QIDISlicer1.0.0

This commit is contained in:
sunsets
2023-06-10 10:14:12 +08:00
parent f2e20e1a90
commit b4cd486f2d
3475 changed files with 1973675 additions and 0 deletions

View File

@@ -0,0 +1,196 @@
#include "BranchingTree.hpp"
#include "PointCloud.hpp"
#include <numeric>
#include <optional>
#include <algorithm>
#include "libslic3r/TriangleMesh.hpp"
namespace Slic3r { namespace branchingtree {
void build_tree(PointCloud &nodes, Builder &builder)
{
constexpr size_t initK = 5;
auto ptsqueue = nodes.start_queue();
auto &properties = nodes.properties();
struct NodeDistance
{
size_t node_id = Node::ID_NONE;
float dst_branching = NaNf;
float dst_euql = NaNf;
};
auto distances = reserve_vector<NodeDistance>(initK);
double prev_dist_max = 0.;
size_t K = initK;
bool routed = true;
size_t node_id = Node::ID_NONE;
while ((!ptsqueue.empty() && builder.is_valid()) || !routed) {
if (routed) {
node_id = ptsqueue.top();
ptsqueue.pop();
}
Node node = nodes.get(node_id);
nodes.mark_unreachable(node_id);
distances.clear();
distances.reserve(K);
float dmax = 0.;
nodes.foreach_reachable(
node.pos,
[&distances, &dmax](size_t id, float dst_branching, float dst_euql) {
distances.emplace_back(NodeDistance{id, dst_branching, dst_euql});
dmax = std::max(dmax, dst_euql);
}, K, prev_dist_max);
std::sort(distances.begin(), distances.end(),
[](auto &a, auto &b) { return a.dst_branching < b.dst_branching; });
if (distances.empty()) {
builder.report_unroutable(node);
K = initK;
prev_dist_max = 0.;
routed = true;
continue;
}
prev_dist_max = dmax;
K *= 2;
auto closest_it = distances.begin();
routed = false;
while (closest_it != distances.end() && !routed && builder.is_valid()) {
size_t closest_node_id = closest_it->node_id;
Node closest_node = nodes.get(closest_node_id);
auto type = nodes.get_type(closest_node_id);
float w = nodes.get(node_id).weight + closest_it->dst_branching;
closest_node.Rmin = std::max(node.Rmin, closest_node.Rmin);
switch (type) {
case BED: {
closest_node.weight = w;
double max_br_len = nodes.properties().max_branch_length();
if (closest_it->dst_branching > max_br_len) {
std::optional<Vec3f> avo = builder.suggest_avoidance(node, max_br_len);
if (!avo)
break;
Node new_node {*avo, node.Rmin};
new_node.weight = nodes.get(node_id).weight + (node.pos - *avo).norm();
new_node.left = node.id;
if ((routed = builder.add_bridge(node, new_node))) {
size_t new_idx = nodes.insert_junction(new_node);
ptsqueue.push(new_idx);
}
} else if ((routed = builder.add_ground_bridge(node, closest_node))) {
closest_node.left = closest_node.right = node_id;
nodes.get(closest_node_id) = closest_node;
nodes.mark_unreachable(closest_node_id);
}
break;
}
case MESH: {
closest_node.weight = w;
if ((routed = builder.add_mesh_bridge(node, closest_node))) {
closest_node.left = closest_node.right = node_id;
nodes.get(closest_node_id) = closest_node;
nodes.mark_unreachable(closest_node_id);
}
break;
}
case LEAF:
case JUNCTION: {
auto max_slope = float(properties.max_slope());
if (auto mergept = find_merge_pt(node.pos, closest_node.pos, max_slope)) {
float mergedist_closest = (*mergept - closest_node.pos).norm();
float mergedist_node = (*mergept - node.pos).norm();
float Wnode = nodes.get(node_id).weight;
float Wclosest = nodes.get(closest_node_id).weight;
float Wsum = std::max(Wnode, Wclosest);
float distsum = std::max(mergedist_closest, mergedist_node);
w = Wsum + distsum;
if (mergedist_closest > EPSILON && mergedist_node > EPSILON) {
Node mergenode{*mergept, closest_node.Rmin};
mergenode.weight = w;
mergenode.id = int(nodes.next_junction_id());
if ((routed = builder.add_merger(node, closest_node, mergenode))) {
mergenode.left = node_id;
mergenode.right = closest_node_id;
size_t new_idx = nodes.insert_junction(mergenode);
ptsqueue.push(new_idx);
size_t qid = nodes.get_queue_idx(closest_node_id);
if (qid != PointCloud::Unqueued)
ptsqueue.remove(nodes.get_queue_idx(closest_node_id));
nodes.mark_unreachable(closest_node_id);
}
} else if (closest_node.pos.z() < node.pos.z() &&
(closest_node.left == Node::ID_NONE ||
closest_node.right == Node::ID_NONE)) {
closest_node.weight = w;
if ((routed = builder.add_bridge(node, closest_node))) {
if (closest_node.left == Node::ID_NONE)
closest_node.left = node_id;
else if (closest_node.right == Node::ID_NONE)
closest_node.right = node_id;
nodes.get(closest_node_id) = closest_node;
}
}
}
break;
}
case NONE:;
}
++closest_it;
}
if (routed) {
prev_dist_max = 0.;
K = initK;
}
}
}
void build_tree(const indexed_triangle_set &its,
const std::vector<Node> &support_roots,
Builder &builder,
const Properties &properties)
{
PointCloud nodes(its, support_roots, properties);
build_tree(nodes, builder);
}
ExPolygon make_bed_poly(const indexed_triangle_set &its)
{
auto bb = bounding_box(its);
BoundingBox bbcrd{scaled(to_2d(bb.min)), scaled(to_2d(bb.max))};
bbcrd.offset(scaled(10.));
Point min = bbcrd.min, max = bbcrd.max;
ExPolygon ret = {{min.x(), min.y()},
{max.x(), min.y()},
{max.x(), max.y()},
{min.x(), max.y()}};
return ret;
}
}} // namespace Slic3r::branchingtree

View File

@@ -0,0 +1,154 @@
#ifndef SUPPORTTREEBRANCHING_HPP
#define SUPPORTTREEBRANCHING_HPP
// For indexed_triangle_set
#include <admesh/stl.h>
#include "libslic3r/ExPolygon.hpp"
namespace Slic3r { namespace branchingtree {
// Branching tree input parameters. This is an in-line fillable structure with
// setters returning self references.
class Properties
{
double m_max_slope = PI / 4.;
double m_ground_level = 0.;
double m_sampling_radius = .5;
double m_max_branch_len = 10.;
ExPolygons m_bed_shape;
public:
// Maximum slope for bridges of the tree
Properties &max_slope(double val) noexcept
{
m_max_slope = val;
return *this;
}
// Z level of the ground
Properties &ground_level(double val) noexcept
{
m_ground_level = val;
return *this;
}
// How far should sample points be in the mesh and the ground
Properties &sampling_radius(double val) noexcept
{
m_sampling_radius = val;
return *this;
}
// Shape of the print bed (ground)
Properties &bed_shape(ExPolygons bed) noexcept
{
m_bed_shape = std::move(bed);
return *this;
}
Properties &max_branch_length(double val) noexcept
{
m_max_branch_len = val;
return *this;
}
double max_slope() const noexcept { return m_max_slope; }
double ground_level() const noexcept { return m_ground_level; }
double sampling_radius() const noexcept { return m_sampling_radius; }
double max_branch_length() const noexcept { return m_max_branch_len; }
const ExPolygons &bed_shape() const noexcept { return m_bed_shape; }
};
// A junction of the branching tree with position and radius.
struct Node
{
static constexpr int ID_NONE = -1;
int id = ID_NONE, left = ID_NONE, right = ID_NONE;
Vec3f pos;
float Rmin = 0.f;
// Tracking the weight of each junction, which is essentially the sum of
// the lenghts of all branches emanating from this junction.
float weight = 0.f;
Node(const Vec3f &p, float r_min = .0f) : pos{p}, Rmin{r_min}, weight{0.f}
{}
};
inline bool is_occupied(const Node &n)
{
return n.left != Node::ID_NONE && n.right != Node::ID_NONE;
}
// An output interface for the branching tree generator function. Consider each
// method as a callback and implement the actions that need to be done.
class Builder
{
public:
virtual ~Builder() = default;
// A simple bridge from junction to junction.
virtual bool add_bridge(const Node &from, const Node &to) = 0;
// An Y shaped structure with two starting points and a merge point below
// them. The angles will respect the max_slope setting.
virtual bool add_merger(const Node &node,
const Node &closest,
const Node &merge_node) = 0;
// Add an anchor bridge to the ground (print bed)
virtual bool add_ground_bridge(const Node &from,
const Node &to) = 0;
// Add an anchor bridge to the model body
virtual bool add_mesh_bridge(const Node &from, const Node &to) = 0;
virtual std::optional<Vec3f> suggest_avoidance(const Node &from,
float max_bridge_len) const
{
return {};
}
// Report nodes that can not be routed to an endpoint (model or ground)
virtual void report_unroutable(const Node &j) = 0;
// If returns false, the tree building process shall stop
virtual bool is_valid() const { return true; }
};
// Build the actual tree.
// its: The input mesh
// support_leafs: The input support points
// builder: The output interface, describes how to build the tree
// properties: Parameters of the tree
//
// Notes:
// The original algorithm implicitly ensures that the generated tree avoids
// the model body. This implementation uses point sampling of the mesh thus an
// explicit check is needed if the part of the tree being inserted properly
// avoids the model. This can be done in the builder implementation. Each
// method can return a boolean indicating whether the given branch can or
// cannot be inserted. If a particular path is unavailable, the algorithm
// will try a few other paths as well. If all of them fail, one of the
// report_unroutable_* methods will be called as a last resort.
void build_tree(const indexed_triangle_set &its,
const std::vector<Node> &support_leafs,
Builder &builder,
const Properties &properties = {});
inline void build_tree(const indexed_triangle_set &its,
const std::vector<Node> &support_leafs,
Builder &&builder,
const Properties &properties = {})
{
build_tree(its, support_leafs, builder, properties);
}
// Helper function to derive a bed polygon only from the model bounding box.
ExPolygon make_bed_poly(const indexed_triangle_set &its);
}} // namespace Slic3r::branchingtree
#endif // SUPPORTTREEBRANCHING_HPP

View File

@@ -0,0 +1,186 @@
#include "PointCloud.hpp"
#include "libslic3r/Tesselate.hpp"
#include "libslic3r/SLA/SupportTreeUtils.hpp"
#include <igl/random_points_on_mesh.h>
namespace Slic3r { namespace branchingtree {
std::optional<Vec3f> find_merge_pt(const Vec3f &A, const Vec3f &B, float max_slope)
{
return sla::find_merge_pt(A, B, max_slope);
}
void to_eigen_mesh(const indexed_triangle_set &its,
Eigen::MatrixXd &V,
Eigen::MatrixXi &F)
{
V.resize(its.vertices.size(), 3);
F.resize(its.indices.size(), 3);
for (unsigned int i = 0; i < its.indices.size(); ++i)
F.row(i) = its.indices[i];
for (unsigned int i = 0; i < its.vertices.size(); ++i)
V.row(i) = its.vertices[i].cast<double>();
}
std::vector<Node> sample_mesh(const indexed_triangle_set &its, double radius)
{
std::vector<Node> ret;
double surface_area = 0.;
for (const Vec3i &face : its.indices) {
std::array<Vec3f, 3> tri = {its.vertices[face(0)],
its.vertices[face(1)],
its.vertices[face(2)]};
auto U = tri[1] - tri[0], V = tri[2] - tri[0];
surface_area += 0.5 * U.cross(V).norm();
}
int N = surface_area / (PI * radius * radius);
Eigen::MatrixXd B;
Eigen::MatrixXi FI;
Eigen::MatrixXd V;
Eigen::MatrixXi F;
to_eigen_mesh(its, V, F);
igl::random_points_on_mesh(N, V, F, B, FI);
ret.reserve(size_t(N));
for (int i = 0; i < FI.size(); i++) {
int face_id = FI(i);
if (face_id < 0 || face_id >= int(its.indices.size()))
continue;
Vec3i face = its.indices[face_id];
if (face(0) >= int(its.vertices.size()) ||
face(1) >= int(its.vertices.size()) ||
face(2) >= int(its.vertices.size()))
continue;
Vec3f c = B.row(i)(0) * its.vertices[face(0)] +
B.row(i)(1) * its.vertices[face(1)] +
B.row(i)(2) * its.vertices[face(2)];
ret.emplace_back(c);
}
return ret;
}
std::vector<Node> sample_bed(const ExPolygons &bed, float z, double radius)
{
auto triangles = triangulate_expolygons_3d(bed, z);
indexed_triangle_set its;
its.vertices.reserve(triangles.size());
for (size_t i = 0; i < triangles.size(); i += 3) {
its.vertices.emplace_back(triangles[i].cast<float>());
its.vertices.emplace_back(triangles[i + 1].cast<float>());
its.vertices.emplace_back(triangles[i + 2].cast<float>());
its.indices.emplace_back(i, i + 1, i + 2);
}
return sample_mesh(its, radius);
}
PointCloud::PointCloud(const indexed_triangle_set &M,
std::vector<Node> support_leafs,
const Properties &props)
: PointCloud{sample_mesh(M, props.sampling_radius()),
sample_bed(props.bed_shape(),
props.ground_level(),
props.sampling_radius()),
std::move(support_leafs), props}
{}
PointCloud::PointCloud(std::vector<Node> meshpts,
std::vector<Node> bedpts,
std::vector<Node> support_leafs,
const Properties &props)
: m_leafs{std::move(support_leafs)}
, m_meshpoints{std::move(meshpts)}
, m_bedpoints{std::move(bedpts)}
, m_props{props}
, cos2bridge_slope{std::cos(props.max_slope()) *
std::abs(std::cos(props.max_slope()))}
, MESHPTS_BEGIN{m_bedpoints.size()}
, LEAFS_BEGIN{MESHPTS_BEGIN + m_meshpoints.size()}
, JUNCTIONS_BEGIN{LEAFS_BEGIN + m_leafs.size()}
, m_searchable_indices(JUNCTIONS_BEGIN + m_junctions.size(), true)
, m_queue_indices(JUNCTIONS_BEGIN + m_junctions.size(), Unqueued)
, m_reachable_cnt{JUNCTIONS_BEGIN + m_junctions.size()}
{
for (size_t i = 0; i < m_bedpoints.size(); ++i) {
m_bedpoints[i].id = int(i);
m_ktree.insert({m_bedpoints[i].pos, i});
}
for (size_t i = 0; i < m_meshpoints.size(); ++i) {
Node &n = m_meshpoints[i];
n.id = int(MESHPTS_BEGIN + i);
m_ktree.insert({n.pos, n.id});
}
for (size_t i = 0; i < m_leafs.size(); ++i) {
Node &n = m_leafs[i];
n.id = int(LEAFS_BEGIN + i);
n.left = Node::ID_NONE;
n.right = Node::ID_NONE;
m_ktree.insert({n.pos, n.id});
}
}
float PointCloud::get_distance(const Vec3f &p, size_t node_id) const
{
auto t = get_type(node_id);
auto ret = std::numeric_limits<float>::infinity();
const auto &node = get(node_id);
switch (t) {
case MESH:
case BED: {
// Points of mesh or bed which are outside of the support cone of
// 'pos' must be discarded.
if (is_outside_support_cone(p, node.pos))
ret = std::numeric_limits<float>::infinity();
else
ret = (node.pos - p).norm();
break;
}
case LEAF:
case JUNCTION:{
auto mergept = find_merge_pt(p, node.pos, m_props.max_slope());
double maxL2 = m_props.max_branch_length() * m_props.max_branch_length();
if (!mergept || mergept->z() < (m_props.ground_level() + 2 * node.Rmin))
ret = std::numeric_limits<float>::infinity();
else if (double a = (node.pos - *mergept).squaredNorm(),
b = (p - *mergept).squaredNorm();
a < maxL2 && b < maxL2)
ret = std::sqrt(b);
break;
}
case NONE:
;
}
// Setting the ret val to infinity will effectively discard this
// connection of nodes. max_branch_length property is used here
// to discard node=>node and node=>mesh connections longer than this
// property.
if (t != BED && ret > m_props.max_branch_length())
ret = std::numeric_limits<float>::infinity();
return ret;
}
}} // namespace Slic3r::branchingtree

View File

@@ -0,0 +1,296 @@
#ifndef POINTCLOUD_HPP
#define POINTCLOUD_HPP
#include <optional>
#include "BranchingTree.hpp"
//#include "libslic3r/Execution/Execution.hpp"
#include "libslic3r/MutablePriorityQueue.hpp"
#include "libslic3r/BoostAdapter.hpp"
#include "boost/geometry/index/rtree.hpp"
namespace Slic3r { namespace branchingtree {
std::optional<Vec3f> find_merge_pt(const Vec3f &A,
const Vec3f &B,
float max_slope);
void to_eigen_mesh(const indexed_triangle_set &its,
Eigen::MatrixXd &V,
Eigen::MatrixXi &F);
std::vector<Node> sample_mesh(const indexed_triangle_set &its, double radius);
std::vector<Node> sample_bed(const ExPolygons &bed,
float z,
double radius = 1.);
enum PtType { LEAF, MESH, BED, JUNCTION, NONE };
inline BoundingBox3Base<Vec3f> get_support_cone_bb(const Vec3f &p, const Properties &props)
{
double gnd = props.ground_level() - EPSILON;
double h = p.z() - gnd;
double phi = PI / 2 - props.max_slope();
auto r = float(std::min(h * std::tan(phi), props.max_branch_length() * std::sin(phi)));
Vec3f bb_min = {p.x() - r, p.y() - r, float(gnd)};
Vec3f bb_max = {p.x() + r, p.y() + r, p.z()};
return {bb_min, bb_max};
}
// A cloud of points including support points, mesh points, junction points
// and anchor points on the bed. Junction points can be added or removed, all
// the other point types are established on creation and remain unchangeable.
class PointCloud {
std::vector<Node> m_leafs, m_junctions, m_meshpoints, m_bedpoints;
const branchingtree::Properties &m_props;
const double cos2bridge_slope;
const size_t MESHPTS_BEGIN, LEAFS_BEGIN, JUNCTIONS_BEGIN;
private:
// These vectors have the same size as there are indices for nodes to keep
// access complexity constant. WARN: there might be cache non-locality costs
std::vector<bool> m_searchable_indices; // searchable flag value of a node
std::vector<size_t> m_queue_indices; // queue id of a node if queued
size_t m_reachable_cnt;
struct CoordFn
{
const PointCloud *self;
CoordFn(const PointCloud *s) : self{s} {}
float operator()(size_t nodeid, size_t dim) const
{
return self->get(nodeid).pos(int(dim));
}
};
using PointIndexEl = std::pair<Vec3f, unsigned>;
boost::geometry::index::
rtree<PointIndexEl, boost::geometry::index::rstar<16, 4> /* ? */>
m_ktree;
template<class PC>
static auto *get_node(PC &&pc, size_t id)
{
auto *ret = decltype(pc.m_bedpoints.data())(nullptr);
switch(pc.get_type(id)) {
case BED: ret = &pc.m_bedpoints[id]; break;
case MESH: ret = &pc.m_meshpoints[id - pc.MESHPTS_BEGIN]; break;
case LEAF: ret = &pc.m_leafs [id - pc.LEAFS_BEGIN]; break;
case JUNCTION: ret = &pc.m_junctions[id - pc.JUNCTIONS_BEGIN]; break;
case NONE: assert(false);
}
return ret;
}
public:
bool is_outside_support_cone(const Vec3f &supp, const Vec3f &pt) const
{
Vec3d D = (pt - supp).cast<double>();
double dot_sq = -D.z() * std::abs(-D.z());
return dot_sq < D.squaredNorm() * cos2bridge_slope;
}
static constexpr auto Unqueued = size_t(-1);
struct ZCompareFn
{
const PointCloud *self;
ZCompareFn(const PointCloud *s) : self{s} {}
bool operator()(size_t node_a, size_t node_b) const
{
return self->get(node_a).pos.z() > self->get(node_b).pos.z();
}
};
PointCloud(const indexed_triangle_set &M,
std::vector<Node> support_leafs,
const Properties &props);
PointCloud(std::vector<Node> meshpts,
std::vector<Node> bedpts,
std::vector<Node> support_leafs,
const Properties &props);
PtType get_type(size_t node_id) const
{
PtType ret = NONE;
if (node_id < MESHPTS_BEGIN && !m_bedpoints.empty()) ret = BED;
else if (node_id < LEAFS_BEGIN && !m_meshpoints.empty()) ret = MESH;
else if (node_id < JUNCTIONS_BEGIN && !m_leafs.empty()) ret = LEAF;
else if (node_id >= JUNCTIONS_BEGIN && !m_junctions.empty()) ret = JUNCTION;
return ret;
}
const Node &get(size_t node_id) const
{
return *get_node(*this, node_id);
}
Node &get(size_t node_id)
{
return *get_node(*this, node_id);
}
const Node *find(size_t node_id) const { return get_node(*this, node_id); }
Node *find(size_t node_id) { return get_node(*this, node_id); }
// Return the original index of a leaf in the input array, if the given
// node id is indeed of type SUPP
int get_leaf_id(size_t node_id) const
{
return node_id >= LEAFS_BEGIN && node_id < JUNCTIONS_BEGIN ?
node_id - LEAFS_BEGIN :
Node::ID_NONE;
}
size_t get_queue_idx(size_t node_id) const { return m_queue_indices[node_id]; }
float get_distance(const Vec3f &p, size_t node) const;
size_t next_junction_id() const
{
return JUNCTIONS_BEGIN + m_junctions.size();
}
size_t insert_junction(const Node &p)
{
size_t new_id = next_junction_id();
m_junctions.emplace_back(p);
m_junctions.back().id = int(new_id);
m_ktree.insert({m_junctions.back().pos, new_id});
m_searchable_indices.emplace_back(true);
m_queue_indices.emplace_back(Unqueued);
++m_reachable_cnt;
return new_id;
}
const std::vector<Node> &get_junctions() const noexcept { return m_junctions; }
const std::vector<Node> &get_bedpoints() const noexcept { return m_bedpoints; }
const std::vector<Node> &get_meshpoints() const noexcept { return m_meshpoints; }
const std::vector<Node> &get_leafs() const noexcept { return m_leafs; }
const Properties & properties() const noexcept { return m_props; }
void mark_unreachable(size_t node_id)
{
assert(node_id < m_searchable_indices.size());
m_searchable_indices[node_id] = false;
m_queue_indices[node_id] = Unqueued;
--m_reachable_cnt;
}
size_t reachable_count() const { return m_reachable_cnt; }
template<class Fn>
void foreach_reachable(const Vec3f &pos,
Fn &&visitor,
size_t k,
double min_dist = 0.)
{
// Fake output iterator
struct Output {
const PointCloud *self;
Vec3f p;
Fn &visitorfn;
Output& operator *() { return *this; }
void operator=(const PointIndexEl &el) {
visitorfn(el.second, self->get_distance(p, el.second),
(p - el.first).squaredNorm());
}
Output& operator++() { return *this; }
};
namespace bgi = boost::geometry::index;
float brln = 2 * m_props.max_branch_length();
BoundingBox3Base<Vec3f> bb{{pos.x() - brln, pos.y() - brln,
float(m_props.ground_level() - EPSILON)},
{pos.x() + brln, pos.y() + brln,
m_ktree.bounds().max_corner().get<Z>()}};
// Extend upwards to find mergable junctions and support points
bb.max.z() = m_ktree.bounds().max_corner().get<Z>();
auto filter = bgi::satisfies(
[this, &pos, min_dist](const PointIndexEl &e) {
double D_branching = get_distance(pos, e.second);
double D_euql = (pos - e.first).squaredNorm() ;
return m_searchable_indices[e.second] &&
!std::isinf(D_branching) && D_euql > min_dist;
});
m_ktree.query(bgi::intersects(bb) && filter && bgi::nearest(pos, k),
Output{this, pos, visitor});
}
auto start_queue()
{
auto ptsqueue = make_mutable_priority_queue<size_t, true>(
[this](size_t el, size_t idx) { m_queue_indices[el] = idx; },
ZCompareFn{this});
ptsqueue.reserve(m_leafs.size());
size_t iend = LEAFS_BEGIN + m_leafs.size();
for (size_t i = LEAFS_BEGIN; i < iend; ++i)
ptsqueue.push(i);
return ptsqueue;
}
};
template<class Fn> constexpr bool IsTraverseFn = std::is_invocable_v<Fn, Node&>;
struct TraverseReturnT
{
bool to_left : 1; // if true, continue traversing to the left
bool to_right : 1; // if true, continue traversing to the right
};
template<class PC, class Fn> void traverse(PC &&pc, size_t root, Fn &&fn)
{
if (auto nodeptr = pc.find(root); nodeptr != nullptr) {
auto &nroot = *nodeptr;
TraverseReturnT ret{true, true};
if constexpr (std::is_same_v<std::invoke_result_t<Fn, decltype(nroot)>, void>) {
// Our fn has no return value
fn(nroot);
} else {
// Fn returns instructions about how to continue traversing
ret = fn(nroot);
}
if (ret.to_left && nroot.left >= 0)
traverse(pc, nroot.left, fn);
if (ret.to_right && nroot.right >= 0)
traverse(pc, nroot.right, fn);
}
}
void build_tree(PointCloud &pcloud, Builder &builder);
inline void build_tree(PointCloud &&pc, Builder &builder)
{
build_tree(pc, builder);
}
}} // namespace Slic3r::branchingtree
#endif // POINTCLOUD_HPP