QIDISlicer1.0.0

This commit is contained in:
sunsets
2023-06-10 10:14:12 +08:00
parent f2e20e1a90
commit b4cd486f2d
3475 changed files with 1973675 additions and 0 deletions

View File

@@ -0,0 +1,18 @@
//Copyright (c) 2020 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#include "ExtrusionJunction.hpp"
namespace Slic3r::Arachne
{
bool ExtrusionJunction::operator ==(const ExtrusionJunction& other) const
{
return p == other.p
&& w == other.w
&& perimeter_index == other.perimeter_index;
}
ExtrusionJunction::ExtrusionJunction(const Point p, const coord_t w, const coord_t perimeter_index) : p(p), w(w), perimeter_index(perimeter_index) {}
}

View File

@@ -0,0 +1,59 @@
//Copyright (c) 2020 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#ifndef UTILS_EXTRUSION_JUNCTION_H
#define UTILS_EXTRUSION_JUNCTION_H
#include "../../Point.hpp"
namespace Slic3r::Arachne
{
/*!
* This struct represents one vertex in an extruded path.
*
* It contains information on how wide the extruded path must be at this point,
* and which perimeter it represents.
*/
struct ExtrusionJunction
{
/*!
* The position of the centreline of the path when it reaches this junction.
* This is the position that should end up in the g-code eventually.
*/
Point p;
/*!
* The width of the extruded path at this junction.
*/
coord_t w;
/*!
* Which perimeter this junction is part of.
*
* Perimeters are counted from the outside inwards. The outer wall has index
* 0.
*/
size_t perimeter_index;
ExtrusionJunction(const Point p, const coord_t w, const coord_t perimeter_index);
bool operator==(const ExtrusionJunction& other) const;
};
inline Point operator-(const ExtrusionJunction& a, const ExtrusionJunction& b)
{
return a.p - b.p;
}
// Identity function, used to be able to make templated algorithms that do their operations on 'point-like' input.
inline const Point& make_point(const ExtrusionJunction& ej)
{
return ej.p;
}
using LineJunctions = std::vector<ExtrusionJunction>; //<! The junctions along a line without further information. See \ref ExtrusionLine for a more extensive class.
}
#endif // UTILS_EXTRUSION_JUNCTION_H

View File

@@ -0,0 +1,270 @@
//Copyright (c) 2020 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#include <algorithm>
#include "ExtrusionLine.hpp"
#include "linearAlg2D.hpp"
#include "../../PerimeterGenerator.hpp"
namespace Slic3r::Arachne
{
ExtrusionLine::ExtrusionLine(const size_t inset_idx, const bool is_odd) : inset_idx(inset_idx), is_odd(is_odd), is_closed(false) {}
int64_t ExtrusionLine::getLength() const
{
if (junctions.empty())
return 0;
int64_t len = 0;
ExtrusionJunction prev = junctions.front();
for (const ExtrusionJunction &next : junctions) {
len += (next.p - prev.p).cast<int64_t>().norm();
prev = next;
}
if (is_closed)
len += (front().p - back().p).cast<int64_t>().norm();
return len;
}
coord_t ExtrusionLine::getMinimalWidth() const
{
return std::min_element(junctions.cbegin(), junctions.cend(),
[](const ExtrusionJunction& l, const ExtrusionJunction& r)
{
return l.w < r.w;
})->w;
}
void ExtrusionLine::simplify(const int64_t smallest_line_segment_squared, const int64_t allowed_error_distance_squared, const int64_t maximum_extrusion_area_deviation)
{
const size_t min_path_size = is_closed ? 3 : 2;
if (junctions.size() <= min_path_size)
return;
// TODO: allow for the first point to be removed in case of simplifying closed Extrusionlines.
/* ExtrusionLines are treated as (open) polylines, so in case an ExtrusionLine is actually a closed polygon, its
* starting and ending points will be equal (or almost equal). Therefore, the simplification of the ExtrusionLine
* should not touch the first and last points. As a result, start simplifying from point at index 1.
* */
std::vector<ExtrusionJunction> new_junctions;
// Starting junction should always exist in the simplified path
new_junctions.emplace_back(junctions.front());
/* Initially, previous_previous is always the same as previous because, for open ExtrusionLines the last junction
* cannot be taken into consideration when checking the points at index 1. For closed ExtrusionLines, the first and
* last junctions are anyway the same.
* */
ExtrusionJunction previous_previous = junctions.front();
ExtrusionJunction previous = junctions.front();
/* When removing a vertex, we check the height of the triangle of the area
being removed from the original polygon by the simplification. However,
when consecutively removing multiple vertices the height of the previously
removed vertices w.r.t. the shortcut path changes.
In order to not recompute the new height value of previously removed
vertices we compute the height of a representative triangle, which covers
the same amount of area as the area being cut off. We use the Shoelace
formula to accumulate the area under the removed segments. This works by
computing the area in a 'fan' where each of the blades of the fan go from
the origin to one of the segments. While removing vertices the area in
this fan accumulates. By subtracting the area of the blade connected to
the short-cutting segment we obtain the total area of the cutoff region.
From this area we compute the height of the representative triangle using
the standard formula for a triangle area: A = .5*b*h
*/
const ExtrusionJunction& initial = junctions.at(1);
int64_t accumulated_area_removed = int64_t(previous.p.x()) * int64_t(initial.p.y()) - int64_t(previous.p.y()) * int64_t(initial.p.x()); // Twice the Shoelace formula for area of polygon per line segment.
for (size_t point_idx = 1; point_idx < junctions.size() - 1; point_idx++)
{
const ExtrusionJunction& current = junctions[point_idx];
// Spill over in case of overflow, unless the [next] vertex will then be equal to [previous].
const bool spill_over = point_idx + 1 == junctions.size() && new_junctions.size() > 1;
ExtrusionJunction& next = spill_over ? new_junctions[0] : junctions[point_idx + 1];
const int64_t removed_area_next = int64_t(current.p.x()) * int64_t(next.p.y()) - int64_t(current.p.y()) * int64_t(next.p.x()); // Twice the Shoelace formula for area of polygon per line segment.
const int64_t negative_area_closing = int64_t(next.p.x()) * int64_t(previous.p.y()) - int64_t(next.p.y()) * int64_t(previous.p.x()); // Area between the origin and the short-cutting segment
accumulated_area_removed += removed_area_next;
const int64_t length2 = (current - previous).cast<int64_t>().squaredNorm();
if (length2 < scaled<coord_t>(0.025))
{
// We're allowed to always delete segments of less than 5 micron. The width in this case doesn't matter that much.
continue;
}
const int64_t area_removed_so_far = accumulated_area_removed + negative_area_closing; // Close the shortcut area polygon
const int64_t base_length_2 = (next - previous).cast<int64_t>().squaredNorm();
if (base_length_2 == 0) // Two line segments form a line back and forth with no area.
{
continue; // Remove the junction (vertex).
}
//We want to check if the height of the triangle formed by previous, current and next vertices is less than allowed_error_distance_squared.
//1/2 L = A [actual area is half of the computed shoelace value] // Shoelace formula is .5*(...) , but we simplify the computation and take out the .5
//A = 1/2 * b * h [triangle area formula]
//L = b * h [apply above two and take out the 1/2]
//h = L / b [divide by b]
//h^2 = (L / b)^2 [square it]
//h^2 = L^2 / b^2 [factor the divisor]
const auto height_2 = int64_t(double(area_removed_so_far) * double(area_removed_so_far) / double(base_length_2));
const int64_t extrusion_area_error = calculateExtrusionAreaDeviationError(previous, current, next);
if ((height_2 <= scaled<coord_t>(0.001) //Almost exactly colinear (barring rounding errors).
&& Line::distance_to_infinite(current.p, previous.p, next.p) <= scaled<double>(0.001)) // Make sure that height_2 is not small because of cancellation of positive and negative areas
// We shouldn't remove middle junctions of colinear segments if the area changed for the C-P segment is exceeding the maximum allowed
&& extrusion_area_error <= maximum_extrusion_area_deviation)
{
// Remove the current junction (vertex).
continue;
}
if (length2 < smallest_line_segment_squared
&& height_2 <= allowed_error_distance_squared) // Removing the junction (vertex) doesn't introduce too much error.
{
const int64_t next_length2 = (current - next).cast<int64_t>().squaredNorm();
if (next_length2 > 4 * smallest_line_segment_squared)
{
// Special case; The next line is long. If we were to remove this, it could happen that we get quite noticeable artifacts.
// We should instead move this point to a location where both edges are kept and then remove the previous point that we wanted to keep.
// By taking the intersection of these two lines, we get a point that preserves the direction (so it makes the corner a bit more pointy).
// We just need to be sure that the intersection point does not introduce an artifact itself.
Point intersection_point;
bool has_intersection = Line(previous_previous.p, previous.p).intersection_infinite(Line(current.p, next.p), &intersection_point);
if (!has_intersection
|| Line::distance_to_infinite_squared(intersection_point, previous.p, current.p) > double(allowed_error_distance_squared)
|| (intersection_point - previous.p).cast<int64_t>().squaredNorm() > smallest_line_segment_squared // The intersection point is way too far from the 'previous'
|| (intersection_point - next.p).cast<int64_t>().squaredNorm() > smallest_line_segment_squared) // and 'next' points, so it shouldn't replace 'current'
{
// We can't find a better spot for it, but the size of the line is more than 5 micron.
// So the only thing we can do here is leave it in...
}
else
{
// New point seems like a valid one.
const ExtrusionJunction new_to_add = ExtrusionJunction(intersection_point, current.w, current.perimeter_index);
// If there was a previous point added, remove it.
if(!new_junctions.empty())
{
new_junctions.pop_back();
previous = previous_previous;
}
// The junction (vertex) is replaced by the new one.
accumulated_area_removed = removed_area_next; // So that in the next iteration it's the area between the origin, [previous] and [current]
previous_previous = previous;
previous = new_to_add; // Note that "previous" is only updated if we don't remove the junction (vertex).
new_junctions.push_back(new_to_add);
continue;
}
}
else
{
continue; // Remove the junction (vertex).
}
}
// The junction (vertex) isn't removed.
accumulated_area_removed = removed_area_next; // So that in the next iteration it's the area between the origin, [previous] and [current]
previous_previous = previous;
previous = current; // Note that "previous" is only updated if we don't remove the junction (vertex).
new_junctions.push_back(current);
}
// Ending junction (vertex) should always exist in the simplified path
new_junctions.emplace_back(junctions.back());
/* In case this is a closed polygon (instead of a poly-line-segments), the invariant that the first and last points are the same should be enforced.
* Since one of them didn't move, and the other can't have been moved further than the constraints, if originally equal, they can simply be equated.
*/
if ((junctions.front().p - junctions.back().p).cast<int64_t>().squaredNorm() == 0)
{
new_junctions.back().p = junctions.front().p;
}
junctions = new_junctions;
}
int64_t ExtrusionLine::calculateExtrusionAreaDeviationError(ExtrusionJunction A, ExtrusionJunction B, ExtrusionJunction C) {
/*
* A B C A C
* --------------- **************
* | | ------------------------------------------
* | |--------------------------| B removed | |***************************|
* | | | ---------> | | |
* | |--------------------------| | |***************************|
* | | ------------------------------------------
* --------------- ^ **************
* ^ B.w + C.w / 2 ^
* A.w + B.w / 2 new_width = weighted_average_width
*
*
* ******** denote the total extrusion area deviation error in the consecutive segments as a result of using the
* weighted-average width for the entire extrusion line.
*
* */
const int64_t ab_length = (B.p - A.p).cast<int64_t>().norm();
const int64_t bc_length = (C.p - B.p).cast<int64_t>().norm();
if (const coord_t width_diff = std::max(std::abs(B.w - A.w), std::abs(C.w - B.w)); width_diff > 1) {
// Adjust the width only if there is a difference, or else the rounding errors may produce the wrong
// weighted average value.
const int64_t ab_weight = (A.w + B.w) / 2;
const int64_t bc_weight = (B.w + C.w) / 2;
const int64_t weighted_average_width = (ab_length * ab_weight + bc_length * bc_weight) / (ab_length + bc_length);
const int64_t ac_length = (C.p - A.p).cast<int64_t>().norm();
return std::abs((ab_weight * ab_length + bc_weight * bc_length) - (weighted_average_width * ac_length));
} else {
// If the width difference is very small, then select the width of the segment that is longer
return ab_length > bc_length ? int64_t(width_diff) * bc_length : int64_t(width_diff) * ab_length;
}
}
bool ExtrusionLine::is_contour() const
{
if (!this->is_closed)
return false;
Polygon poly;
poly.points.reserve(this->junctions.size());
for (const ExtrusionJunction &junction : this->junctions)
poly.points.emplace_back(junction.p);
// Arachne produces contour with clockwise orientation and holes with counterclockwise orientation.
return poly.is_clockwise();
}
double ExtrusionLine::area() const
{
assert(this->is_closed);
double a = 0.;
if (this->junctions.size() >= 3) {
Vec2d p1 = this->junctions.back().p.cast<double>();
for (const ExtrusionJunction &junction : this->junctions) {
Vec2d p2 = junction.p.cast<double>();
a += cross2(p1, p2);
p1 = p2;
}
}
return 0.5 * a;
}
} // namespace Slic3r::Arachne
namespace Slic3r {
void extrusion_paths_append(ExtrusionPaths &dst, const ClipperLib_Z::Paths &extrusion_paths, const ExtrusionRole role, const Flow &flow)
{
for (const ClipperLib_Z::Path &extrusion_path : extrusion_paths) {
ThickPolyline thick_polyline = Arachne::to_thick_polyline(extrusion_path);
Slic3r::append(dst, PerimeterGenerator::thick_polyline_to_multi_path(thick_polyline, role, flow, scaled<float>(0.05), float(SCALED_EPSILON)).paths);
}
}
void extrusion_paths_append(ExtrusionPaths &dst, const Arachne::ExtrusionLine &extrusion, const ExtrusionRole role, const Flow &flow)
{
ThickPolyline thick_polyline = Arachne::to_thick_polyline(extrusion);
Slic3r::append(dst, PerimeterGenerator::thick_polyline_to_multi_path(thick_polyline, role, flow, scaled<float>(0.05), float(SCALED_EPSILON)).paths);
}
} // namespace Slic3r

View File

@@ -0,0 +1,306 @@
//Copyright (c) 2020 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#ifndef UTILS_EXTRUSION_LINE_H
#define UTILS_EXTRUSION_LINE_H
#include "ExtrusionJunction.hpp"
#include "../../Polyline.hpp"
#include "../../Polygon.hpp"
#include "../../BoundingBox.hpp"
#include "../../ExtrusionEntity.hpp"
#include "../../Flow.hpp"
#include "../../../clipper/clipper_z.hpp"
namespace Slic3r {
struct ThickPolyline;
}
namespace Slic3r::Arachne
{
/*!
* Represents a polyline (not just a line) that is to be extruded with variable
* line width.
*
* This polyline is a sequence of \ref ExtrusionJunction, with a bit of metadata
* about which inset it represents.
*/
struct ExtrusionLine
{
/*!
* Which inset this path represents, counted from the outside inwards.
*
* The outer wall has index 0.
*/
size_t inset_idx;
/*!
* If a thin piece needs to be printed with an odd number of walls (e.g. 5
* walls) then there will be one wall in the middle that is not a loop. This
* field indicates whether this path is such a line through the middle, that
* has no companion line going back on the other side and is not a closed
* loop.
*/
bool is_odd;
/*!
* Whether this is a closed polygonal path
*/
bool is_closed;
/*!
* Gets the number of vertices in this polygon.
* \return The number of vertices in this polygon.
*/
size_t size() const { return junctions.size(); }
/*!
* Whether there are no junctions.
*/
bool empty() const { return junctions.empty(); }
/*!
* The list of vertices along which this path runs.
*
* Each junction has a width, making this path a variable-width path.
*/
std::vector<ExtrusionJunction> junctions;
ExtrusionLine(const size_t inset_idx, const bool is_odd);
ExtrusionLine() : inset_idx(-1), is_odd(true), is_closed(false) {}
ExtrusionLine(const ExtrusionLine &other) : inset_idx(other.inset_idx), is_odd(other.is_odd), is_closed(other.is_closed), junctions(other.junctions) {}
ExtrusionLine &operator=(ExtrusionLine &&other)
{
junctions = std::move(other.junctions);
inset_idx = other.inset_idx;
is_odd = other.is_odd;
is_closed = other.is_closed;
return *this;
}
ExtrusionLine &operator=(const ExtrusionLine &other)
{
junctions = other.junctions;
inset_idx = other.inset_idx;
is_odd = other.is_odd;
is_closed = other.is_closed;
return *this;
}
std::vector<ExtrusionJunction>::const_iterator begin() const { return junctions.begin(); }
std::vector<ExtrusionJunction>::const_iterator end() const { return junctions.end(); }
std::vector<ExtrusionJunction>::const_reverse_iterator rbegin() const { return junctions.rbegin(); }
std::vector<ExtrusionJunction>::const_reverse_iterator rend() const { return junctions.rend(); }
std::vector<ExtrusionJunction>::const_reference front() const { return junctions.front(); }
std::vector<ExtrusionJunction>::const_reference back() const { return junctions.back(); }
const ExtrusionJunction &operator[](unsigned int index) const { return junctions[index]; }
ExtrusionJunction &operator[](unsigned int index) { return junctions[index]; }
std::vector<ExtrusionJunction>::iterator begin() { return junctions.begin(); }
std::vector<ExtrusionJunction>::iterator end() { return junctions.end(); }
std::vector<ExtrusionJunction>::reference front() { return junctions.front(); }
std::vector<ExtrusionJunction>::reference back() { return junctions.back(); }
template<typename... Args> void emplace_back(Args &&...args) { junctions.emplace_back(args...); }
void remove(unsigned int index) { junctions.erase(junctions.begin() + index); }
void insert(size_t index, const ExtrusionJunction &p) { junctions.insert(junctions.begin() + index, p); }
template<class iterator>
std::vector<ExtrusionJunction>::iterator insert(std::vector<ExtrusionJunction>::const_iterator pos, iterator first, iterator last)
{
return junctions.insert(pos, first, last);
}
void clear() { junctions.clear(); }
void reverse() { std::reverse(junctions.begin(), junctions.end()); }
/*!
* Sum the total length of this path.
*/
int64_t getLength() const;
int64_t polylineLength() const { return getLength(); }
/*!
* Put all junction locations into a polygon object.
*
* When this path is not closed the returned Polygon should be handled as a polyline, rather than a polygon.
*/
Polygon toPolygon() const
{
Polygon ret;
for (const ExtrusionJunction &j : junctions)
ret.points.emplace_back(j.p);
return ret;
}
/*!
* Get the minimal width of this path
*/
coord_t getMinimalWidth() const;
/*!
* Removes vertices of the ExtrusionLines to make sure that they are not too high
* resolution.
*
* This removes junctions which are connected to line segments that are shorter
* than the `smallest_line_segment`, unless that would introduce a deviation
* in the contour of more than `allowed_error_distance`.
*
* Criteria:
* 1. Never remove a junction if either of the connected segments is larger than \p smallest_line_segment
* 2. Never remove a junction if the distance between that junction and the final resulting polygon would be higher
* than \p allowed_error_distance
* 3. The direction of segments longer than \p smallest_line_segment always
* remains unaltered (but their end points may change if it is connected to
* a small segment)
* 4. Never remove a junction if it has a distinctively different width than the next junction, as this can
* introduce unwanted irregularities on the wall widths.
*
* Simplify uses a heuristic and doesn't necessarily remove all removable
* vertices under the above criteria, but simplify may never violate these
* criteria. Unless the segments or the distance is smaller than the
* rounding error of 5 micron.
*
* Vertices which introduce an error of less than 5 microns are removed
* anyway, even if the segments are longer than the smallest line segment.
* This makes sure that (practically) co-linear line segments are joined into
* a single line segment.
* \param smallest_line_segment Maximal length of removed line segments.
* \param allowed_error_distance If removing a vertex introduces a deviation
* from the original path that is more than this distance, the vertex may
* not be removed.
* \param maximum_extrusion_area_deviation The maximum extrusion area deviation allowed when removing intermediate
* junctions from a straight ExtrusionLine
*/
void simplify(int64_t smallest_line_segment_squared, int64_t allowed_error_distance_squared, int64_t maximum_extrusion_area_deviation);
/*!
* Computes and returns the total area error (in μm²) of the AB and BC segments of an ABC straight ExtrusionLine
* when the junction B with a width B.w is removed from the ExtrusionLine. The area changes due to the fact that the
* new simplified line AC has a uniform width which equals to the weighted average of the width of the subsegments
* (based on their length).
*
* \param A Start point of the 3-point-straight line
* \param B Intermediate point of the 3-point-straight line
* \param C End point of the 3-point-straight line
* */
static int64_t calculateExtrusionAreaDeviationError(ExtrusionJunction A, ExtrusionJunction B, ExtrusionJunction C);
bool is_contour() const;
double area() const;
};
static inline Slic3r::ThickPolyline to_thick_polyline(const Arachne::ExtrusionLine &line_junctions)
{
assert(line_junctions.size() >= 2);
Slic3r::ThickPolyline out;
out.points.emplace_back(line_junctions.front().p);
out.width.emplace_back(line_junctions.front().w);
out.points.emplace_back(line_junctions[1].p);
out.width.emplace_back(line_junctions[1].w);
auto it_prev = line_junctions.begin() + 1;
for (auto it = line_junctions.begin() + 2; it != line_junctions.end(); ++it) {
out.points.emplace_back(it->p);
out.width.emplace_back(it_prev->w);
out.width.emplace_back(it->w);
it_prev = it;
}
return out;
}
static inline Slic3r::ThickPolyline to_thick_polyline(const ClipperLib_Z::Path &path)
{
assert(path.size() >= 2);
Slic3r::ThickPolyline out;
out.points.emplace_back(path.front().x(), path.front().y());
out.width.emplace_back(path.front().z());
out.points.emplace_back(path[1].x(), path[1].y());
out.width.emplace_back(path[1].z());
auto it_prev = path.begin() + 1;
for (auto it = path.begin() + 2; it != path.end(); ++it) {
out.points.emplace_back(it->x(), it->y());
out.width.emplace_back(it_prev->z());
out.width.emplace_back(it->z());
it_prev = it;
}
return out;
}
static inline Polygon to_polygon(const ExtrusionLine &line)
{
Polygon out;
assert(line.junctions.size() >= 3);
assert(line.junctions.front().p == line.junctions.back().p);
out.points.reserve(line.junctions.size() - 1);
for (auto it = line.junctions.begin(); it != line.junctions.end() - 1; ++it)
out.points.emplace_back(it->p);
return out;
}
#if 0
static BoundingBox get_extents(const ExtrusionLine &extrusion_line)
{
BoundingBox bbox;
for (const ExtrusionJunction &junction : extrusion_line.junctions)
bbox.merge(junction.p);
return bbox;
}
static BoundingBox get_extents(const std::vector<ExtrusionLine> &extrusion_lines)
{
BoundingBox bbox;
for (const ExtrusionLine &extrusion_line : extrusion_lines)
bbox.merge(get_extents(extrusion_line));
return bbox;
}
static BoundingBox get_extents(const std::vector<const ExtrusionLine *> &extrusion_lines)
{
BoundingBox bbox;
for (const ExtrusionLine *extrusion_line : extrusion_lines) {
assert(extrusion_line != nullptr);
bbox.merge(get_extents(*extrusion_line));
}
return bbox;
}
static Points to_points(const ExtrusionLine &extrusion_line)
{
Points points;
points.reserve(extrusion_line.junctions.size());
for (const ExtrusionJunction &junction : extrusion_line.junctions)
points.emplace_back(junction.p);
return points;
}
static std::vector<Points> to_points(const std::vector<const ExtrusionLine *> &extrusion_lines)
{
std::vector<Points> points;
for (const ExtrusionLine *extrusion_line : extrusion_lines) {
assert(extrusion_line != nullptr);
points.emplace_back(to_points(*extrusion_line));
}
return points;
}
#endif
using VariableWidthLines = std::vector<ExtrusionLine>; //<! The ExtrusionLines generated by libArachne
} // namespace Slic3r::Arachne
namespace Slic3r {
void extrusion_paths_append(ExtrusionPaths &dst, const ClipperLib_Z::Paths &extrusion_paths, const ExtrusionRole role, const Flow &flow);
void extrusion_paths_append(ExtrusionPaths &dst, const Arachne::ExtrusionLine &extrusion, const ExtrusionRole role, const Flow &flow);
} // namespace Slic3r
#endif // UTILS_EXTRUSION_LINE_H

View File

@@ -0,0 +1,39 @@
//Copyright (c) 2020 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#ifndef UTILS_HALF_EDGE_H
#define UTILS_HALF_EDGE_H
#include <forward_list>
#include <optional>
namespace Slic3r::Arachne
{
template<typename node_data_t, typename edge_data_t, typename derived_node_t, typename derived_edge_t>
class HalfEdgeNode;
template<typename node_data_t, typename edge_data_t, typename derived_node_t, typename derived_edge_t>
class HalfEdge
{
using edge_t = derived_edge_t;
using node_t = derived_node_t;
public:
edge_data_t data;
edge_t* twin = nullptr;
edge_t* next = nullptr;
edge_t* prev = nullptr;
node_t* from = nullptr;
node_t* to = nullptr;
HalfEdge(edge_data_t data)
: data(data)
{}
bool operator==(const edge_t& other)
{
return this == &other;
}
};
} // namespace Slic3r::Arachne
#endif // UTILS_HALF_EDGE_H

View File

@@ -0,0 +1,31 @@
//Copyright (c) 2020 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#ifndef UTILS_HALF_EDGE_GRAPH_H
#define UTILS_HALF_EDGE_GRAPH_H
#include <list>
#include <cassert>
#include "HalfEdge.hpp"
#include "HalfEdgeNode.hpp"
namespace Slic3r::Arachne
{
template<class node_data_t, class edge_data_t, class derived_node_t, class derived_edge_t> // types of data contained in nodes and edges
class HalfEdgeGraph
{
public:
using edge_t = derived_edge_t;
using node_t = derived_node_t;
using Edges = std::list<edge_t>;
using Nodes = std::list<node_t>;
Edges edges;
Nodes nodes;
};
} // namespace Slic3r::Arachne
#endif // UTILS_HALF_EDGE_GRAPH_H

View File

@@ -0,0 +1,38 @@
//Copyright (c) 2020 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#ifndef UTILS_HALF_EDGE_NODE_H
#define UTILS_HALF_EDGE_NODE_H
#include <list>
#include "../../Point.hpp"
namespace Slic3r::Arachne
{
template<typename node_data_t, typename edge_data_t, typename derived_node_t, typename derived_edge_t>
class HalfEdge;
template<typename node_data_t, typename edge_data_t, typename derived_node_t, typename derived_edge_t>
class HalfEdgeNode
{
using edge_t = derived_edge_t;
using node_t = derived_node_t;
public:
node_data_t data;
Point p;
edge_t* incident_edge = nullptr;
HalfEdgeNode(node_data_t data, Point p)
: data(data)
, p(p)
{}
bool operator==(const node_t& other)
{
return this == &other;
}
};
} // namespace Slic3r::Arachne
#endif // UTILS_HALF_EDGE_NODE_H

View File

@@ -0,0 +1,180 @@
//Copyright (c) 2018 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#ifndef UTILS_POLYGONS_POINT_INDEX_H
#define UTILS_POLYGONS_POINT_INDEX_H
#include <vector>
#include "../../Point.hpp"
#include "../../Polygon.hpp"
namespace Slic3r::Arachne
{
// Identity function, used to be able to make templated algorithms where the input is sometimes points, sometimes things that contain or can be converted to points.
inline const Point &make_point(const Point &p) { return p; }
/*!
* A class for iterating over the points in one of the polygons in a \ref Polygons object
*/
template<typename Paths>
class PathsPointIndex
{
public:
/*!
* The polygons into which this index is indexing.
*/
const Paths* polygons; // (pointer to const polygons)
unsigned int poly_idx; //!< The index of the polygon in \ref PolygonsPointIndex::polygons
unsigned int point_idx; //!< The index of the point in the polygon in \ref PolygonsPointIndex::polygons
/*!
* Constructs an empty point index to no polygon.
*
* This is used as a placeholder for when there is a zero-construction
* needed. Since the `polygons` field is const you can't ever make this
* initialisation useful.
*/
PathsPointIndex() : polygons(nullptr), poly_idx(0), point_idx(0) {}
/*!
* Constructs a new point index to a vertex of a polygon.
* \param polygons The Polygons instance to which this index points.
* \param poly_idx The index of the sub-polygon to point to.
* \param point_idx The index of the vertex in the sub-polygon.
*/
PathsPointIndex(const Paths *polygons, unsigned int poly_idx, unsigned int point_idx) : polygons(polygons), poly_idx(poly_idx), point_idx(point_idx) {}
/*!
* Copy constructor to copy these indices.
*/
PathsPointIndex(const PathsPointIndex& original) = default;
Point p() const
{
if (!polygons)
return {0, 0};
return make_point((*polygons)[poly_idx][point_idx]);
}
/*!
* \brief Returns whether this point is initialised.
*/
bool initialized() const { return polygons; }
/*!
* Get the polygon to which this PolygonsPointIndex refers
*/
const Polygon &getPolygon() const { return (*polygons)[poly_idx]; }
/*!
* Test whether two iterators refer to the same polygon in the same polygon list.
*
* \param other The PolygonsPointIndex to test for equality
* \return Wether the right argument refers to the same polygon in the same ListPolygon as the left argument.
*/
bool operator==(const PathsPointIndex &other) const
{
return polygons == other.polygons && poly_idx == other.poly_idx && point_idx == other.point_idx;
}
bool operator!=(const PathsPointIndex &other) const
{
return !(*this == other);
}
bool operator<(const PathsPointIndex &other) const
{
return this->p() < other.p();
}
PathsPointIndex &operator=(const PathsPointIndex &other)
{
polygons = other.polygons;
poly_idx = other.poly_idx;
point_idx = other.point_idx;
return *this;
}
//! move the iterator forward (and wrap around at the end)
PathsPointIndex &operator++()
{
point_idx = (point_idx + 1) % (*polygons)[poly_idx].size();
return *this;
}
//! move the iterator backward (and wrap around at the beginning)
PathsPointIndex &operator--()
{
if (point_idx == 0)
point_idx = (*polygons)[poly_idx].size();
point_idx--;
return *this;
}
//! move the iterator forward (and wrap around at the end)
PathsPointIndex next() const
{
PathsPointIndex ret(*this);
++ret;
return ret;
}
//! move the iterator backward (and wrap around at the beginning)
PathsPointIndex prev() const
{
PathsPointIndex ret(*this);
--ret;
return ret;
}
};
using PolygonsPointIndex = PathsPointIndex<Polygons>;
/*!
* Locator to extract a line segment out of a \ref PolygonsPointIndex
*/
struct PolygonsPointIndexSegmentLocator
{
std::pair<Point, Point> operator()(const PolygonsPointIndex &val) const
{
const Polygon &poly = (*val.polygons)[val.poly_idx];
Point start = poly[val.point_idx];
unsigned int next_point_idx = (val.point_idx + 1) % poly.size();
Point end = poly[next_point_idx];
return std::pair<Point, Point>(start, end);
}
};
/*!
* Locator of a \ref PolygonsPointIndex
*/
template<typename Paths>
struct PathsPointIndexLocator
{
Point operator()(const PathsPointIndex<Paths>& val) const
{
return make_point(val.p());
}
};
using PolygonsPointIndexLocator = PathsPointIndexLocator<Polygons>;
}//namespace Slic3r::Arachne
namespace std
{
/*!
* Hash function for \ref PolygonsPointIndex
*/
template <>
struct hash<Slic3r::Arachne::PolygonsPointIndex>
{
size_t operator()(const Slic3r::Arachne::PolygonsPointIndex& lpi) const
{
return Slic3r::PointHash{}(lpi.p());
}
};
}//namespace std
#endif//UTILS_POLYGONS_POINT_INDEX_H

View File

@@ -0,0 +1,31 @@
//Copyright (c) 2020 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#ifndef UTILS_POLYGONS_SEGMENT_INDEX_H
#define UTILS_POLYGONS_SEGMENT_INDEX_H
#include <vector>
#include "PolygonsPointIndex.hpp"
namespace Slic3r::Arachne
{
/*!
* A class for iterating over the points in one of the polygons in a \ref Polygons object
*/
class PolygonsSegmentIndex : public PolygonsPointIndex
{
public:
PolygonsSegmentIndex() : PolygonsPointIndex(){};
PolygonsSegmentIndex(const Polygons *polygons, unsigned int poly_idx, unsigned int point_idx) : PolygonsPointIndex(polygons, poly_idx, point_idx){};
Point from() const { return PolygonsPointIndex::p(); }
Point to() const { return PolygonsSegmentIndex::next().p(); }
};
} // namespace Slic3r::Arachne
#endif//UTILS_POLYGONS_SEGMENT_INDEX_H

View File

@@ -0,0 +1,42 @@
//Copyright (c) 2022 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#include "PolylineStitcher.hpp"
#include "ExtrusionLine.hpp"
namespace Slic3r::Arachne {
template<> bool PolylineStitcher<VariableWidthLines, ExtrusionLine, ExtrusionJunction>::canReverse(const PathsPointIndex<VariableWidthLines> &ppi)
{
if ((*ppi.polygons)[ppi.poly_idx].is_odd)
return true;
else
return false;
}
template<> bool PolylineStitcher<Polygons, Polygon, Point>::canReverse(const PathsPointIndex<Polygons> &)
{
return true;
}
template<> bool PolylineStitcher<VariableWidthLines, ExtrusionLine, ExtrusionJunction>::canConnect(const ExtrusionLine &a, const ExtrusionLine &b)
{
return a.is_odd == b.is_odd;
}
template<> bool PolylineStitcher<Polygons, Polygon, Point>::canConnect(const Polygon &, const Polygon &)
{
return true;
}
template<> bool PolylineStitcher<VariableWidthLines, ExtrusionLine, ExtrusionJunction>::isOdd(const ExtrusionLine &line)
{
return line.is_odd;
}
template<> bool PolylineStitcher<Polygons, Polygon, Point>::isOdd(const Polygon &)
{
return false;
}
} // namespace Slic3r::Arachne

View File

@@ -0,0 +1,233 @@
//Copyright (c) 2022 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#ifndef UTILS_POLYLINE_STITCHER_H
#define UTILS_POLYLINE_STITCHER_H
#include "SparsePointGrid.hpp"
#include "PolygonsPointIndex.hpp"
#include "../../Polygon.hpp"
#include <cassert>
namespace Slic3r::Arachne
{
/*!
* Class for stitching polylines into longer polylines or into polygons
*/
template<typename Paths, typename Path, typename Junction>
class PolylineStitcher
{
public:
/*!
* Stitch together the separate \p lines into \p result_lines and if they
* can be closed into \p result_polygons.
*
* Only introduce new segments shorter than \p max_stitch_distance, and
* larger than \p snap_distance but always try to take the shortest
* connection possible.
*
* Only stitch polylines into closed polygons if they are larger than 3 *
* \p max_stitch_distance, in order to prevent small segments to
* accidentally get closed into a polygon.
*
* \warning Tiny polylines (smaller than 3 * max_stitch_distance) will not
* be closed into polygons.
*
* \note Resulting polylines and polygons are added onto the existing
* containers, so you can directly output onto a polygons container with
* existing polygons in it. However, you shouldn't call this function with
* the same parameter in \p lines as \p result_lines, because that would
* duplicate (some of) the polylines.
* \param lines The lines to stitch together.
* \param result_lines[out] The stitched parts that are not closed polygons
* will be stored in here.
* \param result_polygons[out] The stitched parts that were closed as
* polygons will be stored in here.
* \param max_stitch_distance The maximum distance that will be bridged to
* connect two lines.
* \param snap_distance Points closer than this distance are considered to
* be the same point.
*/
static void stitch(const Paths& lines, Paths& result_lines, Paths& result_polygons, coord_t max_stitch_distance = scaled<coord_t>(0.1), coord_t snap_distance = scaled<coord_t>(0.01))
{
if (lines.empty())
return;
SparsePointGrid<PathsPointIndex<Paths>, PathsPointIndexLocator<Paths>> grid(max_stitch_distance, lines.size() * 2);
// populate grid
for (size_t line_idx = 0; line_idx < lines.size(); line_idx++)
{
const auto line = lines[line_idx];
grid.insert(PathsPointIndex<Paths>(&lines, line_idx, 0));
grid.insert(PathsPointIndex<Paths>(&lines, line_idx, line.size() - 1));
}
std::vector<bool> processed(lines.size(), false);
for (size_t line_idx = 0; line_idx < lines.size(); line_idx++)
{
if (processed[line_idx])
{
continue;
}
processed[line_idx] = true;
const auto line = lines[line_idx];
bool should_close = isOdd(line);
Path chain = line;
bool closest_is_closing_polygon = false;
for (bool go_in_reverse_direction : { false, true }) // first go in the unreversed direction, to try to prevent the chain.reverse() operation.
{ // NOTE: Implementation only works for this order; we currently only re-reverse the chain when it's closed.
if (go_in_reverse_direction)
{ // try extending chain in the other direction
chain.reverse();
}
int64_t chain_length = chain.polylineLength();
while (true)
{
Point from = make_point(chain.back());
PathsPointIndex<Paths> closest;
coord_t closest_distance = std::numeric_limits<coord_t>::max();
grid.processNearby(from, max_stitch_distance,
std::function<bool (const PathsPointIndex<Paths>&)> (
[from, &chain, &closest, &closest_is_closing_polygon, &closest_distance, &processed, &chain_length, go_in_reverse_direction, max_stitch_distance, snap_distance, should_close]
(const PathsPointIndex<Paths>& nearby)->bool
{
bool is_closing_segment = false;
coord_t dist = (nearby.p().template cast<int64_t>() - from.template cast<int64_t>()).norm();
if (dist > max_stitch_distance)
{
return true; // keep looking
}
if ((nearby.p().template cast<int64_t>() - make_point(chain.front()).template cast<int64_t>()).squaredNorm() < snap_distance * snap_distance)
{
if (chain_length + dist < 3 * max_stitch_distance // prevent closing of small poly, cause it might be able to continue making a larger polyline
|| chain.size() <= 2) // don't make 2 vert polygons
{
return true; // look for a better next line
}
is_closing_segment = true;
if (!should_close)
{
dist += scaled<coord_t>(0.01); // prefer continuing polyline over closing a polygon; avoids closed zigzags from being printed separately
// continue to see if closing segment is also the closest
// there might be a segment smaller than [max_stitch_distance] which closes the polygon better
}
else
{
dist -= scaled<coord_t>(0.01); //Prefer closing the polygon if it's 100% even lines. Used to create closed contours.
//Continue to see if closing segment is also the closest.
}
}
else if (processed[nearby.poly_idx])
{ // it was already moved to output
return true; // keep looking for a connection
}
bool nearby_would_be_reversed = nearby.point_idx != 0;
nearby_would_be_reversed = nearby_would_be_reversed != go_in_reverse_direction; // flip nearby_would_be_reversed when searching in the reverse direction
if (!canReverse(nearby) && nearby_would_be_reversed)
{ // connecting the segment would reverse the polygon direction
return true; // keep looking for a connection
}
if (!canConnect(chain, (*nearby.polygons)[nearby.poly_idx]))
{
return true; // keep looking for a connection
}
if (dist < closest_distance)
{
closest_distance = dist;
closest = nearby;
closest_is_closing_polygon = is_closing_segment;
}
if (dist < snap_distance)
{ // we have found a good enough next line
return false; // stop looking for alternatives
}
return true; // keep processing elements
})
);
if (!closest.initialized() // we couldn't find any next line
|| closest_is_closing_polygon // we closed the polygon
)
{
break;
}
coord_t segment_dist = (make_point(chain.back()).template cast<int64_t>() - closest.p().template cast<int64_t>()).norm();
assert(segment_dist <= max_stitch_distance + scaled<coord_t>(0.01));
const size_t old_size = chain.size();
if (closest.point_idx == 0)
{
auto start_pos = (*closest.polygons)[closest.poly_idx].begin();
if (segment_dist < snap_distance)
{
++start_pos;
}
chain.insert(chain.end(), start_pos, (*closest.polygons)[closest.poly_idx].end());
}
else
{
auto start_pos = (*closest.polygons)[closest.poly_idx].rbegin();
if (segment_dist < snap_distance)
{
++start_pos;
}
chain.insert(chain.end(), start_pos, (*closest.polygons)[closest.poly_idx].rend());
}
for(size_t i = old_size; i < chain.size(); ++i) //Update chain length.
{
chain_length += (make_point(chain[i]).template cast<int64_t>() - make_point(chain[i - 1]).template cast<int64_t>()).norm();
}
should_close = should_close & !isOdd((*closest.polygons)[closest.poly_idx]); //If we connect an even to an odd line, we should no longer try to close it.
assert( ! processed[closest.poly_idx]);
processed[closest.poly_idx] = true;
}
if (closest_is_closing_polygon)
{
if (go_in_reverse_direction)
{ // re-reverse chain to retain original direction
// NOTE: not sure if this code could ever be reached, since if a polygon can be closed that should be already possible in the forward direction
chain.reverse();
}
break; // don't consider reverse direction
}
}
if (closest_is_closing_polygon)
{
result_polygons.emplace_back(chain);
}
else
{
PathsPointIndex<Paths> ppi_here(&lines, line_idx, 0);
if ( ! canReverse(ppi_here))
{ // Since closest_is_closing_polygon is false we went through the second iterations of the for-loop, where go_in_reverse_direction is true
// the polyline isn't allowed to be reversed, so we re-reverse it.
chain.reverse();
}
result_lines.emplace_back(chain);
}
}
}
/*!
* Whether a polyline is allowed to be reversed. (Not true for wall polylines which are not odd)
*/
static bool canReverse(const PathsPointIndex<Paths> &polyline);
/*!
* Whether two paths are allowed to be connected.
* (Not true for an odd and an even wall.)
*/
static bool canConnect(const Path &a, const Path &b);
static bool isOdd(const Path &line);
};
} // namespace Slic3r::Arachne
#endif // UTILS_POLYLINE_STITCHER_H

View File

@@ -0,0 +1,132 @@
//Copyright (c) 2016 Scott Lenser
//Copyright (c) 2018 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#ifndef UTILS_SPARSE_GRID_H
#define UTILS_SPARSE_GRID_H
#include <cassert>
#include <vector>
#include <functional>
#include "../../Point.hpp"
#include "SquareGrid.hpp"
namespace Slic3r::Arachne {
/*! \brief Sparse grid which can locate spatially nearby elements efficiently.
*
* \note This is an abstract template class which doesn't have any functions to insert elements.
* \see SparsePointGrid
*
* \tparam ElemT The element type to store.
*/
template<class ElemT> class SparseGrid : public SquareGrid
{
public:
using Elem = ElemT;
using GridPoint = SquareGrid::GridPoint;
using grid_coord_t = SquareGrid::grid_coord_t;
using GridMap = std::unordered_multimap<GridPoint, Elem, PointHash>;
using iterator = typename GridMap::iterator;
using const_iterator = typename GridMap::const_iterator;
/*! \brief Constructs a sparse grid with the specified cell size.
*
* \param[in] cell_size The size to use for a cell (square) in the grid.
* Typical values would be around 0.5-2x of expected query radius.
* \param[in] elem_reserve Number of elements to research space for.
* \param[in] max_load_factor Maximum average load factor before rehashing.
*/
SparseGrid(coord_t cell_size, size_t elem_reserve=0U, float max_load_factor=1.0f);
iterator begin() { return m_grid.begin(); }
iterator end() { return m_grid.end(); }
const_iterator begin() const { return m_grid.begin(); }
const_iterator end() const { return m_grid.end(); }
/*! \brief Returns all data within radius of query_pt.
*
* Finds all elements with location within radius of \p query_pt. May
* return additional elements that are beyond radius.
*
* Average running time is a*(1 + 2 * radius / cell_size)**2 +
* b*cnt where a and b are proportionality constance and cnt is
* the number of returned items. The search will return items in
* an area of (2*radius + cell_size)**2 on average. The max range
* of an item from the query_point is radius + cell_size.
*
* \param[in] query_pt The point to search around.
* \param[in] radius The search radius.
* \return Vector of elements found
*/
std::vector<Elem> getNearby(const Point &query_pt, coord_t radius) const;
/*! \brief Process elements from cells that might contain sought after points.
*
* Processes elements from cell that might have elements within \p
* radius of \p query_pt. Processes all elements that are within
* radius of query_pt. May process elements that are up to radius +
* cell_size from query_pt.
*
* \param[in] query_pt The point to search around.
* \param[in] radius The search radius.
* \param[in] process_func Processes each element. process_func(elem) is
* called for each element in the cell. Processing stops if function returns false.
* \return Whether we need to continue processing after this function
*/
bool processNearby(const Point &query_pt, coord_t radius, const std::function<bool(const ElemT &)> &process_func) const;
protected:
/*! \brief Process elements from the cell indicated by \p grid_pt.
*
* \param[in] grid_pt The grid coordinates of the cell.
* \param[in] process_func Processes each element. process_func(elem) is
* called for each element in the cell. Processing stops if function returns false.
* \return Whether we need to continue processing a next cell.
*/
bool processFromCell(const GridPoint &grid_pt, const std::function<bool(const Elem &)> &process_func) const;
/*! \brief Map from grid locations (GridPoint) to elements (Elem). */
GridMap m_grid;
};
template<class ElemT> SparseGrid<ElemT>::SparseGrid(coord_t cell_size, size_t elem_reserve, float max_load_factor) : SquareGrid(cell_size)
{
// Must be before the reserve call.
m_grid.max_load_factor(max_load_factor);
if (elem_reserve != 0U)
m_grid.reserve(elem_reserve);
}
template<class ElemT> bool SparseGrid<ElemT>::processFromCell(const GridPoint &grid_pt, const std::function<bool(const Elem &)> &process_func) const
{
auto grid_range = m_grid.equal_range(grid_pt);
for (auto iter = grid_range.first; iter != grid_range.second; ++iter)
if (!process_func(iter->second))
return false;
return true;
}
template<class ElemT>
bool SparseGrid<ElemT>::processNearby(const Point &query_pt, coord_t radius, const std::function<bool(const Elem &)> &process_func) const
{
return SquareGrid::processNearby(query_pt, radius, [&process_func, this](const GridPoint &grid_pt) { return processFromCell(grid_pt, process_func); });
}
template<class ElemT> std::vector<typename SparseGrid<ElemT>::Elem> SparseGrid<ElemT>::getNearby(const Point &query_pt, coord_t radius) const
{
std::vector<Elem> ret;
const std::function<bool(const Elem &)> process_func = [&ret](const Elem &elem) {
ret.push_back(elem);
return true;
};
processNearby(query_pt, radius, process_func);
return ret;
}
} // namespace Slic3r::Arachne
#endif // UTILS_SPARSE_GRID_H

View File

@@ -0,0 +1,76 @@
//Copyright (c) 2018 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#ifndef UTILS_SPARSE_LINE_GRID_H
#define UTILS_SPARSE_LINE_GRID_H
#include <cassert>
#include <vector>
#include <functional>
#include "SparseGrid.hpp"
namespace Slic3r::Arachne {
/*! \brief Sparse grid which can locate spatially nearby elements efficiently.
*
* \tparam ElemT The element type to store.
* \tparam Locator The functor to get the start and end locations from ElemT.
* must have: std::pair<Point, Point> operator()(const ElemT &elem) const
* which returns the location associated with val.
*/
template<class ElemT, class Locator> class SparseLineGrid : public SparseGrid<ElemT>
{
public:
using Elem = ElemT;
/*! \brief Constructs a sparse grid with the specified cell size.
*
* \param[in] cell_size The size to use for a cell (square) in the grid.
* Typical values would be around 0.5-2x of expected query radius.
* \param[in] elem_reserve Number of elements to research space for.
* \param[in] max_load_factor Maximum average load factor before rehashing.
*/
SparseLineGrid(coord_t cell_size, size_t elem_reserve = 0U, float max_load_factor = 1.0f);
/*! \brief Inserts elem into the sparse grid.
*
* \param[in] elem The element to be inserted.
*/
void insert(const Elem &elem);
protected:
using GridPoint = typename SparseGrid<ElemT>::GridPoint;
/*! \brief Accessor for getting locations from elements. */
Locator m_locator;
};
template<class ElemT, class Locator>
SparseLineGrid<ElemT, Locator>::SparseLineGrid(coord_t cell_size, size_t elem_reserve, float max_load_factor)
: SparseGrid<ElemT>(cell_size, elem_reserve, max_load_factor) {}
template<class ElemT, class Locator> void SparseLineGrid<ElemT, Locator>::insert(const Elem &elem)
{
const std::pair<Point, Point> line = m_locator(elem);
using GridMap = std::unordered_multimap<GridPoint, Elem, PointHash>;
// below is a workaround for the fact that lambda functions cannot access private or protected members
// first we define a lambda which works on any GridMap and then we bind it to the actual protected GridMap of the parent class
std::function<bool(GridMap *, const GridPoint)> process_cell_func_ = [&elem](GridMap *m_grid, const GridPoint grid_loc) {
m_grid->emplace(grid_loc, elem);
return true;
};
using namespace std::placeholders; // for _1, _2, _3...
GridMap *m_grid = &(this->m_grid);
std::function<bool(const GridPoint)> process_cell_func(std::bind(process_cell_func_, m_grid, _1));
SparseGrid<ElemT>::processLineCells(line, process_cell_func);
}
#undef SGI_TEMPLATE
#undef SGI_THIS
} // namespace Slic3r::Arachne
#endif // UTILS_SPARSE_LINE_GRID_H

View File

@@ -0,0 +1,89 @@
// Copyright (c) 2016 Scott Lenser
// Copyright (c) 2020 Ultimaker B.V.
// CuraEngine is released under the terms of the AGPLv3 or higher.
#ifndef UTILS_SPARSE_POINT_GRID_H
#define UTILS_SPARSE_POINT_GRID_H
#include <cassert>
#include <vector>
#include "SparseGrid.hpp"
namespace Slic3r::Arachne {
/*! \brief Sparse grid which can locate spatially nearby elements efficiently.
*
* \tparam ElemT The element type to store.
* \tparam Locator The functor to get the location from ElemT. Locator
* must have: Point operator()(const ElemT &elem) const
* which returns the location associated with val.
*/
template<class ElemT, class Locator> class SparsePointGrid : public SparseGrid<ElemT>
{
public:
using Elem = ElemT;
/*! \brief Constructs a sparse grid with the specified cell size.
*
* \param[in] cell_size The size to use for a cell (square) in the grid.
* Typical values would be around 0.5-2x of expected query radius.
* \param[in] elem_reserve Number of elements to research space for.
* \param[in] max_load_factor Maximum average load factor before rehashing.
*/
SparsePointGrid(coord_t cell_size, size_t elem_reserve = 0U, float max_load_factor = 1.0f);
/*! \brief Inserts elem into the sparse grid.
*
* \param[in] elem The element to be inserted.
*/
void insert(const Elem &elem);
/*!
* Get just any element that's within a certain radius of a point.
*
* Rather than giving a vector of nearby elements, this function just gives
* a single element, any element, in no particular order.
* \param query_pt The point to query for an object nearby.
* \param radius The radius of what is considered "nearby".
*/
const ElemT *getAnyNearby(const Point &query_pt, coord_t radius);
protected:
using GridPoint = typename SparseGrid<ElemT>::GridPoint;
/*! \brief Accessor for getting locations from elements. */
Locator m_locator;
};
template<class ElemT, class Locator>
SparsePointGrid<ElemT, Locator>::SparsePointGrid(coord_t cell_size, size_t elem_reserve, float max_load_factor) : SparseGrid<ElemT>(cell_size, elem_reserve, max_load_factor) {}
template<class ElemT, class Locator>
void SparsePointGrid<ElemT, Locator>::insert(const Elem &elem)
{
Point loc = m_locator(elem);
GridPoint grid_loc = SparseGrid<ElemT>::toGridPoint(loc.template cast<int64_t>());
SparseGrid<ElemT>::m_grid.emplace(grid_loc, elem);
}
template<class ElemT, class Locator>
const ElemT *SparsePointGrid<ElemT, Locator>::getAnyNearby(const Point &query_pt, coord_t radius)
{
const ElemT *ret = nullptr;
const std::function<bool(const ElemT &)> &process_func = [&ret, query_pt, radius, this](const ElemT &maybe_nearby) {
if (shorter_then(m_locator(maybe_nearby) - query_pt, radius)) {
ret = &maybe_nearby;
return false;
}
return true;
};
SparseGrid<ElemT>::processNearby(query_pt, radius, process_func);
return ret;
}
} // namespace Slic3r::Arachne
#endif // UTILS_SPARSE_POINT_GRID_H

View File

@@ -0,0 +1,147 @@
//Copyright (c) 2021 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#include "SquareGrid.hpp"
#include "../../Point.hpp"
using namespace Slic3r::Arachne;
SquareGrid::SquareGrid(coord_t cell_size) : cell_size(cell_size)
{
assert(cell_size > 0U);
}
SquareGrid::GridPoint SquareGrid::toGridPoint(const Vec2i64 &point) const
{
return Point(toGridCoord(point.x()), toGridCoord(point.y()));
}
SquareGrid::grid_coord_t SquareGrid::toGridCoord(const int64_t &coord) const
{
// This mapping via truncation results in the cells with
// GridPoint.x==0 being twice as large and similarly for
// GridPoint.y==0. This doesn't cause any incorrect behavior,
// just changes the running time slightly. The change in running
// time from this is probably not worth doing a proper floor
// operation.
return coord / cell_size;
}
coord_t SquareGrid::toLowerCoord(const grid_coord_t& grid_coord) const
{
// This mapping via truncation results in the cells with
// GridPoint.x==0 being twice as large and similarly for
// GridPoint.y==0. This doesn't cause any incorrect behavior,
// just changes the running time slightly. The change in running
// time from this is probably not worth doing a proper floor
// operation.
return grid_coord * cell_size;
}
bool SquareGrid::processLineCells(const std::pair<Point, Point> line, const std::function<bool (GridPoint)>& process_cell_func)
{
return static_cast<const SquareGrid*>(this)->processLineCells(line, process_cell_func);
}
bool SquareGrid::processLineCells(const std::pair<Point, Point> line, const std::function<bool (GridPoint)>& process_cell_func) const
{
Point start = line.first;
Point end = line.second;
if (end.x() < start.x())
{ // make sure X increases between start and end
std::swap(start, end);
}
const GridPoint start_cell = toGridPoint(start.cast<int64_t>());
const GridPoint end_cell = toGridPoint(end.cast<int64_t>());
const int64_t y_diff = int64_t(end.y() - start.y());
const grid_coord_t y_dir = nonzeroSign(y_diff);
/* This line drawing algorithm iterates over the range of Y coordinates, and
for each Y coordinate computes the range of X coordinates crossed in one
unit of Y. These ranges are rounded to be inclusive, so effectively this
creates a "fat" line, marking more cells than a strict one-cell-wide path.*/
grid_coord_t x_cell_start = start_cell.x();
for (grid_coord_t cell_y = start_cell.y(); cell_y * y_dir <= end_cell.y() * y_dir; cell_y += y_dir)
{ // for all Y from start to end
// nearest y coordinate of the cells in the next row
const coord_t nearest_next_y = toLowerCoord(cell_y + ((nonzeroSign(cell_y) == y_dir || cell_y == 0) ? y_dir : coord_t(0)));
grid_coord_t x_cell_end; // the X coord of the last cell to include from this row
if (y_diff == 0)
{
x_cell_end = end_cell.x();
}
else
{
const int64_t area = int64_t(end.x() - start.x()) * int64_t(nearest_next_y - start.y());
// corresponding_x: the x coordinate corresponding to nearest_next_y
int64_t corresponding_x = int64_t(start.x()) + area / y_diff;
x_cell_end = toGridCoord(corresponding_x + ((corresponding_x < 0) && ((area % y_diff) != 0)));
if (x_cell_end < start_cell.x())
{ // process at least one cell!
x_cell_end = x_cell_start;
}
}
for (grid_coord_t cell_x = x_cell_start; cell_x <= x_cell_end; ++cell_x)
{
GridPoint grid_loc(cell_x, cell_y);
if (! process_cell_func(grid_loc))
{
return false;
}
if (grid_loc == end_cell)
{
return true;
}
}
// TODO: this causes at least a one cell overlap for each row, which
// includes extra cells when crossing precisely on the corners
// where positive slope where x > 0 and negative slope where x < 0
x_cell_start = x_cell_end;
}
assert(false && "We should have returned already before here!");
return false;
}
bool SquareGrid::processNearby
(
const Point &query_pt,
coord_t radius,
const std::function<bool (const GridPoint&)>& process_func
) const
{
const Point min_loc(query_pt.x() - radius, query_pt.y() - radius);
const Point max_loc(query_pt.x() + radius, query_pt.y() + radius);
GridPoint min_grid = toGridPoint(min_loc.cast<int64_t>());
GridPoint max_grid = toGridPoint(max_loc.cast<int64_t>());
for (coord_t grid_y = min_grid.y(); grid_y <= max_grid.y(); ++grid_y)
{
for (coord_t grid_x = min_grid.x(); grid_x <= max_grid.x(); ++grid_x)
{
GridPoint grid_pt(grid_x,grid_y);
if (!process_func(grid_pt))
{
return false;
}
}
}
return true;
}
SquareGrid::grid_coord_t SquareGrid::nonzeroSign(const grid_coord_t z) const
{
return (z >= 0) - (z < 0);
}
coord_t SquareGrid::getCellSize() const
{
return cell_size;
}

View File

@@ -0,0 +1,109 @@
//Copyright (c) 2021 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#ifndef UTILS_SQUARE_GRID_H
#define UTILS_SQUARE_GRID_H
#include "../../Point.hpp"
#include <cassert>
#include <vector>
#include <functional>
namespace Slic3r::Arachne {
/*!
* Helper class to calculate coordinates on a square grid, and providing some
* utility functions to process grids.
*
* Doesn't contain any data, except cell size. The purpose is only to
* automatically generate coordinates on a grid, and automatically feed them to
* functions.
* The grid is theoretically infinite (bar integer limits).
*/
class SquareGrid
{
public:
/*! \brief Constructs a grid with the specified cell size.
* \param[in] cell_size The size to use for a cell (square) in the grid.
*/
SquareGrid(const coord_t cell_size);
/*!
* Get the cell size this grid was created for.
*/
coord_t getCellSize() const;
using GridPoint = Point;
using grid_coord_t = coord_t;
/*! \brief Process cells along a line indicated by \p line.
*
* \param line The line along which to process cells.
* \param process_func Processes each cell. ``process_func(elem)`` is called
* for each cell. Processing stops if function returns false.
* \return Whether we need to continue processing after this function.
*/
bool processLineCells(const std::pair<Point, Point> line, const std::function<bool (GridPoint)>& process_cell_func);
/*! \brief Process cells along a line indicated by \p line.
*
* \param line The line along which to process cells
* \param process_func Processes each cell. ``process_func(elem)`` is called
* for each cell. Processing stops if function returns false.
* \return Whether we need to continue processing after this function.
*/
bool processLineCells(const std::pair<Point, Point> line, const std::function<bool (GridPoint)>& process_cell_func) const;
/*! \brief Process cells that might contain sought after points.
*
* Processes cells that might be within a square with twice \p radius as
* width, centered around \p query_pt.
* May process elements that are up to radius + cell_size from query_pt.
* \param query_pt The point to search around.
* \param radius The search radius.
* \param process_func Processes each cell. ``process_func(loc)`` is called
* for each cell coord within range. Processing stops if function returns
* ``false``.
* \return Whether we need to continue processing after this function.
*/
bool processNearby(const Point &query_pt, coord_t radius, const std::function<bool(const GridPoint &)> &process_func) const;
/*! \brief Compute the grid coordinates of a point.
* \param point The actual location.
* \return The grid coordinates that correspond to \p point.
*/
GridPoint toGridPoint(const Vec2i64 &point) const;
/*! \brief Compute the grid coordinate of a real space coordinate.
* \param coord The actual location.
* \return The grid coordinate that corresponds to \p coord.
*/
grid_coord_t toGridCoord(const int64_t &coord) const;
/*! \brief Compute the lowest coord in a grid cell.
* The lowest point is the point in the grid cell closest to the origin.
*
* \param grid_coord The grid coordinate.
* \return The print space coordinate that corresponds to \p grid_coord.
*/
coord_t toLowerCoord(const grid_coord_t &grid_coord) const;
protected:
/*! \brief The cell (square) size. */
coord_t cell_size;
/*!
* Compute the sign of a number.
*
* The number 0 will result in a positive sign (1).
* \param z The number to find the sign of.
* \return 1 if the number is positive or 0, or -1 if the number is
* negative.
*/
grid_coord_t nonzeroSign(grid_coord_t z) const;
};
} // namespace Slic3r::Arachne
#endif //UTILS_SQUARE_GRID_H

View File

@@ -0,0 +1,251 @@
//Copyright (c) 2021 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#include <stack>
#include <optional>
#include <boost/log/trivial.hpp>
#include "linearAlg2D.hpp"
#include "VoronoiUtils.hpp"
namespace Slic3r::Arachne
{
Vec2i64 VoronoiUtils::p(const vd_t::vertex_type *node)
{
const double x = node->x();
const double y = node->y();
assert(std::isfinite(x) && std::isfinite(y));
assert(x <= double(std::numeric_limits<int64_t>::max()) && x >= std::numeric_limits<int64_t>::lowest());
assert(y <= double(std::numeric_limits<int64_t>::max()) && y >= std::numeric_limits<int64_t>::lowest());
return {int64_t(x + 0.5 - (x < 0)), int64_t(y + 0.5 - (y < 0))}; // Round to the nearest integer coordinates.
}
Point VoronoiUtils::getSourcePoint(const vd_t::cell_type& cell, const std::vector<Segment>& segments)
{
assert(cell.contains_point());
if(!cell.contains_point())
BOOST_LOG_TRIVIAL(debug) << "Voronoi cell doesn't contain a source point!";
switch (cell.source_category()) {
case boost::polygon::SOURCE_CATEGORY_SINGLE_POINT:
assert(false && "Voronoi diagram is always constructed using segments, so cell.source_category() shouldn't be SOURCE_CATEGORY_SINGLE_POINT!\n");
BOOST_LOG_TRIVIAL(error) << "Voronoi diagram is always constructed using segments, so cell.source_category() shouldn't be SOURCE_CATEGORY_SINGLE_POINT!";
break;
case boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT:
assert(cell.source_index() < segments.size());
return segments[cell.source_index()].to();
break;
case boost::polygon::SOURCE_CATEGORY_SEGMENT_END_POINT:
assert(cell.source_index() < segments.size());
return segments[cell.source_index()].from();
break;
default:
assert(false && "getSourcePoint should only be called on point cells!\n");
break;
}
assert(false && "cell.source_category() is equal to an invalid value!\n");
BOOST_LOG_TRIVIAL(error) << "cell.source_category() is equal to an invalid value!";
return {};
}
PolygonsPointIndex VoronoiUtils::getSourcePointIndex(const vd_t::cell_type& cell, const std::vector<Segment>& segments)
{
assert(cell.contains_point());
if(!cell.contains_point())
BOOST_LOG_TRIVIAL(debug) << "Voronoi cell doesn't contain a source point!";
assert(cell.source_category() != boost::polygon::SOURCE_CATEGORY_SINGLE_POINT);
switch (cell.source_category()) {
case boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT: {
assert(cell.source_index() < segments.size());
PolygonsPointIndex ret = segments[cell.source_index()];
++ret;
return ret;
break;
}
case boost::polygon::SOURCE_CATEGORY_SEGMENT_END_POINT: {
assert(cell.source_index() < segments.size());
return segments[cell.source_index()];
break;
}
default:
assert(false && "getSourcePoint should only be called on point cells!\n");
break;
}
PolygonsPointIndex ret = segments[cell.source_index()];
return ++ret;
}
const VoronoiUtils::Segment &VoronoiUtils::getSourceSegment(const vd_t::cell_type &cell, const std::vector<Segment> &segments)
{
assert(cell.contains_segment());
if (!cell.contains_segment())
BOOST_LOG_TRIVIAL(debug) << "Voronoi cell doesn't contain a source segment!";
return segments[cell.source_index()];
}
class PointMatrix
{
public:
double matrix[4];
PointMatrix()
{
matrix[0] = 1;
matrix[1] = 0;
matrix[2] = 0;
matrix[3] = 1;
}
PointMatrix(double rotation)
{
rotation = rotation / 180 * M_PI;
matrix[0] = cos(rotation);
matrix[1] = -sin(rotation);
matrix[2] = -matrix[1];
matrix[3] = matrix[0];
}
PointMatrix(const Point p)
{
matrix[0] = p.x();
matrix[1] = p.y();
double f = sqrt((matrix[0] * matrix[0]) + (matrix[1] * matrix[1]));
matrix[0] /= f;
matrix[1] /= f;
matrix[2] = -matrix[1];
matrix[3] = matrix[0];
}
static PointMatrix scale(double s)
{
PointMatrix ret;
ret.matrix[0] = s;
ret.matrix[3] = s;
return ret;
}
Point apply(const Point p) const
{
return Point(coord_t(p.x() * matrix[0] + p.y() * matrix[1]), coord_t(p.x() * matrix[2] + p.y() * matrix[3]));
}
Point unapply(const Point p) const
{
return Point(coord_t(p.x() * matrix[0] + p.y() * matrix[2]), coord_t(p.x() * matrix[1] + p.y() * matrix[3]));
}
};
Points VoronoiUtils::discretizeParabola(const Point& p, const Segment& segment, Point s, Point e, coord_t approximate_step_size, float transitioning_angle)
{
Points discretized;
// x is distance of point projected on the segment ab
// xx is point projected on the segment ab
const Point a = segment.from();
const Point b = segment.to();
const Point ab = b - a;
const Point as = s - a;
const Point ae = e - a;
const coord_t ab_size = ab.cast<int64_t>().norm();
const coord_t sx = as.cast<int64_t>().dot(ab.cast<int64_t>()) / ab_size;
const coord_t ex = ae.cast<int64_t>().dot(ab.cast<int64_t>()) / ab_size;
const coord_t sxex = ex - sx;
assert((as.cast<int64_t>().dot(ab.cast<int64_t>()) / int64_t(ab_size)) <= std::numeric_limits<coord_t>::max());
assert((ae.cast<int64_t>().dot(ab.cast<int64_t>()) / int64_t(ab_size)) <= std::numeric_limits<coord_t>::max());
const Point ap = p - a;
const coord_t px = ap.cast<int64_t>().dot(ab.cast<int64_t>()) / ab_size;
assert((ap.cast<int64_t>().dot(ab.cast<int64_t>()) / int64_t(ab_size)) <= std::numeric_limits<coord_t>::max());
Point pxx;
Line(a, b).distance_to_infinite_squared(p, &pxx);
const Point ppxx = pxx - p;
const coord_t d = ppxx.cast<int64_t>().norm();
const PointMatrix rot = PointMatrix(perp(ppxx));
if (d == 0)
{
discretized.emplace_back(s);
discretized.emplace_back(e);
return discretized;
}
const float marking_bound = atan(transitioning_angle * 0.5);
int64_t msx = - marking_bound * int64_t(d); // projected marking_start
int64_t mex = marking_bound * int64_t(d); // projected marking_end
assert(msx <= std::numeric_limits<coord_t>::max());
assert(double(msx) * double(msx) <= double(std::numeric_limits<int64_t>::max()));
assert(mex <= std::numeric_limits<coord_t>::max());
assert(double(msx) * double(msx) / double(2 * d) + double(d / 2) <= std::numeric_limits<coord_t>::max());
const coord_t marking_start_end_h = msx * msx / (2 * d) + d / 2;
Point marking_start = rot.unapply(Point(coord_t(msx), marking_start_end_h)) + pxx;
Point marking_end = rot.unapply(Point(coord_t(mex), marking_start_end_h)) + pxx;
const int dir = (sx > ex) ? -1 : 1;
if (dir < 0)
{
std::swap(marking_start, marking_end);
std::swap(msx, mex);
}
bool add_marking_start = msx * int64_t(dir) > int64_t(sx - px) * int64_t(dir) && msx * int64_t(dir) < int64_t(ex - px) * int64_t(dir);
bool add_marking_end = mex * int64_t(dir) > int64_t(sx - px) * int64_t(dir) && mex * int64_t(dir) < int64_t(ex - px) * int64_t(dir);
const Point apex = rot.unapply(Point(0, d / 2)) + pxx;
bool add_apex = int64_t(sx - px) * int64_t(dir) < 0 && int64_t(ex - px) * int64_t(dir) > 0;
assert(!(add_marking_start && add_marking_end) || add_apex);
if(add_marking_start && add_marking_end && !add_apex)
{
BOOST_LOG_TRIVIAL(warning) << "Failing to discretize parabola! Must add an apex or one of the endpoints.";
}
const coord_t step_count = static_cast<coord_t>(static_cast<float>(std::abs(ex - sx)) / approximate_step_size + 0.5);
discretized.emplace_back(s);
for (coord_t step = 1; step < step_count; step++)
{
assert(double(sxex) * double(step) <= double(std::numeric_limits<int64_t>::max()));
const int64_t x = int64_t(sx) + int64_t(sxex) * int64_t(step) / int64_t(step_count) - int64_t(px);
assert(double(x) * double(x) <= double(std::numeric_limits<int64_t>::max()));
assert(double(x) * double(x) / double(2 * d) + double(d / 2) <= double(std::numeric_limits<int64_t>::max()));
const int64_t y = int64_t(x) * int64_t(x) / int64_t(2 * d) + int64_t(d / 2);
if (add_marking_start && msx * int64_t(dir) < int64_t(x) * int64_t(dir))
{
discretized.emplace_back(marking_start);
add_marking_start = false;
}
if (add_apex && int64_t(x) * int64_t(dir) > 0)
{
discretized.emplace_back(apex);
add_apex = false; // only add the apex just before the
}
if (add_marking_end && mex * int64_t(dir) < int64_t(x) * int64_t(dir))
{
discretized.emplace_back(marking_end);
add_marking_end = false;
}
assert(x <= std::numeric_limits<coord_t>::max() && x >= std::numeric_limits<coord_t>::lowest());
assert(y <= std::numeric_limits<coord_t>::max() && y >= std::numeric_limits<coord_t>::lowest());
const Point result = rot.unapply(Point(x, y)) + pxx;
discretized.emplace_back(result);
}
if (add_apex)
{
discretized.emplace_back(apex);
}
if (add_marking_end)
{
discretized.emplace_back(marking_end);
}
discretized.emplace_back(e);
return discretized;
}
}//namespace Slic3r::Arachne

View File

@@ -0,0 +1,47 @@
//Copyright (c) 2020 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#ifndef UTILS_VORONOI_UTILS_H
#define UTILS_VORONOI_UTILS_H
#include <vector>
#include <boost/polygon/voronoi.hpp>
#include "PolygonsSegmentIndex.hpp"
namespace Slic3r::Arachne
{
/*!
*/
class VoronoiUtils
{
public:
using Segment = PolygonsSegmentIndex;
using voronoi_data_t = double;
using vd_t = boost::polygon::voronoi_diagram<voronoi_data_t>;
static Point getSourcePoint(const vd_t::cell_type &cell, const std::vector<Segment> &segments);
static const Segment &getSourceSegment(const vd_t::cell_type &cell, const std::vector<Segment> &segments);
static PolygonsPointIndex getSourcePointIndex(const vd_t::cell_type &cell, const std::vector<Segment> &segments);
static Vec2i64 p(const vd_t::vertex_type *node);
/*!
* Discretize a parabola based on (approximate) step size.
* The \p approximate_step_size is measured parallel to the \p source_segment, not along the parabola.
*/
static Points discretizeParabola(const Point &source_point, const Segment &source_segment, Point start, Point end, coord_t approximate_step_size, float transitioning_angle);
static inline bool is_finite(const VoronoiUtils::vd_t::vertex_type &vertex)
{
return std::isfinite(vertex.x()) && std::isfinite(vertex.y());
}
};
} // namespace Slic3r::Arachne
#endif // UTILS_VORONOI_UTILS_H

View File

@@ -0,0 +1,118 @@
//Copyright (c) 2020 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#ifndef UTILS_LINEAR_ALG_2D_H
#define UTILS_LINEAR_ALG_2D_H
#include "../../Point.hpp"
namespace Slic3r::Arachne::LinearAlg2D
{
/*!
* Test whether a point is inside a corner.
* Whether point \p query_point is left of the corner abc.
* Whether the \p query_point is in the circle half left of ab and left of bc, rather than to the right.
*
* Test whether the \p query_point is inside of a polygon w.r.t a single corner.
*/
inline static bool isInsideCorner(const Point &a, const Point &b, const Point &c, const Vec2i64 &query_point)
{
// Visualisation for the algorithm below:
//
// query
// |
// |
// |
// perp-----------b
// / \ (note that the lines
// / \ AB and AC are normalized
// / \ to 10000 units length)
// a c
//
auto normal = [](const Point &p0, coord_t len) -> Point {
int64_t _len = p0.cast<int64_t>().norm();
if (_len < 1)
return {len, 0};
return (p0.cast<int64_t>() * int64_t(len) / _len).cast<coord_t>();
};
constexpr coord_t normal_length = 10000; //Create a normal vector of reasonable length in order to reduce rounding error.
const Point ba = normal(a - b, normal_length);
const Point bc = normal(c - b, normal_length);
const Vec2d bq = query_point.cast<double>() - b.cast<double>();
const Vec2d perpendicular = perp(bq); //The query projects to this perpendicular to coordinate 0.
const double project_a_perpendicular = ba.cast<double>().dot(perpendicular); //Project vertex A on the perpendicular line.
const double project_c_perpendicular = bc.cast<double>().dot(perpendicular); //Project vertex C on the perpendicular line.
if ((project_a_perpendicular > 0.) != (project_c_perpendicular > 0.)) //Query is between A and C on the projection.
{
return project_a_perpendicular > 0.; //Due to the winding order of corner ABC, this means that the query is inside.
}
else //Beyond either A or C, but it could still be inside of the polygon.
{
const double project_a_parallel = ba.cast<double>().dot(bq); //Project not on the perpendicular, but on the original.
const double project_c_parallel = bc.cast<double>().dot(bq);
//Either:
// * A is to the right of B (project_a_perpendicular > 0) and C is below A (project_c_parallel < project_a_parallel), or
// * A is to the left of B (project_a_perpendicular < 0) and C is above A (project_c_parallel > project_a_parallel).
return (project_c_parallel < project_a_parallel) == (project_a_perpendicular > 0.);
}
}
/*!
* Returns the determinant of the 2D matrix defined by the the vectors ab and ap as rows.
*
* The returned value is zero for \p p lying (approximately) on the line going through \p a and \p b
* The value is positive for values lying to the left and negative for values lying to the right when looking from \p a to \p b.
*
* \param p the point to check
* \param a the from point of the line
* \param b the to point of the line
* \return a positive value when \p p lies to the left of the line from \p a to \p b
*/
static inline int64_t pointIsLeftOfLine(const Point &p, const Point &a, const Point &b)
{
return int64_t(b.x() - a.x()) * int64_t(p.y() - a.y()) - int64_t(b.y() - a.y()) * int64_t(p.x() - a.x());
}
/*!
* Compute the angle between two consecutive line segments.
*
* The angle is computed from the left side of b when looking from a.
*
* c
* \ .
* \ b
* angle|
* |
* a
*
* \param a start of first line segment
* \param b end of first segment and start of second line segment
* \param c end of second line segment
* \return the angle in radians between 0 and 2 * pi of the corner in \p b
*/
static inline float getAngleLeft(const Point &a, const Point &b, const Point &c)
{
const Vec2i64 ba = (a - b).cast<int64_t>();
const Vec2i64 bc = (c - b).cast<int64_t>();
const int64_t dott = ba.dot(bc); // dot product
const int64_t det = cross2(ba, bc); // determinant
if (det == 0) {
if ((ba.x() != 0 && (ba.x() > 0) == (bc.x() > 0)) || (ba.x() == 0 && (ba.y() > 0) == (bc.y() > 0)))
return 0; // pointy bit
else
return float(M_PI); // straight bit
}
const float angle = -atan2(double(det), double(dott)); // from -pi to pi
if (angle >= 0)
return angle;
else
return M_PI * 2 + angle;
}
}//namespace Slic3r::Arachne
#endif//UTILS_LINEAR_ALG_2D_H