool> m_unsupported_points_erased;
/*!
* BoundingBox of all points in m_unsupported_points. Used for mapping of sign integer numbers to positive integer numbers.
*/
const BoundingBox m_unsupported_points_bbox;
/*!
* Links the unsupported points to a grid point, so that we can quickly look
* up the cell belonging to a certain position in the grid.
*/
class UnsupportedPointsGrid
{
public:
UnsupportedPointsGrid() = default;
void initialize(const std::vector<UnsupportedCell> &unsupported_points, const std::function<Point(const Point &)> &map_cell_to_grid)
{
if (unsupported_points.empty())
return;
BoundingBox unsupported_points_bbox;
for (const UnsupportedCell &cell : unsupported_points)
unsupported_points_bbox.merge(cell.loc);
m_size = unsupported_points.size();
m_grid_range = BoundingBox(map_cell_to_grid(unsupported_points_bbox.min), map_cell_to_grid(unsupported_points_bbox.max));
m_grid_size = m_grid_range.size() + Point::Ones();
m_data.assign(m_grid_size.y() * m_grid_size.x(), std::numeric_limits<size_t>::max());
m_data_erased.assign(m_grid_size.y() * m_grid_size.x(), true);
for (size_t cell_idx = 0; cell_idx < unsupported_points.size(); ++cell_idx) {
const size_t flat_idx = map_to_flat_array(map_cell_to_grid(unsupported_points[cell_idx].loc));
assert(m_data[flat_idx] == std::numeric_limits<size_t>::max());
m_data[flat_idx] = cell_idx;
m_data_erased[flat_idx] = false;
}
}
size_t size() const { return m_size; }
size_t find_cell_idx(const Point &grid_addr)
{
if (!m_grid_range.contains(grid_addr))
return std::numeric_limits<size_t>::max();
if (const size_t flat_idx = map_to_flat_array(grid_addr); !m_data_erased[flat_idx]) {
assert(m_data[flat_idx] != std::numeric_limits<size_t>::max());
return m_data[flat_idx];
}
return std::numeric_limits<size_t>::max();
}
void mark_erased(const Point &grid_addr)
{
assert(m_grid_range.contains(grid_addr));
if (!m_grid_range.contains(grid_addr))
return;
const size_t flat_idx = map_to_flat_array(grid_addr);
assert(!m_data_erased[flat_idx] && m_data[flat_idx] != std::numeric_limits<size_t>::max());
assert(m_size != 0);
m_data_erased[flat_idx] = true;
--m_size;
}
private:
size_t m_size = 0;
BoundingBox m_grid_range;
Point m_grid_size;
std::vector<size_t> m_data;
std::vector<bool> m_data_erased;
inline size_t map_to_flat_array(const Point &loc) const
{
const Point offset_loc = loc - m_grid_range.min;
const size_t flat_idx = m_grid_size.x() * offset_loc.y() + offset_loc.x();
assert(offset_loc.x() >= 0 && offset_loc.y() >= 0);
assert(flat_idx < size_t(m_grid_size.y() * m_grid_size.x()));
return flat_idx;
}
};
UnsupportedPointsGrid m_unsupported_points_grid;
/*!
* Maps the point to the grid coordinates.
*/
Point to_grid_point(const Point &point) const {
return (point - m_unsupported_points_bbox.min) / m_cell_size;
}
/*!
* Maps the point to the grid coordinates.
*/
Point from_grid_point(const Point &point) const {
return point * m_cell_size + m_unsupported_points_bbox.min;
}
#ifdef LIGHTNING_DISTANCE_FIELD_DEBUG_OUTPUT
friend void export_distance_field_to_svg(const std::string &path, const Polygons &outline, const Polygons &overhang, const std::vector<DistanceField::UnsupportedCell> &unsupported_points, const Points &points);
#endif
};
} // namespace Slic3r::FillLightning
#endif //LIGHTNING_DISTANCE_FIELD_H

View File

@@ -0,0 +1,142 @@
//Copyright (c) 2021 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#include "Generator.hpp"
#include "TreeNode.hpp"
#include "../../ClipperUtils.hpp"
#include "../../Layer.hpp"
#include "../../Print.hpp"
/* Possible future tasks/optimizations,etc.:
* - Improve connecting heuristic to favor connecting to shorter trees
* - Change which node of a tree is the root when that would be better in reconnectRoots.
* - (For implementation in Infill classes & elsewhere): Outline offset, infill-overlap & perimeter gaps.
* - Allow for polylines, i.e. merge Tims PR about polyline fixes
* - Unit Tests?
* - Optimization: let the square grid store the closest point on boundary
* - Optimization: only compute the closest dist to / point on boundary for the outer cells and flood-fill the rest
* - Make a pass with Arachne over the output. Somehow.
* - Generate all to-be-supported points at once instead of sequentially: See branch interlocking_gen PolygonUtils::spreadDots (Or work with sparse grids.)
* - Lots of magic values ... to many to parameterize. But are they the best?
* - Move more complex computations from Generator constructor to elsewhere.
*/
namespace Slic3r::FillLightning {
Generator::Generator(const PrintObject &print_object, const coordf_t fill_density, const std::function<void()> &throw_on_cancel_callback)
{
const PrintConfig &print_config = print_object.print()->config();
const PrintObjectConfig &object_config = print_object.config();
const PrintRegionConfig &region_config = print_object.shared_regions()->all_regions.front()->config();
const std::vector<double> &nozzle_diameters = print_config.nozzle_diameter.values;
double max_nozzle_diameter = *std::max_element(nozzle_diameters.begin(), nozzle_diameters.end());
// const int infill_extruder = region_config.infill_extruder.value;
const double default_infill_extrusion_width = Flow::auto_extrusion_width(FlowRole::frInfill, float(max_nozzle_diameter));
// Note: There's not going to be a layer below the first one, so the 'initial layer height' doesn't have to be taken into account.
const double layer_thickness = scaled<double>(object_config.layer_height.value);
m_infill_extrusion_width = scaled<float>(region_config.infill_extrusion_width.percent ? default_infill_extrusion_width * 0.01 * region_config.infill_extrusion_width :
region_config.infill_extrusion_width != 0. ? region_config.infill_extrusion_width :
default_infill_extrusion_width);
m_supporting_radius = coord_t(m_infill_extrusion_width * 100. / fill_density);
const double lightning_infill_overhang_angle = M_PI / 4; // 45 degrees
const double lightning_infill_prune_angle = M_PI / 4; // 45 degrees
const double lightning_infill_straightening_angle = M_PI / 4; // 45 degrees
m_wall_supporting_radius = coord_t(layer_thickness * std::tan(lightning_infill_overhang_angle));
m_prune_length = coord_t(layer_thickness * std::tan(lightning_infill_prune_angle));
m_straightening_max_distance = coord_t(layer_thickness * std::tan(lightning_infill_straightening_angle));
generateInitialInternalOverhangs(print_object, throw_on_cancel_callback);
generateTrees(print_object, throw_on_cancel_callback);
}
void Generator::generateInitialInternalOverhangs(const PrintObject &print_object, const std::function<void()> &throw_on_cancel_callback)
{
m_overhang_per_layer.resize(print_object.layers().size());
Polygons infill_area_above;
// Iterate from top to bottom, to subtract the overhang areas above from the overhang areas on the layer below, to get only overhang in the top layer where it is overhanging.
for (int layer_nr = int(print_object.layers().size()) - 1; layer_nr >= 0; --layer_nr) {
throw_on_cancel_callback();
Polygons infill_area_here;
for (const LayerRegion* layerm : print_object.get_layer(layer_nr)->regions())
for (const Surface& surface : layerm->fill_surfaces())
if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
append(infill_area_here, to_polygons(surface.expolygon));
infill_area_here = union_(infill_area_here);
// Remove the part of the infill area that is already supported by the walls.
Polygons overhang = diff(offset(infill_area_here, -float(m_wall_supporting_radius)), infill_area_above);
// Filter out unprintable polygons and near degenerated polygons (three almost collinear points and so).
overhang = opening(overhang, float(SCALED_EPSILON), float(SCALED_EPSILON));
m_overhang_per_layer[layer_nr] = overhang;
infill_area_above = std::move(infill_area_here);
}
}
const Layer& Generator::getTreesForLayer(const size_t& layer_id) const
{
assert(layer_id < m_lightning_layers.size());
return m_lightning_layers[layer_id];
}
void Generator::generateTrees(const PrintObject &print_object, const std::function<void()> &throw_on_cancel_callback)
{
m_lightning_layers.resize(print_object.layers().size());
std::vector<Polygons> infill_outlines(print_object.layers().size(), Polygons());
// For-each layer from top to bottom:
for (int layer_id = int(print_object.layers().size()) - 1; layer_id >= 0; layer_id--) {
throw_on_cancel_callback();
for (const LayerRegion *layerm : print_object.get_layer(layer_id)->regions())
for (const Surface &surface : layerm->fill_surfaces())
if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
append(infill_outlines[layer_id], to_polygons(surface.expolygon));
infill_outlines[layer_id] = union_(infill_outlines[layer_id]);
}
// For various operations its beneficial to quickly locate nearby features on the polygon:
const size_t top_layer_id = print_object.layers().size() - 1;
EdgeGrid::Grid outlines_locator(get_extents(infill_outlines[top_layer_id]).inflated(SCALED_EPSILON));
outlines_locator.create(infill_outlines[top_layer_id], locator_cell_size);
// For-each layer from top to bottom:
for (int layer_id = int(top_layer_id); layer_id >= 0; layer_id--) {
throw_on_cancel_callback();
Layer &current_lightning_layer = m_lightning_layers[layer_id];
const Polygons &current_outlines = infill_outlines[layer_id];
const BoundingBox &current_outlines_bbox = get_extents(current_outlines);
// register all trees propagated from the previous layer as to-be-reconnected
std::vector<NodeSPtr> to_be_reconnected_tree_roots = current_lightning_layer.tree_roots;
current_lightning_layer.generateNewTrees(m_overhang_per_layer[layer_id], current_outlines, current_outlines_bbox, outlines_locator, m_supporting_radius, m_wall_supporting_radius, throw_on_cancel_callback);
current_lightning_layer.reconnectRoots(to_be_reconnected_tree_roots, current_outlines, current_outlines_bbox, outlines_locator, m_supporting_radius, m_wall_supporting_radius);
// Initialize trees for next lower layer from the current one.
if (layer_id == 0)
return;
const Polygons &below_outlines = infill_outlines[layer_id - 1];
BoundingBox below_outlines_bbox = get_extents(below_outlines).inflated(SCALED_EPSILON);
if (const BoundingBox &outlines_locator_bbox = outlines_locator.bbox(); outlines_locator_bbox.defined)
below_outlines_bbox.merge(outlines_locator_bbox);
if (!current_lightning_layer.tree_roots.empty())
below_outlines_bbox.merge(get_extents(current_lightning_layer.tree_roots).inflated(SCALED_EPSILON));
outlines_locator.set_bbox(below_outlines_bbox);
outlines_locator.create(below_outlines, locator_cell_size);
std::vector<NodeSPtr>& lower_trees = m_lightning_layers[layer_id - 1].tree_roots;
for (auto& tree : current_lightning_layer.tree_roots)
tree->propagateToNextLayer(lower_trees, below_outlines, outlines_locator, m_prune_length, m_straightening_max_distance, locator_cell_size / 2);
}
}
} // namespace Slic3r::FillLightning

View File

@@ -0,0 +1,131 @@
//Copyright (c) 2021 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#ifndef LIGHTNING_GENERATOR_H
#define LIGHTNING_GENERATOR_H
#include "Layer.hpp"
#include <functional>
#include <memory>
#include <vector>
namespace Slic3r
{
class PrintObject;
namespace FillLightning
{
/*!
* Generates the Lightning Infill pattern.
*
* The lightning infill pattern is designed to use a minimal amount of material
* to support the top skin of the print, while still printing with reasonably
* consistently flowing lines. It sacrifices strength completely in favour of
* top surface quality and reduced print time / material usage.
*
* Lightning Infill is so named because the patterns it creates resemble a
* forked path with one main path and many small lines on the side. These paths
* grow out from the sides of the model just below where the top surface needs
* to be supported from the inside, so that minimal material is needed.
*
* This pattern is based on a paper called "Ribbed Support Vaults for 3D
* Printing of Hollowed Objects" by Tricard, Claux and Lefebvre:
* https://www.researchgate.net/publication/333808588_Ribbed_Support_Vaults_for_3D_Printing_of_Hollowed_Objects
*/
class Generator // "Just like Nicola used to make!"
{
public:
/*!
* Create a generator to fill a certain mesh with infill.
*
* This generator will pre-compute things in preparation of generating
* Lightning Infill for the infill areas in that mesh. The infill areas must
* already be calculated at this point.
*/
explicit Generator(const PrintObject &print_object, const coordf_t fill_density, const std::function<void()> &throw_on_cancel_callback);
/*!
* Get a tree of paths generated for a certain layer of the mesh.
*
* This tree represents the paths that must be traced to print the infill.
* \param layer_id The layer number to get the path tree for. This is within
* the range of layers of the mesh (not the global layer numbers).
* \return A tree structure representing paths to print to create the
* Lightning Infill pattern.
*/
const Layer& getTreesForLayer(const size_t& layer_id) const;
float infilll_extrusion_width() const { return m_infill_extrusion_width; }
protected:
/*!
* Calculate the overhangs above the infill areas that need to be supported
* by infill.
*
* Normally, overhangs are only generated for the outside of the model and
* only when support is generated. For this pattern, we also need to
* generate overhang areas for the inside of the model.
*/
void generateInitialInternalOverhangs(const PrintObject &print_object, const std::function<void()> &throw_on_cancel_callback);
/*!
* Calculate the tree structure of all layers.
*/
void generateTrees(const PrintObject &print_object, const std::function<void()> &throw_on_cancel_callback);
float m_infill_extrusion_width;
/*!
* How far each piece of infill can support skin in the layer above.
*/
coord_t m_supporting_radius;
/*!
* How far a wall can support the wall above it. If a wall completely
* supports the wall above it, no infill needs to support that.
*
* This is similar to the overhang distance calculated for support. It is
* determined by the lightning_infill_overhang_angle setting.
*/
coord_t m_wall_supporting_radius;
/*!
* How far each piece of infill can support other infill in the layer above.
*
* This may be different than \ref supporting_radius, because the infill is
* printed with one end floating in mid-air. This endpoint will sag more, so
* an infill line may need to be supported more than a skin line.
*/
coord_t m_prune_length;
/*!
* How far a line may be shifted in order to straighten the line out.
*
* Straightening the line reduces material and time usage and reduces
* accelerations needed to print the pattern. However it makes the infill
* weak if lines are partially suspended next to the line on the previous
* layer.
*/
coord_t m_straightening_max_distance;
/*!
* For each layer, the overhang that needs to be supported by the pattern.
*
* This is generated by \ref generateInitialInternalOverhangs.
*/
std::vector<Polygons> m_overhang_per_layer;
/*!
* For each layer, the generated lightning paths.
*
* This is generated by \ref generateTrees.
*/
std::vector<Layer> m_lightning_layers;
};
} // namespace FillLightning
} // namespace Slic3r
#endif // LIGHTNING_GENERATOR_H

View File

@@ -0,0 +1,448 @@
//Copyright (c) 2021 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#include "Layer.hpp" //The class we're implementing.
#include "DistanceField.hpp"
#include "TreeNode.hpp"
#include "../../ClipperUtils.hpp"
#include "../../Geometry.hpp"
#include "Utils.hpp"
#include <tbb/parallel_for.h>
#include <tbb/blocked_range2d.h>
#include <mutex>
namespace Slic3r::FillLightning {
coord_t Layer::getWeightedDistance(const Point& boundary_loc, const Point& unsupported_location)
{
return coord_t((boundary_loc - unsupported_location).cast<double>().norm());
}
Point GroundingLocation::p() const
{
assert(tree_node || boundary_location);
return tree_node ? tree_node->getLocation() : *boundary_location;
}
inline static Point to_grid_point(const Point &point, const BoundingBox &bbox)
{
return (point - bbox.min) / locator_cell_size;
}
void Layer::fillLocator(SparseNodeGrid &tree_node_locator, const BoundingBox& current_outlines_bbox)
{
std::function<void(NodeSPtr)> add_node_to_locator_func = [&tree_node_locator, &current_outlines_bbox](const NodeSPtr &node) {
tree_node_locator.insert(std::make_pair(to_grid_point(node->getLocation(), current_outlines_bbox), node));
};
for (auto& tree : tree_roots)
tree->visitNodes(add_node_to_locator_func);
}
void Layer::generateNewTrees
(
const Polygons& current_overhang,
const Polygons& current_outlines,
const BoundingBox& current_outlines_bbox,
const EdgeGrid::Grid& outlines_locator,
const coord_t supporting_radius,
const coord_t wall_supporting_radius,
const std::function<void()> &throw_on_cancel_callback
)
{
DistanceField distance_field(supporting_radius, current_outlines, current_outlines_bbox, current_overhang);
throw_on_cancel_callback();
SparseNodeGrid tree_node_locator;
fillLocator(tree_node_locator, current_outlines_bbox);
// Until no more points need to be added to support all:
// Determine next point from tree/outline areas via distance-field
size_t unsupported_cell_idx = 0;
Point unsupported_location;
while (distance_field.tryGetNextPoint(&unsupported_location, &unsupported_cell_idx, unsupported_cell_idx)) {
throw_on_cancel_callback();
GroundingLocation grounding_loc = getBestGroundingLocation(
unsupported_location, current_outlines, current_outlines_bbox, outlines_locator, supporting_radius, wall_supporting_radius, tree_node_locator);
NodeSPtr new_parent;
NodeSPtr new_child;
this->attach(unsupported_location, grounding_loc, new_child, new_parent);
tree_node_locator.insert(std::make_pair(to_grid_point(new_child->getLocation(), current_outlines_bbox), new_child));
if (new_parent)
tree_node_locator.insert(std::make_pair(to_grid_point(new_parent->getLocation(), current_outlines_bbox), new_parent));
// update distance field
distance_field.update(grounding_loc.p(), unsupported_location);
}
#ifdef LIGHTNING_TREE_NODE_DEBUG_OUTPUT
{
static int iRun = 0;
export_to_svg(debug_out_path("FillLightning-TreeNodes-%d.svg", iRun++), current_outlines, this->tree_roots);
}
#endif /* LIGHTNING_TREE_NODE_DEBUG_OUTPUT */
}
static bool polygonCollidesWithLineSegment(const Point &from, const Point &to, const EdgeGrid::Grid &loc_to_line)
{
struct Visitor {
explicit Visitor(const EdgeGrid::Grid &grid, const Line &line) : grid(grid), line(line) {}
bool operator()(coord_t iy, coord_t ix) {
// Called with a row and colum of the grid cell, which is intersected by a line.
auto cell_data_range = grid.cell_data_range(iy, ix);
for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second; ++ it_contour_and_segment) {
// End points of the line segment and their vector.
auto segment = grid.segment(*it_contour_and_segment);
if (Geometry::segments_intersect(segment.first, segment.second, line.a, line.b)) {
this->intersect = true;
return false;
}
}
// Continue traversing the grid along the edge.
return true;
}
const EdgeGrid::Grid& grid;
Line line;
bool intersect = false;
} visitor(loc_to_line, {from, to});
loc_to_line.visit_cells_intersecting_line(from, to, visitor);
return visitor.intersect;
}
GroundingLocation Layer::getBestGroundingLocation
(
const Point& unsupported_location,
const Polygons& current_outlines,
const BoundingBox& current_outlines_bbox,
const EdgeGrid::Grid& outline_locator,
const coord_t supporting_radius,
const coord_t wall_supporting_radius,
const SparseNodeGrid& tree_node_locator,
const NodeSPtr& exclude_tree
)
{
// Closest point on current_outlines to unsupported_location:
Point node_location;
{
double d2 = std::numeric_limits<double>::max();
for (const Polygon &contour : current_outlines)
if (contour.size() > 2) {
Point prev = contour.points.back();
for (const Point &p2 : contour.points) {
Point closest_point;
if (double d = line_alg::distance_to_squared(Line{prev, p2}, unsupported_location, &closest_point); d < d2) {
d2 = d;
node_location = closest_point;
}
prev = p2;
}
}
}
const auto within_dist = coord_t((node_location - unsupported_location).cast<double>().norm());
NodeSPtr sub_tree{nullptr};
coord_t current_dist = getWeightedDistance(node_location, unsupported_location);
if (current_dist >= wall_supporting_radius) { // Only reconnect tree roots to other trees if they are not already close to the outlines.
const coord_t search_radius = std::min(current_dist, within_dist);
BoundingBox region(unsupported_location - Point(search_radius, search_radius), unsupported_location + Point(search_radius + locator_cell_size, search_radius + locator_cell_size));
region.min = to_grid_point(region.min, current_outlines_bbox);
region.max = to_grid_point(region.max, current_outlines_bbox);
Point current_dist_grid_addr{std::numeric_limits<coord_t>::lowest(), std::numeric_limits<coord_t>::lowest()};
std::mutex current_dist_mutex;
tbb::parallel_for(tbb::blocked_range2d<coord_t>(region.min.y(), region.max.y(), region.min.x(), region.max.x()), [&current_dist, current_dist_copy = current_dist, &current_dist_mutex, &sub_tree, &current_dist_grid_addr, &exclude_tree = std::as_const(exclude_tree), &outline_locator = std::as_const(outline_locator), &supporting_radius = std::as_const(supporting_radius), &tree_node_locator = std::as_const(tree_node_locator), &unsupported_location = std::as_const(unsupported_location)](const tbb::blocked_range2d<coord_t> &range) -> void {
for (coord_t grid_addr_y = range.rows().begin(); grid_addr_y < range.rows().end(); ++grid_addr_y)
for (coord_t grid_addr_x = range.cols().begin(); grid_addr_x < range.cols().end(); ++grid_addr_x) {
const Point local_grid_addr{grid_addr_x, grid_addr_y};
NodeSPtr local_sub_tree{nullptr};
coord_t local_current_dist = current_dist_copy;
const auto it_range = tree_node_locator.equal_range(local_grid_addr);
for (auto it = it_range.first; it != it_range.second; ++it) {
const NodeSPtr candidate_sub_tree = it->second.lock();
if ((candidate_sub_tree && candidate_sub_tree != exclude_tree) &&
!(exclude_tree && exclude_tree->hasOffspring(candidate_sub_tree)) &&
!polygonCollidesWithLineSegment(unsupported_location, candidate_sub_tree->getLocation(), outline_locator)) {
if (const coord_t candidate_dist = candidate_sub_tree->getWeightedDistance(unsupported_location, supporting_radius); candidate_dist < local_current_dist) {
local_current_dist = candidate_dist;
local_sub_tree = candidate_sub_tree;
}
}
}
// To always get the same result in a parallel version as in a non-parallel version,
// we need to preserve that for the same current_dist, we select the same sub_tree
// as in the non-parallel version. For this purpose, inside the variable
// current_dist_grid_addr is stored from with 2D grid position assigned sub_tree comes.
// And when there are two sub_tree with the same current_dist, one which will be found
// the first in the non-parallel version is selected.
{
std::lock_guard<std::mutex> lock(current_dist_mutex);
if (local_current_dist < current_dist ||
(local_current_dist == current_dist && (grid_addr_y < current_dist_grid_addr.y() ||
(grid_addr_y == current_dist_grid_addr.y() && grid_addr_x < current_dist_grid_addr.x())))) {
current_dist = local_current_dist;
sub_tree = local_sub_tree;
current_dist_grid_addr = local_grid_addr;
}
}
}
}); // end of parallel_for
}
return ! sub_tree ?
GroundingLocation{ nullptr, node_location } :
GroundingLocation{ sub_tree, std::optional<Point>() };
}
bool Layer::attach(
const Point& unsupported_location,
const GroundingLocation& grounding_loc,
NodeSPtr& new_child,
NodeSPtr& new_root)
{
// Update trees & distance fields.
if (grounding_loc.boundary_location) {
new_root = Node::create(grounding_loc.p(), std::make_optional(grounding_loc.p()));
new_child = new_root->addChild(unsupported_location);
tree_roots.push_back(new_root);
return true;
} else {
new_child = grounding_loc.tree_node->addChild(unsupported_location);
return false;
}
}
void Layer::reconnectRoots
(
std::vector<NodeSPtr>& to_be_reconnected_tree_roots,
const Polygons& current_outlines,
const BoundingBox& current_outlines_bbox,
const EdgeGrid::Grid& outline_locator,
const coord_t supporting_radius,
const coord_t wall_supporting_radius
)
{
constexpr coord_t tree_connecting_ignore_offset = 100;
SparseNodeGrid tree_node_locator;
fillLocator(tree_node_locator, current_outlines_bbox);
const coord_t within_max_dist = outline_locator.resolution() * 2;
for (const auto &root_ptr : to_be_reconnected_tree_roots)
{
auto old_root_it = std::find(tree_roots.begin(), tree_roots.end(), root_ptr);
if (root_ptr->getLastGroundingLocation())
{
const Point& ground_loc = *root_ptr->getLastGroundingLocation();
if (ground_loc != root_ptr->getLocation())
{
Point new_root_pt;
// Find an intersection of the line segment from root_ptr->getLocation() to ground_loc, at within_max_dist from ground_loc.
if (lineSegmentPolygonsIntersection(root_ptr->getLocation(), ground_loc, outline_locator, new_root_pt, within_max_dist)) {
auto new_root = Node::create(new_root_pt, new_root_pt);
root_ptr->addChild(new_root);
new_root->reroot();
tree_node_locator.insert(std::make_pair(to_grid_point(new_root->getLocation(), current_outlines_bbox), new_root));
*old_root_it = std::move(new_root); // replace old root with new root
continue;
}
}
}
const coord_t tree_connecting_ignore_width = wall_supporting_radius - tree_connecting_ignore_offset; // Ideally, the boundary size in which the valence rule is ignored would be configurable.
GroundingLocation ground =
getBestGroundingLocation
(
root_ptr->getLocation(),
current_outlines,
current_outlines_bbox,
outline_locator,
supporting_radius,
tree_connecting_ignore_width,
tree_node_locator,
root_ptr
);
if (ground.boundary_location)
{
if (*ground.boundary_location == root_ptr->getLocation())
continue; // Already on the boundary.
auto new_root = Node::create(ground.p(), ground.p());
auto attach_ptr = root_ptr->closestNode(new_root->getLocation());
attach_ptr->reroot();
new_root->addChild(attach_ptr);
tree_node_locator.insert(std::make_pair(to_grid_point(new_root->getLocation(), current_outlines_bbox), new_root));
*old_root_it = std::move(new_root); // replace old root with new root
}
else
{
assert(ground.tree_node);
assert(ground.tree_node != root_ptr);
assert(!root_ptr->hasOffspring(ground.tree_node));
assert(!ground.tree_node->hasOffspring(root_ptr));
auto attach_ptr = root_ptr->closestNode(ground.tree_node->getLocation());
attach_ptr->reroot();
ground.tree_node->addChild(attach_ptr);
// remove old root
*old_root_it = std::move(tree_roots.back());
tree_roots.pop_back();
}
}
}
#if 0
/*!
* Moves the point \p from onto the nearest polygon or leaves the point as-is, when the comb boundary is not within the root of \p max_dist2 distance.
* Given a \p distance more than zero, the point will end up inside, and conversely outside.
* When the point is already in/outside by more than \p distance, \p from is unaltered, but the polygon is returned.
* When the point is in/outside by less than \p distance, \p from is moved to the correct place.
* Implementation assumes moving inside, but moving outside should just as well be possible.
*
* \param polygons The polygons onto which to move the point
* \param from[in,out] The point to move.
* \param distance The distance by which to move the point.
* \param max_dist2 The squared maximal allowed distance from the point to the nearest polygon.
* \return The index to the polygon onto which we have moved the point.
*/
static unsigned int moveInside(const Polygons& polygons, Point& from, int distance, int64_t maxDist2)
{
Point ret = from;
int64_t bestDist2 = std::numeric_limits<int64_t>::max();
auto bestPoly = static_cast<unsigned int>(-1);
bool is_already_on_correct_side_of_boundary = false; // whether [from] is already on the right side of the boundary
for (unsigned int poly_idx = 0; poly_idx < polygons.size(); poly_idx++)
{
const Polygon &poly = polygons[poly_idx];
if (poly.size() < 2)
continue;
Point p0 = poly[poly.size() - 2];
Point p1 = poly.back();
// because we compare with vSize2 here (no division by zero), we also need to compare by vSize2 inside the loop
// to avoid integer rounding edge cases
bool projected_p_beyond_prev_segment = (p1 - p0).cast<int64_t>().dot((from - p0).cast<int64_t>()) >= (p1 - p0).cast<int64_t>().squaredNorm();
for (const Point& p2 : poly)
{
// X = A + Normal(B-A) * (((B-A) dot (P-A)) / VSize(B-A));
// = A + (B-A) * ((B-A) dot (P-A)) / VSize2(B-A);
// X = P projected on AB
const Point& a = p1;
const Point& b = p2;
const Point& p = from;
Point ab = b - a;
Point ap = p - a;
int64_t ab_length2 = ab.cast<int64_t>().squaredNorm();
if (ab_length2 <= 0) //A = B, i.e. the input polygon had two adjacent points on top of each other.
{
p1 = p2; //Skip only one of the points.
continue;
}
int64_t dot_prod = ab.cast<int64_t>().dot(ap.cast<int64_t>());
if (dot_prod <= 0) // x is projected to before ab
{
if (projected_p_beyond_prev_segment)
{ // case which looks like: > .
projected_p_beyond_prev_segment = false;
Point& x = p1;
int64_t dist2 = (x - p).cast<int64_t>().squaredNorm();
if (dist2 < bestDist2)
{
bestDist2 = dist2;
bestPoly = poly_idx;
if (distance == 0) {
ret = x;
} else {
// inward direction irrespective of sign of [distance]
Point inward_dir = perp((ab.cast<double>().normalized() * scaled<double>(10.0) + (p1 - p0).cast<double>().normalized() * scaled<double>(10.0)).eval()).cast<coord_t>();
// MM2INT(10.0) to retain precision for the eventual normalization
ret = x + (inward_dir.cast<double>().normalized() * distance).cast<coord_t>();
is_already_on_correct_side_of_boundary = inward_dir.cast<int64_t>().dot((p - x).cast<int64_t>()) * distance >= 0;
}
}
}
else
{
projected_p_beyond_prev_segment = false;
p0 = p1;
p1 = p2;
continue;
}
}
else if (dot_prod >= ab_length2) // x is projected to beyond ab
{
projected_p_beyond_prev_segment = true;
p0 = p1;
p1 = p2;
continue;
}
else
{ // x is projected to a point properly on the line segment (not onto a vertex). The case which looks like | .
projected_p_beyond_prev_segment = false;
Point x = (a.cast<int64_t>() + ab.cast<int64_t>() * dot_prod / ab_length2).cast<coord_t>();
int64_t dist2 = (p - x).cast<int64_t>().squaredNorm();
if (dist2 < bestDist2)
{
bestDist2 = dist2;
bestPoly = poly_idx;
if (distance == 0) { ret = x; }
else
{
// inward or outward depending on the sign of [distance]
Vec2d inward_dir = perp((ab.cast<double>().normalized() * distance).eval());
ret = x + inward_dir.cast<coord_t>();
is_already_on_correct_side_of_boundary = inward_dir.dot((p - x).cast<double>()) >= 0;
}
}
}
p0 = p1;
p1 = p2;
}
}
if (is_already_on_correct_side_of_boundary) // when the best point is already inside and we're moving inside, or when the best point is already outside and we're moving outside
{
if (bestDist2 < distance * distance)
{
from = ret;
}
else
{
// from = from; // original point stays unaltered. It is already inside by enough distance
}
return bestPoly;
}
else if (bestDist2 < maxDist2)
{
from = ret;
return bestPoly;
}
return static_cast<unsigned int>(-1);
}
#endif
Polylines Layer::convertToLines(const Polygons& limit_to_outline, const coord_t line_overlap) const
{
if (tree_roots.empty())
return {};
Polylines result_lines;
for (const auto &tree : tree_roots)
tree->convertToPolylines(result_lines, line_overlap);
return intersection_pl(result_lines, limit_to_outline);
}
} // namespace Slic3r::Lightning

View File

@@ -0,0 +1,92 @@
//Copyright (c) 2021 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#ifndef LIGHTNING_LAYER_H
#define LIGHTNING_LAYER_H
#include "../../EdgeGrid.hpp"
#include "../../Polygon.hpp"
#include <memory>
#include <vector>
#include <list>
#include <unordered_map>
#include <optional>
namespace Slic3r::FillLightning
{
class Node;
using NodeSPtr = std::shared_ptr<Node>;
using SparseNodeGrid = std::unordered_multimap<Point, std::weak_ptr<Node>, PointHash>;
struct GroundingLocation
{
NodeSPtr tree_node; //!< not null if the gounding location is on a tree
std::optional<Point> boundary_location; //!< in case the gounding location is on the boundary
Point p() const;
};
/*!
* A layer of the lightning fill.
*
* Contains the trees to be printed and propagated to the next layer below.
*/
class Layer
{
public:
std::vector<NodeSPtr> tree_roots;
void generateNewTrees
(
const Polygons& current_overhang,
const Polygons& current_outlines,
const BoundingBox& current_outlines_bbox,
const EdgeGrid::Grid& outline_locator,
coord_t supporting_radius,
coord_t wall_supporting_radius,
const std::function<void()> &throw_on_cancel_callback
);
/*! Determine & connect to connection point in tree/outline.
* \param min_dist_from_boundary_for_tree If the unsupported point is closer to the boundary than this then don't consider connecting it to a tree
*/
GroundingLocation getBestGroundingLocation
(
const Point& unsupported_location,
const Polygons& current_outlines,
const BoundingBox& current_outlines_bbox,
const EdgeGrid::Grid& outline_locator,
coord_t supporting_radius,
coord_t wall_supporting_radius,
const SparseNodeGrid& tree_node_locator,
const NodeSPtr& exclude_tree = nullptr
);
/*!
* \param[out] new_child The new child node introduced
* \param[out] new_root The new root node if one had been made
* \return Whether a new root was added
*/
bool attach(const Point& unsupported_location, const GroundingLocation& ground, NodeSPtr& new_child, NodeSPtr& new_root);
void reconnectRoots
(
std::vector<NodeSPtr>& to_be_reconnected_tree_roots,
const Polygons& current_outlines,
const BoundingBox& current_outlines_bbox,
const EdgeGrid::Grid& outline_locator,
coord_t supporting_radius,
coord_t wall_supporting_radius
);
Polylines convertToLines(const Polygons& limit_to_outline, coord_t line_overlap) const;
coord_t getWeightedDistance(const Point& boundary_loc, const Point& unsupported_location);
void fillLocator(SparseNodeGrid& tree_node_locator, const BoundingBox& current_outlines_bbox);
};
} // namespace Slic3r::FillLightning
#endif // LIGHTNING_LAYER_H

View File

@@ -0,0 +1,428 @@
//Copyright (c) 2021 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#include "TreeNode.hpp"
#include "../../Geometry.hpp"
namespace Slic3r::FillLightning {
coord_t Node::getWeightedDistance(const Point& unsupported_location, const coord_t& supporting_radius) const
{
constexpr coord_t min_valence_for_boost = 0;
constexpr coord_t max_valence_for_boost = 4;
constexpr coord_t valence_boost_multiplier = 4;
const size_t valence = (!m_is_root) + m_children.size();
const coord_t valence_boost = (min_valence_for_boost < valence && valence < max_valence_for_boost) ? valence_boost_multiplier * supporting_radius : 0;
const auto dist_here = coord_t((getLocation() - unsupported_location).cast<double>().norm());
return dist_here - valence_boost;
}
bool Node::hasOffspring(const NodeSPtr& to_be_checked) const
{
if (to_be_checked == shared_from_this())
return true;
for (auto& child_ptr : m_children)
if (child_ptr->hasOffspring(to_be_checked))
return true;
return false;
}
NodeSPtr Node::addChild(const Point& child_loc)
{
assert(m_p != child_loc);
NodeSPtr child = Node::create(child_loc);
return addChild(child);
}
NodeSPtr Node::addChild(NodeSPtr& new_child)
{
assert(new_child != shared_from_this());
//assert(p != new_child->p); // NOTE: No problem for now. Issue to solve later. Maybe even afetr final. Low prio.
m_children.push_back(new_child);
new_child->m_parent = shared_from_this();
new_child->m_is_root = false;
return new_child;
}
void Node::propagateToNextLayer(
std::vector<NodeSPtr>& next_trees,
const Polygons& next_outlines,
const EdgeGrid::Grid& outline_locator,
const coord_t prune_distance,
const coord_t smooth_magnitude,
const coord_t max_remove_colinear_dist) const
{
auto tree_below = deepCopy();
tree_below->prune(prune_distance);
tree_below->straighten(smooth_magnitude, max_remove_colinear_dist);
if (tree_below->realign(next_outlines, outline_locator, next_trees))
next_trees.push_back(tree_below);
}
// NOTE: Depth-first, as currently implemented.
// Skips the root (because that has no root itself), but all initial nodes will have the root point anyway.
void Node::visitBranches(const std::function<void(const Point&, const Point&)>& visitor) const
{
for (const auto& node : m_children) {
assert(node->m_parent.lock() == shared_from_this());
visitor(m_p, node->m_p);
node->visitBranches(visitor);
}
}
// NOTE: Depth-first, as currently implemented.
void Node::visitNodes(const std::function<void(NodeSPtr)>& visitor)
{
visitor(shared_from_this());
for (const auto& node : m_children) {
assert(node->m_parent.lock() == shared_from_this());
node->visitNodes(visitor);
}
}
Node::Node(const Point& p, const std::optional<Point>& last_grounding_location /*= std::nullopt*/) :
m_is_root(true), m_p(p), m_last_grounding_location(last_grounding_location)
{}
NodeSPtr Node::deepCopy() const
{
NodeSPtr local_root = Node::create(m_p);
local_root->m_is_root = m_is_root;
if (m_is_root)
{
local_root->m_last_grounding_location = m_last_grounding_location.value_or(m_p);
}
local_root->m_children.reserve(m_children.size());
for (const auto& node : m_children)
{
NodeSPtr child = node->deepCopy();
child->m_parent = local_root;
local_root->m_children.push_back(child);
}
return local_root;
}
void Node::reroot(const NodeSPtr &new_parent)
{
if (! m_is_root) {
auto old_parent = m_parent.lock();
old_parent->reroot(shared_from_this());
m_children.push_back(old_parent);
}
if (new_parent) {
m_children.erase(std::remove(m_children.begin(), m_children.end(), new_parent), m_children.end());
m_is_root = false;
m_parent = new_parent;
} else {
m_is_root = true;
m_parent.reset();
}
}
NodeSPtr Node::closestNode(const Point& loc)
{
NodeSPtr result = shared_from_this();
auto closest_dist2 = coord_t((m_p - loc).cast<double>().norm());
for (const auto& child : m_children) {
NodeSPtr candidate_node = child->closestNode(loc);
const auto child_dist2 = coord_t((candidate_node->m_p - loc).cast<double>().norm());
if (child_dist2 < closest_dist2) {
closest_dist2 = child_dist2;
result = candidate_node;
}
}
return result;
}
bool lineSegmentPolygonsIntersection(const Point& a, const Point& b, const EdgeGrid::Grid& outline_locator, Point& result, const coord_t within_max_dist)
{
struct Visitor {
bool operator()(coord_t iy, coord_t ix) {
// Called with a row and colum of the grid cell, which is intersected by a line.
auto cell_data_range = grid.cell_data_range(iy, ix);
for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second; ++it_contour_and_segment) {
// End points of the line segment and their vector.
auto segment = grid.segment(*it_contour_and_segment);
if (Vec2d ip; Geometry::segment_segment_intersection(segment.first.cast<double>(), segment.second.cast<double>(), this->line_a, this->line_b, ip))
if (double d = (this->intersection_pt - this->line_b).squaredNorm(); d < d2min) {
this->d2min = d;
this->intersection_pt = ip;
}
}
// Continue traversing the grid along the edge.
return true;
}
const EdgeGrid::Grid& grid;
Vec2d line_a;
Vec2d line_b;
Vec2d intersection_pt;
double d2min { std::numeric_limits<double>::max() };
} visitor { outline_locator, a.cast<double>(), b.cast<double>() };
outline_locator.visit_cells_intersecting_line(a, b, visitor);
if (visitor.d2min < double(within_max_dist) * double(within_max_dist)) {
result = Point(visitor.intersection_pt);
return true;
}
return false;
}
bool Node::realign(const Polygons& outlines, const EdgeGrid::Grid& outline_locator, std::vector<NodeSPtr>& rerooted_parts)
{
if (outlines.empty())
return false;
if (contains(outlines, m_p)) {
// Only keep children that have an unbroken connection to here, realign will put the rest in rerooted parts due to recursion:
Point coll;
bool reground_me = false;
m_children.erase(std::remove_if(m_children.begin(), m_children.end(), [&](const NodeSPtr &child) {
bool connect_branch = child->realign(outlines, outline_locator, rerooted_parts);
// Find an intersection of the line segment from p to child->p, at maximum outline_locator.resolution() * 2 distance from p.
if (connect_branch && lineSegmentPolygonsIntersection(child->m_p, m_p, outline_locator, coll, outline_locator.resolution() * 2)) {
child->m_last_grounding_location.reset();
child->m_parent.reset();
child->m_is_root = true;
rerooted_parts.push_back(child);
reground_me = true;
connect_branch = false;
}
return ! connect_branch;
}), m_children.end());
if (reground_me)
m_last_grounding_location.reset();
return true;
}
// 'Lift' any decendants out of this tree:
for (auto& child : m_children)
if (child->realign(outlines, outline_locator, rerooted_parts)) {
child->m_last_grounding_location = m_p;
child->m_parent.reset();
child->m_is_root = true;
rerooted_parts.push_back(child);
}
m_children.clear();
return false;
}
void Node::straighten(const coord_t magnitude, const coord_t max_remove_colinear_dist)
{
straighten(magnitude, m_p, 0, int64_t(max_remove_colinear_dist) * int64_t(max_remove_colinear_dist));
}
Node::RectilinearJunction Node::straighten(
const coord_t magnitude,
const Point& junction_above,
const coord_t accumulated_dist,
const int64_t max_remove_colinear_dist2)
{
constexpr coord_t junction_magnitude_factor_numerator = 3;
constexpr coord_t junction_magnitude_factor_denominator = 4;
const coord_t junction_magnitude = magnitude * junction_magnitude_factor_numerator / junction_magnitude_factor_denominator;
if (m_children.size() == 1)
{
auto child_p = m_children.front();
auto child_dist = coord_t((m_p - child_p->m_p).cast<double>().norm());
RectilinearJunction junction_below = child_p->straighten(magnitude, junction_above, accumulated_dist + child_dist, max_remove_colinear_dist2);
coord_t total_dist_to_junction_below = junction_below.total_recti_dist;
const Point& a = junction_above;
Point b = junction_below.junction_loc;
if (a != b) // should always be true!
{
Point ab = b - a;
Point destination = (a.cast<int64_t>() + ab.cast<int64_t>() * int64_t(accumulated_dist) / std::max(int64_t(1), int64_t(total_dist_to_junction_below))).cast<coord_t>();
if ((destination - m_p).cast<int64_t>().squaredNorm() <= int64_t(magnitude) * int64_t(magnitude))
m_p = destination;
else
m_p += ((destination - m_p).cast<double>().normalized() * magnitude).cast<coord_t>();
}
{ // remove nodes on linear segments
constexpr coord_t close_enough = 10;
child_p = m_children.front(); //recursive call to straighten might have removed the child
const NodeSPtr& parent_node = m_parent.lock();
if (parent_node &&
(child_p->m_p - parent_node->m_p).cast<int64_t>().squaredNorm() < max_remove_colinear_dist2 &&
Line::distance_to_squared(m_p, parent_node->m_p, child_p->m_p) < close_enough * close_enough) {
child_p->m_parent = m_parent;
for (auto& sibling : parent_node->m_children)
{ // find this node among siblings
if (sibling == shared_from_this())
{
sibling = child_p; // replace this node by child
break;
}
}
}
}
return junction_below;
}
else
{
constexpr coord_t weight = 1000;
Point junction_moving_dir = ((junction_above - m_p).cast<double>().normalized() * weight).cast<coord_t>();
bool prevent_junction_moving = false;
for (auto& child_p : m_children)
{
const auto child_dist = coord_t((m_p - child_p->m_p).cast<double>().norm());
RectilinearJunction below = child_p->straighten(magnitude, m_p, child_dist, max_remove_colinear_dist2);
junction_moving_dir += ((below.junction_loc - m_p).cast<double>().normalized() * weight).cast<coord_t>();
if (below.total_recti_dist < magnitude) // TODO: make configurable?
{
prevent_junction_moving = true; // prevent flipflopping in branches due to straightening and junctoin moving clashing
}
}
if (junction_moving_dir != Point(0, 0) && ! m_children.empty() && ! m_is_root && ! prevent_junction_moving)
{
auto junction_moving_dir_len = coord_t(junction_moving_dir.norm());
if (junction_moving_dir_len > junction_magnitude)
{
junction_moving_dir = junction_moving_dir * junction_magnitude / junction_moving_dir_len;
}
m_p += junction_moving_dir;
}
return RectilinearJunction{ accumulated_dist, m_p };
}
}
// Prune the tree from the extremeties (leaf-nodes) until the pruning distance is reached.
coord_t Node::prune(const coord_t& pruning_distance)
{
if (pruning_distance <= 0)
return 0;
coord_t max_distance_pruned = 0;
for (auto child_it = m_children.begin(); child_it != m_children.end(); ) {
auto& child = *child_it;
coord_t dist_pruned_child = child->prune(pruning_distance);
if (dist_pruned_child >= pruning_distance)
{ // pruning is finished for child; dont modify further
max_distance_pruned = std::max(max_distance_pruned, dist_pruned_child);
++child_it;
} else {
const Point a = getLocation();
const Point b = child->getLocation();
const Point ba = a - b;
const auto ab_len = coord_t(ba.cast<double>().norm());
if (dist_pruned_child + ab_len <= pruning_distance) {
// we're still in the process of pruning
assert(child->m_children.empty() && "when pruning away a node all it's children must already have been pruned away");
max_distance_pruned = std::max(max_distance_pruned, dist_pruned_child + ab_len);
child_it = m_children.erase(child_it);
} else {
// pruning stops in between this node and the child
const Point n = b + (ba.cast<double>().normalized() * (pruning_distance - dist_pruned_child)).cast<coord_t>();
assert(std::abs((n - b).cast<double>().norm() + dist_pruned_child - pruning_distance) < 10 && "total pruned distance must be equal to the pruning_distance");
max_distance_pruned = std::max(max_distance_pruned, pruning_distance);
child->setLocation(n);
++child_it;
}
}
}
return max_distance_pruned;
}
void Node::convertToPolylines(Polylines &output, const coord_t line_overlap) const
{
Polylines result;
result.emplace_back();
convertToPolylines(0, result);
removeJunctionOverlap(result, line_overlap);
append(output, std::move(result));
}
void Node::convertToPolylines(size_t long_line_idx, Polylines &output) const
{
if (m_children.empty()) {
output[long_line_idx].points.push_back(m_p);
return;
}
size_t first_child_idx = rand() % m_children.size();
m_children[first_child_idx]->convertToPolylines(long_line_idx, output);
output[long_line_idx].points.push_back(m_p);
for (size_t idx_offset = 1; idx_offset < m_children.size(); idx_offset++) {
size_t child_idx = (first_child_idx + idx_offset) % m_children.size();
const Node& child = *m_children[child_idx];
output.emplace_back();
size_t child_line_idx = output.size() - 1;
child.convertToPolylines(child_line_idx, output);
output[child_line_idx].points.emplace_back(m_p);
}
}
void Node::removeJunctionOverlap(Polylines &result_lines, const coord_t line_overlap) const
{
const coord_t reduction = line_overlap;
size_t res_line_idx = 0;
while (res_line_idx < result_lines.size()) {
Polyline &polyline = result_lines[res_line_idx];
if (polyline.size() <= 1) {
polyline = std::move(result_lines.back());
result_lines.pop_back();
continue;
}
coord_t to_be_reduced = reduction;
Point a = polyline.back();
for (int point_idx = int(polyline.size()) - 2; point_idx >= 0; point_idx--) {
const Point b = polyline.points[point_idx];
const Point ab = b - a;
const auto ab_len = coord_t(ab.cast<double>().norm());
if (ab_len >= to_be_reduced) {
polyline.points.back() = a + (ab.cast<double>() * (double(to_be_reduced) / ab_len)).cast<coord_t>();
break;
} else {
to_be_reduced -= ab_len;
polyline.points.pop_back();
}
a = b;
}
if (polyline.size() <= 1) {
polyline = std::move(result_lines.back());
result_lines.pop_back();
} else
++ res_line_idx;
}
}
#ifdef LIGHTNING_TREE_NODE_DEBUG_OUTPUT
void export_to_svg(const NodeSPtr &root_node, SVG &svg)
{
for (const NodeSPtr &children : root_node->m_children) {
svg.draw(Line(root_node->getLocation(), children->getLocation()), "red");
export_to_svg(children, svg);
}
}
void export_to_svg(const std::string &path, const Polygons &contour, const std::vector<NodeSPtr> &root_nodes) {
BoundingBox bbox = get_extents(contour);
bbox.offset(SCALED_EPSILON);
SVG svg(path, bbox);
svg.draw_outline(contour, "blue");
for (const NodeSPtr &root_node: root_nodes) {
for (const NodeSPtr &children: root_node->m_children) {
svg.draw(Line(root_node->getLocation(), children->getLocation()), "red");
export_to_svg(children, svg);
}
}
}
#endif /* LIGHTNING_TREE_NODE_DEBUG_OUTPUT */
} // namespace Slic3r::FillLightning

View File

@@ -0,0 +1,308 @@
//Copyright (c) 2021 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#ifndef LIGHTNING_TREE_NODE_H
#define LIGHTNING_TREE_NODE_H
#include <functional>
#include <memory>
#include <optional>
#include <vector>
#include "../../EdgeGrid.hpp"
#include "../../Polygon.hpp"
#include "SVG.hpp"
//#define LIGHTNING_TREE_NODE_DEBUG_OUTPUT
namespace Slic3r::FillLightning
{
constexpr auto locator_cell_size = scaled<coord_t>(4.);
class Node;
using NodeSPtr = std::shared_ptr<Node>;
// NOTE: As written, this struct will only be valid for a single layer, will have to be updated for the next.
// NOTE: Reasons for implementing this with some separate closures:
// - keep clear deliniation during development
// - possibility of multiple distance field strategies
/*!
* A single vertex of a Lightning Tree, the structure that determines the paths
* to be printed to form Lightning Infill.
*
* In essence these vertices are just a position linked to other positions in
* 2D. The nodes have a hierarchical structure of parents and children, forming
* a tree. The class also has some helper functions specific to Lightning Infill
* e.g. to straighten the paths around this node.
*/
class Node : public std::enable_shared_from_this<Node>
{
public:
// Workaround for private/protected constructors and 'make_shared': https://stackoverflow.com/a/27832765
template<typename ...Arg> NodeSPtr static create(Arg&&...arg)
{
struct EnableMakeShared : public Node
{
explicit EnableMakeShared(Arg&&...arg) : Node(std::forward<Arg>(arg)...) {}
};
return std::make_shared<EnableMakeShared>(std::forward<Arg>(arg)...);
}
/*!
* Get the position on this layer that this node represents, a vertex of the
* path to print.
* \return The position that this node represents.
*/
const Point& getLocation() const { return m_p; }
/*!
* Change the position on this layer that the node represents.
* \param p The position that the node needs to represent.
*/
void setLocation(const Point& p) { m_p = p; }
/*!
* Construct a new ``Node`` instance and add it as a child of
* this node.
* \param p The location of the new node.
* \return A shared pointer to the new node.
*/
NodeSPtr addChild(const Point& p);
/*!
* Add an existing ``Node`` as a child of this node.
* \param new_child The node that must be added as a child.
* \return Always returns \p new_child.
*/
NodeSPtr addChild(NodeSPtr& new_child);
/*!
* Propagate this node's sub-tree to the next layer.
*
* Creates a copy of this tree, realign it to the new layer boundaries
* \p next_outlines and reduce (i.e. prune and straighten) it. A copy of
* this node and all of its descendant nodes will be added to the
* \p next_trees vector.
* \param next_trees A collection of tree nodes to use for the next layer.
* \param next_outlines The shape of the layer below, to make sure that the
* tree stays within the bounds of the infill area.
* \param prune_distance The maximum distance that a leaf node may be moved
* such that it still supports the current node.
* \param smooth_magnitude The maximum distance that a line may be shifted
* to straighten the tree's paths, such that it still supports the current
* paths.
* \param max_remove_colinear_dist The maximum distance of a line-segment
* from which straightening may remove a colinear point.
*/
void propagateToNextLayer
(
std::vector<NodeSPtr>& next_trees,
const Polygons& next_outlines,
const EdgeGrid::Grid& outline_locator,
coord_t prune_distance,
coord_t smooth_magnitude,
coord_t max_remove_colinear_dist
) const;
/*!
* Executes a given function for every line segment in this node's sub-tree.
*
* The function takes two `Point` arguments. These arguments will be filled
* in with the higher-order node (closer to the root) first, and the
* downtree node (closer to the leaves) as the second argument. The segment
* from this node's parent to this node itself is not included.
* The order in which the segments are visited is depth-first.
* \param visitor A function to execute for every branch in the node's sub-
* tree.
*/
void visitBranches(const std::function<void(const Point&, const Point&)>& visitor) const;
/*!
* Execute a given function for every node in this node's sub-tree.
*
* The visitor function takes a node as input. This node is not const, so
* this can be used to change the tree.
* Nodes are visited in depth-first order. This node itself is visited as
* well (pre-order).
* \param visitor A function to execute for every node in this node's sub-
* tree.
*/
void visitNodes(const std::function<void(NodeSPtr)>& visitor);
/*!
* Get a weighted distance from an unsupported point to this node (given the current supporting radius).
*
* When attaching a unsupported location to a node, not all nodes have the same priority.
* (Eucludian) closer nodes are prioritised, but that's not the whole story.
* For instance, we give some nodes a 'valence boost' depending on the nr. of branches.
* \param unsupported_location The (unsuppported) location of which the weighted distance needs to be calculated.
* \param supporting_radius The maximum distance which can be bridged without (infill) supporting it.
* \return The weighted distance.
*/
coord_t getWeightedDistance(const Point& unsupported_location, const coord_t& supporting_radius) const;
/*!
* Returns whether this node is the root of a lightning tree. It is the root
* if it has no parents.
* \return ``true`` if this node is the root (no parents) or ``false`` if it
* is a child node of some other node.
*/
bool isRoot() const { return m_is_root; }
/*!
* Reverse the parent-child relationship all the way to the root, from this node onward.
* This has the effect of 're-rooting' the tree at the current node if no immediate parent is given as argument.
* That is, the current node will become the root, it's (former) parent if any, will become one of it's children.
* This is then recursively bubbled up until it reaches the (former) root, which then will become a leaf.
* \param new_parent The (new) parent-node of the root, useful for recursing or immediately attaching the node to another tree.
*/
void reroot(const NodeSPtr &new_parent = nullptr);
/*!
* Retrieves the closest node to the specified location.
* \param loc The specified location.
* \result The branch that starts at the position closest to the location within this tree.
*/
NodeSPtr closestNode(const Point& loc);
/*!
* Returns whether the given tree node is a descendant of this node.
*
* If this node itself is given, it is also considered to be a descendant.
* \param to_be_checked A node to find out whether it is a descendant of
* this node.
* \return ``true`` if the given node is a descendant or this node itself,
* or ``false`` if it is not in the sub-tree.
*/
bool hasOffspring(const NodeSPtr& to_be_checked) const;
Node() = delete; // Don't allow empty contruction
protected:
/*!
* Construct a new node, either for insertion in a tree or as root.
* \param p The physical location in the 2D layer that this node represents.
* Connecting other nodes to this node indicates that a line segment should
* be drawn between those two physical positions.
*/
explicit Node(const Point& p, const std::optional<Point>& last_grounding_location = std::nullopt);
/*!
* Copy this node and its entire sub-tree.
* \return The equivalent of this node in the copy (the root of the new sub-
* tree).
*/
NodeSPtr deepCopy() const;
/*! Reconnect trees from the layer above to the new outlines of the lower layer.
* \return Wether or not the root is kept (false is no, true is yes).
*/
bool realign(const Polygons& outlines, const EdgeGrid::Grid& outline_locator, std::vector<NodeSPtr>& rerooted_parts);
struct RectilinearJunction
{
coord_t total_recti_dist; //!< rectilinear distance along the tree from the last junction above to the junction below
Point junction_loc; //!< junction location below
};
/*!
* Smoothen the tree to make it a bit more printable, while still supporting
* the trees above.
* \param magnitude The maximum allowed distance to move the node.
* \param max_remove_colinear_dist Maximum distance of the (compound) line-segment from which a co-linear point may be removed.
*/
void straighten(coord_t magnitude, coord_t max_remove_colinear_dist);
/*! Recursive part of \ref straighten(.)
* \param junction_above The last seen junction with multiple children above
* \param accumulated_dist The distance along the tree from the last seen junction to this node
* \param max_remove_colinear_dist2 Maximum distance _squared_ of the (compound) line-segment from which a co-linear point may be removed.
* \return the total distance along the tree from the last junction above to the first next junction below and the location of the next junction below
*/
RectilinearJunction straighten(coord_t magnitude, const Point& junction_above, coord_t accumulated_dist, int64_t max_remove_colinear_dist2);
/*! Prune the tree from the extremeties (leaf-nodes) until the pruning distance is reached.
* \return The distance that has been pruned. If less than \p distance, then the whole tree was puned away.
*/
coord_t prune(const coord_t& distance);
public:
/*!
* Convert the tree into polylines
*
* At each junction one line is chosen at random to continue
*
* The lines start at a leaf and end in a junction
*
* \param output all branches in this tree connected into polylines
*/
void convertToPolylines(Polylines &output, coord_t line_overlap) const;
/*! If this was ever a direct child of the root, it'll have a previous grounding location.
*
* This needs to be known when roots are reconnected, so that the last (higher) layer is supported by the next one.
*/
const std::optional<Point>& getLastGroundingLocation() const { return m_last_grounding_location; }
protected:
/*!
* Convert the tree into polylines
*
* At each junction one line is chosen at random to continue
*
* The lines start at a leaf and end in a junction
*
* \param long_line a reference to a polyline in \p output which to continue building on in the recursion
* \param output all branches in this tree connected into polylines
*/
void convertToPolylines(size_t long_line_idx, Polylines &output) const;
void removeJunctionOverlap(Polylines &polylines, coord_t line_overlap) const;
bool m_is_root;
Point m_p;
std::weak_ptr<Node> m_parent;
std::vector<NodeSPtr> m_children;
std::optional<Point> m_last_grounding_location; //<! The last known grounding location, see 'getLastGroundingLocation()'.
friend BoundingBox get_extents(const NodeSPtr &root_node);
friend BoundingBox get_extents(const std::vector<NodeSPtr> &tree_roots);
#ifdef LIGHTNING_TREE_NODE_DEBUG_OUTPUT
friend void export_to_svg(const NodeSPtr &root_node, Slic3r::SVG &svg);
friend void export_to_svg(const std::string &path, const Polygons &contour, const std::vector<NodeSPtr> &root_nodes);
#endif /* LIGHTNING_TREE_NODE_DEBUG_OUTPUT */
};
bool inside(const Polygons &polygons, const Point &p);
bool lineSegmentPolygonsIntersection(const Point& a, const Point& b, const EdgeGrid::Grid& outline_locator, Point& result, coord_t within_max_dist);
inline BoundingBox get_extents(const NodeSPtr &root_node)
{
BoundingBox bbox;
for (const NodeSPtr &children : root_node->m_children)
bbox.merge(get_extents(children));
bbox.merge(root_node->getLocation());
return bbox;
}
inline BoundingBox get_extents(const std::vector<NodeSPtr> &tree_roots)
{
BoundingBox bbox;
for (const NodeSPtr &root_node : tree_roots)
bbox.merge(get_extents(root_node));
return bbox;
}
#ifdef LIGHTNING_TREE_NODE_DEBUG_OUTPUT
void export_to_svg(const NodeSPtr &root_node, SVG &svg);
void export_to_svg(const std::string &path, const Polygons &contour, const std::vector<NodeSPtr> &root_nodes);
#endif /* LIGHTNING_TREE_NODE_DEBUG_OUTPUT */
} // namespace Slic3r::FillLightning
#endif // LIGHTNING_TREE_NODE_H