Files
QIDISlicer/src/libslic3r/Support/OrganicSupport.cpp

1421 lines
72 KiB
C++
Raw Normal View History

2023-06-10 10:14:12 +08:00
#include "OrganicSupport.hpp"
#include "SupportCommon.hpp"
#include "../AABBTreeLines.hpp"
#include "../ClipperUtils.hpp"
#include "../Polygon.hpp"
#include "../Polyline.hpp"
#include "../MutablePolygon.hpp"
#include "../TriangleMeshSlicer.hpp"
#include <cassert>
#include <tbb/parallel_for.h>
#define TREE_SUPPORT_ORGANIC_NUDGE_NEW 1
#ifndef TREE_SUPPORT_ORGANIC_NUDGE_NEW
// Old version using OpenVDB, works but it is extremely slow for complex meshes.
#include "../OpenVDBUtilsLegacy.hpp"
#include <openvdb/tools/VolumeToSpheres.h>
#endif // TREE_SUPPORT_ORGANIC_NUDGE_NEW
namespace Slic3r
{
namespace FFFTreeSupport
{
// Single slice through a single branch or trough a number of branches.
struct Slice
{
// All polygons collected for this slice.
Polygons polygons;
// All bottom contacts collected for this slice.
Polygons bottom_contacts;
// How many branches were merged in this slice? Used to decide whether ClipperLib union is needed.
size_t num_branches{ 0 };
};
struct Element
{
// Current position of the centerline including the Z coordinate, unscaled.
Vec3f position;
float radius;
// Index of this layer, including the raft layers.
LayerIndex layer_idx;
// Limits where the centerline could be placed at the current layer Z.
Polygons influence_area;
// Locked node should not be moved. Locked nodes are at the top of an object or at the tips of branches.
bool locked;
// Previous position, for Laplacian smoothing, unscaled.
Vec3f prev_position;
// For sphere tracing and other collision detection optimizations.
Vec3f last_collision;
double last_collision_depth;
struct CollisionSphere {
// Minimum Z for which the sphere collision will be evaluated.
// Limited by the minimum sloping angle and by the bottom of the tree.
float min_z{ -std::numeric_limits<float>::max() };
// Maximum Z for which the sphere collision will be evaluated.
// Limited by the minimum sloping angle and by the tip of the current branch.
float max_z{ std::numeric_limits<float>::max() };
// Span of layers to test collision of this sphere against.
uint32_t layer_begin;
uint32_t layer_end;
};
CollisionSphere collision_sphere;
};
struct Branch;
struct Bifurcation
{
Branch *branch;
double area;
};
// Single branch of a tree.
struct Branch
{
std::vector<Element> path;
using Bifurcations =
#ifdef NDEBUG
// To reduce memory allocation in release mode.
boost::container::small_vector<Bifurcation, 4>;
#else // NDEBUG
// To ease debugging.
std::vector<Bifurcation>;
#endif // NDEBUG
Bifurcations up;
Bifurcation down;
// How many of the thick up branches are considered continuation of the trunk?
// These will be smoothed out together.
size_t num_up_trunk;
bool has_root() const { return this->down.branch == nullptr; }
bool has_tip() const { return this->up.empty(); }
};
struct Tree
{
// Branches: Store of all branches.
// The first branch is the root of the tree.
Slic3r::deque<Branch> branches;
Branch& root() { return branches.front(); }
const Branch& root() const { return branches.front(); }
// Result of slicing the branches.
std::vector<Slice> slices;
// First layer index of the first slice in the vector above.
LayerIndex first_layer_id{ -1 };
};
using Forest = std::vector<Tree>;
using Trees = std::vector<Tree>;
Element to_tree_element(const TreeSupportSettings &config, const SlicingParameters &slicing_params, SupportElement &element, bool is_root)
{
Element out;
out.position = to_3d(unscaled<float>(element.state.result_on_layer), float(layer_z(slicing_params, config, element.state.layer_idx)));
out.radius = support_element_radius(config, element);
out.layer_idx = element.state.layer_idx;
out.influence_area = std::move(element.influence_area);
out.locked = (is_root && element.state.layer_idx > 0) || element.state.locked();
return out;
}
// Convert move bounds into a forest of trees, each tree made of a graph of branches and bifurcation points.
// Destroys move_bounds.
Forest make_forest(const TreeSupportSettings &config, const SlicingParameters &slicing_params, std::vector<SupportElements> &&move_bounds)
{
struct TreeVisitor {
void visit_recursive(std::vector<SupportElements> &move_bounds, SupportElement &start_element, Branch *parent_branch, Tree &out) const {
assert(! start_element.state.marked && ! start_element.parents.empty());
// Collect elements up to a bifurcation above.
start_element.state.marked = true;
// For each branch bifurcating from this point:
// SupportElements &layer = move_bounds[start_element.state.layer_idx];
SupportElements &layer_above = move_bounds[start_element.state.layer_idx + 1];
for (size_t parent_idx = 0; parent_idx < start_element.parents.size(); ++ parent_idx) {
Branch branch;
if (parent_branch)
// Duplicate the last element of the trunk below.
// If this branch has a smaller diameter than the trunk below, its centerline will not be aligned with the centerline of the trunk.
branch.path.emplace_back(parent_branch->path.back());
branch.path.emplace_back(to_tree_element(config, slicing_params, start_element, parent_branch == nullptr));
// Traverse each branch until it branches again.
SupportElement &first_parent = layer_above[start_element.parents[parent_idx]];
assert(! first_parent.state.marked);
assert(branch.path.back().layer_idx + 1 == first_parent.state.layer_idx);
branch.path.emplace_back(to_tree_element(config, slicing_params, first_parent, false));
if (first_parent.parents.size() < 2)
first_parent.state.marked = true;
SupportElement *next_branch = nullptr;
if (first_parent.parents.size() == 1) {
for (SupportElement *parent = &first_parent;;) {
assert(parent->state.marked);
SupportElement &next_parent = move_bounds[parent->state.layer_idx + 1][parent->parents.front()];
assert(! next_parent.state.marked);
assert(branch.path.back().layer_idx + 1 == next_parent.state.layer_idx);
branch.path.emplace_back(to_tree_element(config, slicing_params, next_parent, false));
if (next_parent.parents.size() > 1) {
// Branching point was reached.
next_branch = &next_parent;
break;
}
next_parent.state.marked = true;
if (next_parent.parents.size() == 0)
// Tip is reached.
break;
parent = &next_parent;
}
} else if (first_parent.parents.size() > 1)
// Branching point was reached.
next_branch = &first_parent;
assert(branch.path.size() >= 2);
assert(next_branch == nullptr || ! next_branch->state.marked);
out.branches.emplace_back(std::move(branch));
Branch *pbranch = &out.branches.back();
if (parent_branch) {
parent_branch->up.push_back({ pbranch });
pbranch->down = { parent_branch };
}
if (next_branch)
this->visit_recursive(move_bounds, *next_branch, pbranch, out);
}
if (parent_branch) {
// Update initial radii of thin branches merging with a trunk.
auto it_up_max_r = std::max_element(parent_branch->up.begin(), parent_branch->up.end(),
[](const Bifurcation &l, const Bifurcation &r){ return l.branch->path[1].radius < r.branch->path[1].radius; });
const float r1 = it_up_max_r->branch->path[1].radius;
const float radius_increment = unscaled<float>(config.branch_radius_increase_per_layer);
for (auto it = parent_branch->up.begin(); it != parent_branch->up.end(); ++ it)
if (it != it_up_max_r) {
Element &el = it->branch->path.front();
Element &el2 = it->branch->path[1];
if (! is_approx(r1, el2.radius))
el.radius = std::min(el.radius, el2.radius + radius_increment);
}
// Sort children of parent_branch by decreasing radius.
std::sort(parent_branch->up.begin(), parent_branch->up.end(),
[](const Bifurcation &l, const Bifurcation &r){ return l.branch->path.front().radius > r.branch->path.front().radius; });
// Update number of branches to be considered a continuation of the trunk during smoothing.
{
const float r_trunk = 0.75 * it_up_max_r->branch->path.front().radius;
parent_branch->num_up_trunk = 0;
for (const Bifurcation& up : parent_branch->up)
if (up.branch->path.front().radius < r_trunk)
break;
else
++ parent_branch->num_up_trunk;
}
}
}
const TreeSupportSettings &config;
const SlicingParameters &slicing_params;
};
TreeVisitor visitor{ config, slicing_params };
for (SupportElements &elements : move_bounds)
for (SupportElement &el : elements)
el.state.marked = false;
Trees trees;
for (LayerIndex layer_idx = 0; layer_idx + 1 < LayerIndex(move_bounds.size()); ++ layer_idx) {
for (SupportElement &start_element : move_bounds[layer_idx]) {
if (! start_element.state.marked && ! start_element.parents.empty()) {
#if 0
{
// Verify that this node is a root, such that there is no element in the layer below
// that points to it.
int ielement = &start_element - move_bounds.data();
int found = 0;
if (layer_idx > 0) {
for (auto &el : move_bounds[layer_idx - 1]) {
for (auto iparent : el.parents)
if (iparent == ielement)
++ found;
}
if (found != 0)
printf("Found: %d\n", found);
}
}
#endif
trees.push_back({});
visitor.visit_recursive(move_bounds, start_element, nullptr, trees.back());
assert(! trees.back().branches.empty());
assert(! trees.back().branches.front().path.empty());
#if 0
// Debugging: Only build trees with specific properties.
if (start_element.state.lost) {
}
else if (start_element.state.verylost) {
}
else
trees.pop_back();
#endif
}
}
}
#if 1
move_bounds.clear();
#else
for (SupportElements &elements : move_bounds)
for (SupportElement &el : elements)
el.state.marked = false;
#endif
return trees;
}
// Move bounds were propagated top to bottom. At each joint of branches the move bounds were reduced significantly.
// Now reflect the reduction of tree space by propagating the reduction of tree centerline space
// bottom-up starting with the bottom-most joint.
void trim_influence_areas_bottom_up(Forest &forest, const float dxy_dlayer)
{
struct Trimmer {
static void trim_recursive(Branch &branch, const float delta_r, const float dxy_dlayer) {
assert(delta_r >= 0);
if (delta_r > 0)
branch.path.front().influence_area = offset(branch.path.front().influence_area, delta_r);
for (size_t i = 1; i < branch.path.size(); ++ i)
branch.path[i].influence_area = intersection(branch.path[i].influence_area, offset(branch.path[i - 1].influence_area, dxy_dlayer));
const float r0 = branch.path.back().radius;
for (Bifurcation &up : branch.up) {
up.branch->path.front().influence_area = branch.path.back().influence_area;
trim_recursive(*up.branch, r0 - up.branch->path.front().radius, dxy_dlayer);
}
}
};
for (Tree &tree : forest) {
Branch &root = tree.root();
const float r0 = root.path.back().radius;
for (Bifurcation &up : root.up)
Trimmer::trim_recursive(*up.branch, r0 - up.branch->path.front().radius, dxy_dlayer);
}
}
// Straighten up and smooth centerlines inside their influence areas.
void smooth_trees_inside_influence_areas(Branch &root, bool is_root)
{
// Smooth the subtree:
//
// Apply laplacian and bilaplacian smoothing inside a branch,
// apply laplacian smoothing only at a bifurcation point.
//
// Applying a bilaplacian smoothing inside a branch should ensure curvature of the brach to be lower
// than the radius at each particular point of the centerline,
// while omitting bilaplacian smoothing at bifurcation points will create sharp bifurcations.
// Sharp bifurcations have a smaller volume, but just a tiny bit larger surfaces than smooth bifurcations
// where each continuation of the trunk satifies the path radius > centerline element radius.
const size_t num_iterations = 100;
struct StackElement {
Branch &branch;
size_t idx_up;
};
std::vector<StackElement> stack;
auto adjust_position = [](Element &el, Vec2f new_pos) {
Point new_pos_scaled = scaled<coord_t>(new_pos);
if (! contains(el.influence_area, new_pos_scaled)) {
int64_t min_dist = std::numeric_limits<int64_t>::max();
Point min_proj_scaled;
for (const Polygon& polygon : el.influence_area) {
Point proj_scaled = polygon.point_projection(new_pos_scaled);
if (int64_t dist = (proj_scaled - new_pos_scaled).cast<int64_t>().squaredNorm(); dist < min_dist) {
min_dist = dist;
min_proj_scaled = proj_scaled;
}
}
new_pos = unscaled<float>(min_proj_scaled);
}
el.position.head<2>() = new_pos;
};
for (size_t iter = 0; iter < num_iterations; ++ iter) {
// 1) Back-up the current positions.
stack.push_back({ root, 0 });
while (! stack.empty()) {
StackElement &state = stack.back();
if (state.idx_up == state.branch.num_up_trunk) {
// Process this path.
for (auto &el : state.branch.path)
el.prev_position = el.position;
stack.pop_back();
} else {
// Open another up node of this branch.
stack.push_back({ *state.branch.up[state.idx_up].branch, 0 });
++ state.idx_up;
}
}
// 2) Calculate new position.
stack.push_back({ root, 0 });
while (! stack.empty()) {
StackElement &state = stack.back();
if (state.idx_up == state.branch.num_up_trunk) {
// Process this path.
for (size_t i = 1; i + 1 < state.branch.path.size(); ++ i)
if (auto &el = state.branch.path[i]; ! el.locked) {
// Laplacian smoothing with 0.5 weight.
const Vec3f &p0 = state.branch.path[i - 1].prev_position;
const Vec3f &p1 = el.prev_position;
const Vec3f &p2 = state.branch.path[i + 1].prev_position;
adjust_position(el, 0.5 * p1.head<2>() + 0.25 * (p0.head<2>() + p2.head<2>()));
#if 0
// Only apply bilaplacian smoothing if the current curvature is smaller than el.radius.
// Interpolate p0, p1, p2 with a circle.
// First project p0, p1, p2 into a common plane.
const Vec3f n = (p1 - p0).cross(p2 - p1);
const Vec3f y = Vec3f(n.y(), n.x(), 0).normalized();
const Vec2f q0{ p0.z(), p0.dot(y) };
const Vec2f q1{ p1.z(), p1.dot(y) };
const Vec2f q2{ p2.z(), p2.dot(y) };
// Interpolate q0, q1, q2 with a circle, calculate its radius.
Vec2f b = q1 - q0;
Vec2f c = q2 - q0;
float lb = b.squaredNorm();
float lc = c.squaredNorm();
if (float d = b.x() * c.y() - b.y() * c.x(); std::abs(d) > EPSILON) {
Vec2f v = lc * b - lb * c;
float r2 = 0.25f * v.squaredNorm() / sqr(d);
if (r2 )
}
#endif
}
{
// Laplacian smoothing with 0.5 weight, branching point.
float weight = 0;
Vec2f new_pos = Vec2f::Zero();
for (size_t i = 0; i < state.branch.num_up_trunk; ++i) {
const Element &el = state.branch.up[i].branch->path.front();
new_pos += el.prev_position.head<2>();
weight += el.radius;
}
{
const Element &el = state.branch.path[state.branch.path.size() - 2];
new_pos += el.prev_position.head<2>();
weight *= 2.f;
}
adjust_position(state.branch.path.back(), 0.5f * state.branch.path.back().prev_position.head<2>() + 0.5f * weight * new_pos);
}
stack.pop_back();
} else {
// Open another up node of this branch.
stack.push_back({ *state.branch.up[state.idx_up].branch, 0 });
++ state.idx_up;
}
}
}
// Also smoothen start of the path.
if (Element &first = root.path.front(); ! first.locked) {
Element &second = root.path[1];
Vec2f new_pos = 0.75f * first.prev_position.head<2>() + 0.25f * second.prev_position.head<2>();
if (is_root)
// Let the root of the tree float inside its influence area.
adjust_position(first, new_pos);
else {
// Keep the start of a thin branch inside the trunk.
const Element &trunk = root.down.branch->path.back();
const float rdif = trunk.radius - root.path.front().radius;
assert(rdif >= 0);
Vec2f vdif = new_pos - trunk.prev_position.head<2>();
float ldif = vdif.squaredNorm();
if (ldif > sqr(rdif))
// Clamp new position.
new_pos = trunk.prev_position.head<2>() + vdif * rdif / sqrt(ldif);
first.position.head<2>() = new_pos;
}
}
}
void smooth_trees_inside_influence_areas(Forest &forest)
{
// Parallel for!
for (Tree &tree : forest)
smooth_trees_inside_influence_areas(tree.root(), true);
}
#if 0
// Test whether two circles, each on its own plane in 3D intersect.
// Circles are considered intersecting, if the lowest point on one circle is below the other circle's plane.
// Assumption: The two planes are oriented the same way.
static bool circles_intersect(
const Vec3d &p1, const Vec3d &n1, const double r1,
const Vec3d &p2, const Vec3d &n2, const double r2)
{
assert(n1.dot(n2) >= 0);
const Vec3d z = n1.cross(n2);
const Vec3d dir1 = z.cross(n1);
const Vec3d lowest_point1 = p1 + dir1 * (r1 / dir1.norm());
assert(n2.dot(p1) >= n2.dot(lowest_point1));
if (n2.dot(lowest_point1) <= 0)
return true;
const Vec3d dir2 = z.cross(n2);
const Vec3d lowest_point2 = p2 + dir2 * (r2 / dir2.norm());
assert(n1.dot(p2) >= n1.dot(lowest_point2));
return n1.dot(lowest_point2) <= 0;
}
#endif
template<bool flip_normals>
void triangulate_fan(indexed_triangle_set &its, int ifan, int ibegin, int iend)
{
// at least 3 vertices, increasing order.
assert(ibegin + 3 <= iend);
assert(ibegin >= 0 && iend <= its.vertices.size());
assert(ifan >= 0 && ifan < its.vertices.size());
int num_faces = iend - ibegin;
its.indices.reserve(its.indices.size() + num_faces * 3);
for (int v = ibegin, u = iend - 1; v < iend; u = v ++) {
if (flip_normals)
its.indices.push_back({ ifan, u, v });
else
its.indices.push_back({ ifan, v, u });
}
}
static void triangulate_strip(indexed_triangle_set &its, int ibegin1, int iend1, int ibegin2, int iend2)
{
// at least 3 vertices, increasing order.
assert(ibegin1 + 3 <= iend1);
assert(ibegin1 >= 0 && iend1 <= its.vertices.size());
assert(ibegin2 + 3 <= iend2);
assert(ibegin2 >= 0 && iend2 <= its.vertices.size());
int n1 = iend1 - ibegin1;
int n2 = iend2 - ibegin2;
its.indices.reserve(its.indices.size() + (n1 + n2) * 3);
// For the first vertex of 1st strip, find the closest vertex on the 2nd strip.
int istart2 = ibegin2;
{
const Vec3f &p1 = its.vertices[ibegin1];
auto d2min = std::numeric_limits<float>::max();
for (int i = ibegin2; i < iend2; ++ i) {
const Vec3f &p2 = its.vertices[i];
const float d2 = (p2 - p1).squaredNorm();
if (d2 < d2min) {
d2min = d2;
istart2 = i;
}
}
}
// Now triangulate the strip zig-zag fashion taking always the shortest connection if possible.
for (int u = ibegin1, v = istart2; n1 > 0 || n2 > 0;) {
bool take_first;
int u2, v2;
auto update_u2 = [&u2, u, ibegin1, iend1]() {
u2 = u;
if (++ u2 == iend1)
u2 = ibegin1;
};
auto update_v2 = [&v2, v, ibegin2, iend2]() {
v2 = v;
if (++ v2 == iend2)
v2 = ibegin2;
};
if (n1 == 0) {
take_first = false;
update_v2();
} else if (n2 == 0) {
take_first = true;
update_u2();
} else {
update_u2();
update_v2();
float l1 = (its.vertices[u2] - its.vertices[v]).squaredNorm();
float l2 = (its.vertices[v2] - its.vertices[u]).squaredNorm();
take_first = l1 < l2;
}
if (take_first) {
its.indices.push_back({ u, u2, v });
-- n1;
u = u2;
} else {
its.indices.push_back({ u, v2, v });
-- n2;
v = v2;
}
}
}
// Discretize 3D circle, append to output vector, return ranges of indices of the points added.
static std::pair<int, int> discretize_circle(const Vec3f &center, const Vec3f &normal, const float radius, const float eps, std::vector<Vec3f> &pts)
{
// Calculate discretization step and number of steps.
float angle_step = 2. * acos(1. - eps / radius);
auto nsteps = int(ceil(2 * M_PI / angle_step));
angle_step = 2 * M_PI / nsteps;
// Prepare coordinate system for the circle plane.
Vec3f x = normal.cross(Vec3f(0.f, -1.f, 0.f)).normalized();
Vec3f y = normal.cross(x).normalized();
assert(std::abs(x.cross(y).dot(normal) - 1.f) < EPSILON);
// Discretize the circle.
int begin = int(pts.size());
pts.reserve(pts.size() + nsteps);
float angle = 0;
x *= radius;
y *= radius;
for (int i = 0; i < nsteps; ++ i) {
pts.emplace_back(center + x * cos(angle) + y * sin(angle));
angle += angle_step;
}
return { begin, int(pts.size()) };
}
// Returns Z span of the generated mesh.
static std::pair<float, float> extrude_branch(
const std::vector<const SupportElement*> &path,
const TreeSupportSettings &config,
const SlicingParameters &slicing_params,
const std::vector<SupportElements> &move_bounds,
indexed_triangle_set &result)
{
Vec3d p1, p2, p3;
Vec3d v1, v2;
Vec3d nprev;
Vec3d ncurrent;
assert(path.size() >= 2);
static constexpr const float eps = 0.015f;
std::pair<int, int> prev_strip;
// char fname[2048];
// static int irun = 0;
float zmin = 0;
float zmax = 0;
for (size_t ipath = 1; ipath < path.size(); ++ ipath) {
const SupportElement &prev = *path[ipath - 1];
const SupportElement &current = *path[ipath];
assert(prev.state.layer_idx + 1 == current.state.layer_idx);
p1 = to_3d(unscaled<double>(prev .state.result_on_layer), layer_z(slicing_params, config, prev .state.layer_idx));
p2 = to_3d(unscaled<double>(current.state.result_on_layer), layer_z(slicing_params, config, current.state.layer_idx));
v1 = (p2 - p1).normalized();
if (ipath == 1) {
nprev = v1;
// Extrude the bottom half sphere.
float radius = unscaled<float>(support_element_radius(config, prev));
float angle_step = 2. * acos(1. - eps / radius);
auto nsteps = int(ceil(M_PI / (2. * angle_step)));
angle_step = M_PI / (2. * nsteps);
int ifan = int(result.vertices.size());
result.vertices.emplace_back((p1 - nprev * radius).cast<float>());
zmin = result.vertices.back().z();
float angle = angle_step;
for (int i = 1; i < nsteps; ++ i, angle += angle_step) {
std::pair<int, int> strip = discretize_circle((p1 - nprev * radius * cos(angle)).cast<float>(), nprev.cast<float>(), radius * sin(angle), eps, result.vertices);
if (i == 1)
triangulate_fan<false>(result, ifan, strip.first, strip.second);
else
triangulate_strip(result, prev_strip.first, prev_strip.second, strip.first, strip.second);
// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++ irun);
// its_write_obj(result, fname);
prev_strip = strip;
}
}
if (ipath + 1 == path.size()) {
// End of the tube.
ncurrent = v1;
// Extrude the top half sphere.
float radius = unscaled<float>(support_element_radius(config, current));
float angle_step = 2. * acos(1. - eps / radius);
auto nsteps = int(ceil(M_PI / (2. * angle_step)));
angle_step = M_PI / (2. * nsteps);
auto angle = float(M_PI / 2.);
for (int i = 0; i < nsteps; ++ i, angle -= angle_step) {
std::pair<int, int> strip = discretize_circle((p2 + ncurrent * radius * cos(angle)).cast<float>(), ncurrent.cast<float>(), radius * sin(angle), eps, result.vertices);
triangulate_strip(result, prev_strip.first, prev_strip.second, strip.first, strip.second);
// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++ irun);
// its_write_obj(result, fname);
prev_strip = strip;
}
int ifan = int(result.vertices.size());
result.vertices.emplace_back((p2 + ncurrent * radius).cast<float>());
zmax = result.vertices.back().z();
triangulate_fan<true>(result, ifan, prev_strip.first, prev_strip.second);
// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++ irun);
// its_write_obj(result, fname);
} else {
const SupportElement &next = *path[ipath + 1];
assert(current.state.layer_idx + 1 == next.state.layer_idx);
p3 = to_3d(unscaled<double>(next.state.result_on_layer), layer_z(slicing_params, config, next.state.layer_idx));
v2 = (p3 - p2).normalized();
ncurrent = (v1 + v2).normalized();
float radius = unscaled<float>(support_element_radius(config, current));
std::pair<int, int> strip = discretize_circle(p2.cast<float>(), ncurrent.cast<float>(), radius, eps, result.vertices);
triangulate_strip(result, prev_strip.first, prev_strip.second, strip.first, strip.second);
prev_strip = strip;
// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++irun);
// its_write_obj(result, fname);
}
#if 0
if (circles_intersect(p1, nprev, support_element_radius(settings, prev), p2, ncurrent, support_element_radius(settings, current))) {
// Cannot connect previous and current slice using a simple zig-zag triangulation,
// because the two circles intersect.
} else {
// Continue with chaining.
}
#endif
}
return std::make_pair(zmin, zmax);
}
#ifdef TREE_SUPPORT_ORGANIC_NUDGE_NEW
// New version using per layer AABB trees of lines for nudging spheres away from an object.
static void organic_smooth_branches_avoid_collisions(
const PrintObject &print_object,
const TreeModelVolumes &volumes,
const TreeSupportSettings &config,
std::vector<SupportElements> &move_bounds,
const std::vector<std::pair<SupportElement*, int>> &elements_with_link_down,
const std::vector<size_t> &linear_data_layers,
std::function<void()> throw_on_cancel)
{
struct LayerCollisionCache {
coord_t min_element_radius{ std::numeric_limits<coord_t>::max() };
bool min_element_radius_known() const { return this->min_element_radius != std::numeric_limits<coord_t>::max(); }
coord_t collision_radius{ 0 };
std::vector<Linef> lines;
AABBTreeIndirect::Tree<2, double> aabbtree_lines;
bool empty() const { return this->lines.empty(); }
};
std::vector<LayerCollisionCache> layer_collision_cache;
layer_collision_cache.reserve(1024);
const SlicingParameters &slicing_params = print_object.slicing_parameters();
for (const std::pair<SupportElement*, int>& element : elements_with_link_down) {
LayerIndex layer_idx = element.first->state.layer_idx;
if (size_t num_layers = layer_idx + 1; num_layers > layer_collision_cache.size()) {
if (num_layers > layer_collision_cache.capacity())
reserve_power_of_2(layer_collision_cache, num_layers);
layer_collision_cache.resize(num_layers, {});
}
auto& l = layer_collision_cache[layer_idx];
l.min_element_radius = std::min(l.min_element_radius, support_element_radius(config, *element.first));
}
throw_on_cancel();
for (LayerIndex layer_idx = 0; layer_idx < LayerIndex(layer_collision_cache.size()); ++layer_idx)
if (LayerCollisionCache& l = layer_collision_cache[layer_idx]; !l.min_element_radius_known())
l.min_element_radius = 0;
else {
//FIXME
l.min_element_radius = 0;
std::optional<std::pair<coord_t, std::reference_wrapper<const Polygons>>> res = volumes.get_collision_lower_bound_area(layer_idx, l.min_element_radius);
assert(res.has_value());
l.collision_radius = res->first;
Lines alines = to_lines(res->second.get());
l.lines.reserve(alines.size());
for (const Line &line : alines)
l.lines.push_back({ unscaled<double>(line.a), unscaled<double>(line.b) });
l.aabbtree_lines = AABBTreeLines::build_aabb_tree_over_indexed_lines(l.lines);
throw_on_cancel();
}
struct CollisionSphere {
const SupportElement& element;
int element_below_id;
const bool locked;
float radius;
// Current position, when nudged away from the collision.
Vec3f position;
// Previous position, for Laplacian smoothing.
Vec3f prev_position;
//
Vec3f last_collision;
double last_collision_depth;
// Minimum Z for which the sphere collision will be evaluated.
// Limited by the minimum sloping angle and by the bottom of the tree.
float min_z{ -std::numeric_limits<float>::max() };
// Maximum Z for which the sphere collision will be evaluated.
// Limited by the minimum sloping angle and by the tip of the current branch.
float max_z{ std::numeric_limits<float>::max() };
uint32_t layer_begin;
uint32_t layer_end;
};
std::vector<CollisionSphere> collision_spheres;
collision_spheres.reserve(elements_with_link_down.size());
for (const std::pair<SupportElement*, int> &element_with_link : elements_with_link_down) {
const SupportElement &element = *element_with_link.first;
const int link_down = element_with_link.second;
collision_spheres.push_back({
element,
link_down,
// locked
element.parents.empty() || (link_down == -1 && element.state.layer_idx > 0),
unscaled<float>(support_element_radius(config, element)),
// 3D position
to_3d(unscaled<float>(element.state.result_on_layer), float(layer_z(slicing_params, config, element.state.layer_idx)))
});
// Update min_z coordinate to min_z of the tree below.
CollisionSphere &collision_sphere = collision_spheres.back();
if (link_down != -1) {
const size_t offset_below = linear_data_layers[element.state.layer_idx - 1];
collision_sphere.min_z = collision_spheres[offset_below + link_down].min_z;
} else
collision_sphere.min_z = collision_sphere.position.z();
}
// Update max_z by propagating max_z from the tips of the branches.
for (int collision_sphere_id = int(collision_spheres.size()) - 1; collision_sphere_id >= 0; -- collision_sphere_id) {
CollisionSphere &collision_sphere = collision_spheres[collision_sphere_id];
if (collision_sphere.element.parents.empty())
// Tip
collision_sphere.max_z = collision_sphere.position.z();
else {
// Below tip
const size_t offset_above = linear_data_layers[collision_sphere.element.state.layer_idx + 1];
for (auto iparent : collision_sphere.element.parents) {
float parent_z = collision_spheres[offset_above + iparent].max_z;
// collision_sphere.max_z = collision_sphere.max_z == std::numeric_limits<float>::max() ? parent_z : std::max(collision_sphere.max_z, parent_z);
collision_sphere.max_z = std::min(collision_sphere.max_z, parent_z);
}
}
}
// Update min_z / max_z to limit the search Z span of a given sphere for collision detection.
for (CollisionSphere &collision_sphere : collision_spheres) {
//FIXME limit the collision span by the tree slope.
collision_sphere.min_z = std::max(collision_sphere.min_z, collision_sphere.position.z() - collision_sphere.radius);
collision_sphere.max_z = std::min(collision_sphere.max_z, collision_sphere.position.z() + collision_sphere.radius);
collision_sphere.layer_begin = std::min(collision_sphere.element.state.layer_idx, layer_idx_ceil(slicing_params, config, collision_sphere.min_z));
assert(collision_sphere.layer_begin < layer_collision_cache.size());
collision_sphere.layer_end = std::min(LayerIndex(layer_collision_cache.size()), std::max(collision_sphere.element.state.layer_idx, layer_idx_floor(slicing_params, config, collision_sphere.max_z)) + 1);
}
throw_on_cancel();
static constexpr const double collision_extra_gap = 0.1;
static constexpr const double max_nudge_collision_avoidance = 0.5;
static constexpr const double max_nudge_smoothing = 0.2;
static constexpr const size_t num_iter = 100; // 1000;
for (size_t iter = 0; iter < num_iter; ++ iter) {
// Back up prev position before Laplacian smoothing.
for (CollisionSphere &collision_sphere : collision_spheres)
collision_sphere.prev_position = collision_sphere.position;
std::atomic<size_t> num_moved{ 0 };
tbb::parallel_for(tbb::blocked_range<size_t>(0, collision_spheres.size()),
[&collision_spheres, &layer_collision_cache, &slicing_params, &config, &linear_data_layers, &num_moved, &throw_on_cancel](const tbb::blocked_range<size_t> range) {
for (size_t collision_sphere_id = range.begin(); collision_sphere_id < range.end(); ++ collision_sphere_id)
if (CollisionSphere &collision_sphere = collision_spheres[collision_sphere_id]; ! collision_sphere.locked) {
// Calculate collision of multiple 2D layers against a collision sphere.
collision_sphere.last_collision_depth = - std::numeric_limits<double>::max();
for (uint32_t layer_id = collision_sphere.layer_begin; layer_id != collision_sphere.layer_end; ++ layer_id) {
double dz = (layer_id - collision_sphere.element.state.layer_idx) * slicing_params.layer_height;
if (double r2 = sqr(collision_sphere.radius) - sqr(dz); r2 > 0) {
if (const LayerCollisionCache &layer_collision_cache_item = layer_collision_cache[layer_id]; ! layer_collision_cache_item.empty()) {
size_t hit_idx_out;
Vec2d hit_point_out;
if (double dist = sqrt(AABBTreeLines::squared_distance_to_indexed_lines(
layer_collision_cache_item.lines, layer_collision_cache_item.aabbtree_lines, Vec2d(to_2d(collision_sphere.position).cast<double>()),
hit_idx_out, hit_point_out, r2)); dist >= 0.) {
double collision_depth = sqrt(r2) - dist;
if (collision_depth > collision_sphere.last_collision_depth) {
collision_sphere.last_collision_depth = collision_depth;
collision_sphere.last_collision = to_3d(hit_point_out.cast<float>(), float(layer_z(slicing_params, config, layer_id)));
}
}
}
}
}
if (collision_sphere.last_collision_depth > 0) {
// Collision detected to be removed.
// Nudge the circle center away from the collision.
if (collision_sphere.last_collision_depth > EPSILON)
// a little bit of hysteresis to detect end of
++ num_moved;
// Shift by maximum 2mm.
double nudge_dist = std::min(std::max(0., collision_sphere.last_collision_depth + collision_extra_gap), max_nudge_collision_avoidance);
Vec2d nudge_vector = (to_2d(collision_sphere.position) - to_2d(collision_sphere.last_collision)).cast<double>().normalized() * nudge_dist;
collision_sphere.position.head<2>() += (nudge_vector * nudge_dist).cast<float>();
}
// Laplacian smoothing
Vec2d avg{ 0, 0 };
//const SupportElements &above = move_bounds[collision_sphere.element.state.layer_idx + 1];
const size_t offset_above = linear_data_layers[collision_sphere.element.state.layer_idx + 1];
double weight = 0.;
for (auto iparent : collision_sphere.element.parents) {
double w = collision_sphere.radius;
avg += w * to_2d(collision_spheres[offset_above + iparent].prev_position.cast<double>());
weight += w;
}
if (collision_sphere.element_below_id != -1) {
const size_t offset_below = linear_data_layers[collision_sphere.element.state.layer_idx - 1];
const double w = weight; // support_element_radius(config, move_bounds[element.state.layer_idx - 1][below]);
avg += w * to_2d(collision_spheres[offset_below + collision_sphere.element_below_id].prev_position.cast<double>());
weight += w;
}
avg /= weight;
static constexpr const double smoothing_factor = 0.5;
Vec2d old_pos = to_2d(collision_sphere.position).cast<double>();
Vec2d new_pos = (1. - smoothing_factor) * old_pos + smoothing_factor * avg;
Vec2d shift = new_pos - old_pos;
double nudge_dist_max = shift.norm();
// Shift by maximum 1mm, less than the collision avoidance factor.
double nudge_dist = std::min(std::max(0., nudge_dist_max), max_nudge_smoothing);
collision_sphere.position.head<2>() += (shift.normalized() * nudge_dist).cast<float>();
throw_on_cancel();
}
});
#if 0
std::vector<double> stat;
for (CollisionSphere& collision_sphere : collision_spheres)
if (!collision_sphere.locked)
stat.emplace_back(collision_sphere.last_collision_depth);
std::sort(stat.begin(), stat.end());
printf("iteration: %d, moved: %d, collision depth: min %lf, max %lf, median %lf\n", int(iter), int(num_moved), stat.front(), stat.back(), stat[stat.size() / 2]);
#endif
if (num_moved == 0)
break;
}
for (size_t i = 0; i < collision_spheres.size(); ++ i)
elements_with_link_down[i].first->state.result_on_layer = scaled<coord_t>(to_2d(collision_spheres[i].position));
}
#else // TREE_SUPPORT_ORGANIC_NUDGE_NEW
// Old version using OpenVDB, works but it is extremely slow for complex meshes.
static void organic_smooth_branches_avoid_collisions(
const PrintObject &print_object,
const TreeModelVolumes &volumes,
const TreeSupportSettings &config,
std::vector<SupportElements> &move_bounds,
const std::vector<std::pair<SupportElement*, int>> &elements_with_link_down,
const std::vector<size_t> &linear_data_layers,
std::function<void()> throw_on_cancel)
{
TriangleMesh mesh = print_object.model_object()->raw_mesh();
mesh.transform(print_object.trafo_centered());
double scale = 10.;
openvdb::FloatGrid::Ptr grid = mesh_to_grid(mesh.its, openvdb::math::Transform{}, scale, 0., 0.);
std::unique_ptr<openvdb::tools::ClosestSurfacePoint<openvdb::FloatGrid>> closest_surface_point = openvdb::tools::ClosestSurfacePoint<openvdb::FloatGrid>::create(*grid);
std::vector<openvdb::Vec3R> pts, prev, projections;
std::vector<float> distances;
for (const std::pair<SupportElement*, int>& element : elements_with_link_down) {
Vec3d pt = to_3d(unscaled<double>(element.first->state.result_on_layer), layer_z(print_object.slicing_parameters(), config, element.first->state.layer_idx)) * scale;
pts.push_back({ pt.x(), pt.y(), pt.z() });
}
const double collision_extra_gap = 1. * scale;
const double max_nudge_collision_avoidance = 2. * scale;
const double max_nudge_smoothing = 1. * scale;
static constexpr const size_t num_iter = 100; // 1000;
for (size_t iter = 0; iter < num_iter; ++ iter) {
prev = pts;
projections = pts;
distances.assign(pts.size(), std::numeric_limits<float>::max());
closest_surface_point->searchAndReplace(projections, distances);
size_t num_moved = 0;
for (size_t i = 0; i < projections.size(); ++ i) {
const SupportElement &element = *elements_with_link_down[i].first;
const int below = elements_with_link_down[i].second;
const bool locked = (below == -1 && element.state.layer_idx > 0) || element.state.locked();
if (! locked && pts[i] != projections[i]) {
// Nudge the circle center away from the collision.
Vec3d v{ projections[i].x() - pts[i].x(), projections[i].y() - pts[i].y(), projections[i].z() - pts[i].z() };
double depth = v.norm();
assert(std::abs(distances[i] - depth) < EPSILON);
double radius = unscaled<double>(support_element_radius(config, element)) * scale;
if (depth < radius) {
// Collision detected to be removed.
++ num_moved;
double dxy = sqrt(sqr(radius) - sqr(v.z()));
double nudge_dist_max = dxy - std::hypot(v.x(), v.y())
//FIXME 1mm gap
+ collision_extra_gap;
// Shift by maximum 2mm.
double nudge_dist = std::min(std::max(0., nudge_dist_max), max_nudge_collision_avoidance);
Vec2d nudge_v = to_2d(v).normalized() * (- nudge_dist);
pts[i].x() += nudge_v.x();
pts[i].y() += nudge_v.y();
}
}
// Laplacian smoothing
if (! locked && ! element.parents.empty()) {
Vec2d avg{ 0, 0 };
const SupportElements &above = move_bounds[element.state.layer_idx + 1];
const size_t offset_above = linear_data_layers[element.state.layer_idx + 1];
double weight = 0.;
for (auto iparent : element.parents) {
double w = support_element_radius(config, above[iparent]);
avg.x() += w * prev[offset_above + iparent].x();
avg.y() += w * prev[offset_above + iparent].y();
weight += w;
}
size_t cnt = element.parents.size();
if (below != -1) {
const size_t offset_below = linear_data_layers[element.state.layer_idx - 1];
const double w = weight; // support_element_radius(config, move_bounds[element.state.layer_idx - 1][below]);
avg.x() += w * prev[offset_below + below].x();
avg.y() += w * prev[offset_below + below].y();
++ cnt;
weight += w;
}
//avg /= double(cnt);
avg /= weight;
static constexpr const double smoothing_factor = 0.5;
Vec2d old_pos{ pts[i].x(), pts[i].y() };
Vec2d new_pos = (1. - smoothing_factor) * old_pos + smoothing_factor * avg;
Vec2d shift = new_pos - old_pos;
double nudge_dist_max = shift.norm();
// Shift by maximum 1mm, less than the collision avoidance factor.
double nudge_dist = std::min(std::max(0., nudge_dist_max), max_nudge_smoothing);
Vec2d nudge_v = shift.normalized() * nudge_dist;
pts[i].x() += nudge_v.x();
pts[i].y() += nudge_v.y();
}
}
// printf("iteration: %d, moved: %d\n", int(iter), int(num_moved));
if (num_moved == 0)
break;
}
for (size_t i = 0; i < projections.size(); ++ i) {
elements_with_link_down[i].first->state.result_on_layer.x() = scaled<coord_t>(pts[i].x()) / scale;
elements_with_link_down[i].first->state.result_on_layer.y() = scaled<coord_t>(pts[i].y()) / scale;
}
}
#endif // TREE_SUPPORT_ORGANIC_NUDGE_NEW
// Organic specific: Smooth branches and produce one cummulative mesh to be sliced.
void organic_draw_branches(
PrintObject &print_object,
TreeModelVolumes &volumes,
const TreeSupportSettings &config,
std::vector<SupportElements> &move_bounds,
// I/O:
SupportGeneratorLayersPtr &bottom_contacts,
SupportGeneratorLayersPtr &top_contacts,
InterfacePlacer &interface_placer,
// Output:
SupportGeneratorLayersPtr &intermediate_layers,
SupportGeneratorLayerStorage &layer_storage,
std::function<void()> throw_on_cancel)
{
// All SupportElements are put into a layer independent storage to improve parallelization.
std::vector<std::pair<SupportElement*, int>> elements_with_link_down;
std::vector<size_t> linear_data_layers;
{
std::vector<std::pair<SupportElement*, int>> map_downwards_old;
std::vector<std::pair<SupportElement*, int>> map_downwards_new;
linear_data_layers.emplace_back(0);
for (LayerIndex layer_idx = 0; layer_idx < LayerIndex(move_bounds.size()); ++ layer_idx) {
SupportElements *layer_above = layer_idx + 1 < LayerIndex(move_bounds.size()) ? &move_bounds[layer_idx + 1] : nullptr;
map_downwards_new.clear();
std::sort(map_downwards_old.begin(), map_downwards_old.end(), [](auto& l, auto& r) { return l.first < r.first; });
SupportElements &layer = move_bounds[layer_idx];
for (size_t elem_idx = 0; elem_idx < layer.size(); ++ elem_idx) {
SupportElement &elem = layer[elem_idx];
int child = -1;
if (layer_idx > 0) {
auto it = std::lower_bound(map_downwards_old.begin(), map_downwards_old.end(), &elem, [](auto& l, const SupportElement* r) { return l.first < r; });
if (it != map_downwards_old.end() && it->first == &elem) {
child = it->second;
// Only one link points to a node above from below.
assert(!(++it != map_downwards_old.end() && it->first == &elem));
}
#ifndef NDEBUG
{
const SupportElement *pchild = child == -1 ? nullptr : &move_bounds[layer_idx - 1][child];
assert(pchild ? pchild->state.result_on_layer_is_set() : elem.state.target_height > layer_idx);
}
#endif // NDEBUG
}
for (int32_t parent_idx : elem.parents) {
SupportElement &parent = (*layer_above)[parent_idx];
if (parent.state.result_on_layer_is_set())
map_downwards_new.emplace_back(&parent, elem_idx);
}
elements_with_link_down.push_back({ &elem, int(child) });
}
std::swap(map_downwards_old, map_downwards_new);
linear_data_layers.emplace_back(elements_with_link_down.size());
}
}
throw_on_cancel();
organic_smooth_branches_avoid_collisions(print_object, volumes, config, move_bounds, elements_with_link_down, linear_data_layers, throw_on_cancel);
// Reduce memory footprint. After this point only finalize_interface_and_support_areas() will use volumes and from that only collisions with zero radius will be used.
volumes.clear_all_but_object_collision();
// Unmark all nodes.
for (SupportElements &elements : move_bounds)
for (SupportElement &element : elements)
element.state.marked = false;
// Traverse all nodes, generate tubes.
// Traversal stack with nodes and their current parent
struct Branch {
std::vector<const SupportElement*> path;
bool has_root{ false };
bool has_tip { false };
};
struct Slice {
Polygons polygons;
Polygons bottom_contacts;
size_t num_branches{ 0 };
};
struct Tree {
std::vector<Branch> branches;
std::vector<Slice> slices;
LayerIndex first_layer_id{ -1 };
};
std::vector<Tree> trees;
struct TreeVisitor {
static void visit_recursive(std::vector<SupportElements> &move_bounds, SupportElement &start_element, Tree &out) {
assert(! start_element.state.marked && ! start_element.parents.empty());
// Collect elements up to a bifurcation above.
start_element.state.marked = true;
// For each branch bifurcating from this point:
//SupportElements &layer = move_bounds[start_element.state.layer_idx];
SupportElements &layer_above = move_bounds[start_element.state.layer_idx + 1];
bool root = out.branches.empty();
for (size_t parent_idx = 0; parent_idx < start_element.parents.size(); ++ parent_idx) {
Branch branch;
branch.path.emplace_back(&start_element);
// Traverse each branch until it branches again.
SupportElement &first_parent = layer_above[start_element.parents[parent_idx]];
assert(! first_parent.state.marked);
assert(branch.path.back()->state.layer_idx + 1 == first_parent.state.layer_idx);
branch.path.emplace_back(&first_parent);
if (first_parent.parents.size() < 2)
first_parent.state.marked = true;
SupportElement *next_branch = nullptr;
if (first_parent.parents.size() == 1) {
for (SupportElement *parent = &first_parent;;) {
assert(parent->state.marked);
SupportElement &next_parent = move_bounds[parent->state.layer_idx + 1][parent->parents.front()];
assert(! next_parent.state.marked);
assert(branch.path.back()->state.layer_idx + 1 == next_parent.state.layer_idx);
branch.path.emplace_back(&next_parent);
if (next_parent.parents.size() > 1) {
// Branching point was reached.
next_branch = &next_parent;
break;
}
next_parent.state.marked = true;
if (next_parent.parents.size() == 0)
// Tip is reached.
break;
parent = &next_parent;
}
} else if (first_parent.parents.size() > 1)
// Branching point was reached.
next_branch = &first_parent;
assert(branch.path.size() >= 2);
assert(next_branch == nullptr || ! next_branch->state.marked);
branch.has_root = root;
branch.has_tip = ! next_branch;
out.branches.emplace_back(std::move(branch));
if (next_branch)
visit_recursive(move_bounds, *next_branch, out);
}
}
};
for (LayerIndex layer_idx = 0; layer_idx + 1 < LayerIndex(move_bounds.size()); ++ layer_idx) {
// int ielement;
for (SupportElement& start_element : move_bounds[layer_idx]) {
if (!start_element.state.marked && !start_element.parents.empty()) {
#if 0
int found = 0;
if (layer_idx > 0) {
for (auto& el : move_bounds[layer_idx - 1]) {
for (auto iparent : el.parents)
if (iparent == ielement)
++found;
}
if (found != 0)
printf("Found: %d\n", found);
}
#endif
trees.push_back({});
TreeVisitor::visit_recursive(move_bounds, start_element, trees.back());
assert(!trees.back().branches.empty());
//FIXME debugging
#if 0
if (start_element.state.lost) {
}
else if (start_element.state.verylost) {
} else
trees.pop_back();
#endif
}
// ++ ielement;
}
}
const SlicingParameters &slicing_params = print_object.slicing_parameters();
MeshSlicingParams mesh_slicing_params;
mesh_slicing_params.mode = MeshSlicingParams::SlicingMode::Positive;
tbb::parallel_for(tbb::blocked_range<size_t>(0, trees.size(), 1),
[&trees, &volumes, &config, &slicing_params, &move_bounds, &mesh_slicing_params, &throw_on_cancel](const tbb::blocked_range<size_t> &range) {
indexed_triangle_set partial_mesh;
std::vector<float> slice_z;
std::vector<Polygons> bottom_contacts;
for (size_t tree_id = range.begin(); tree_id < range.end(); ++ tree_id) {
Tree &tree = trees[tree_id];
for (const Branch &branch : tree.branches) {
// Triangulate the tube.
partial_mesh.clear();
std::pair<float, float> zspan = extrude_branch(branch.path, config, slicing_params, move_bounds, partial_mesh);
LayerIndex layer_begin = branch.has_root ?
branch.path.front()->state.layer_idx :
std::min(branch.path.front()->state.layer_idx, layer_idx_ceil(slicing_params, config, zspan.first));
LayerIndex layer_end = (branch.has_tip ?
branch.path.back()->state.layer_idx :
std::max(branch.path.back()->state.layer_idx, layer_idx_floor(slicing_params, config, zspan.second))) + 1;
slice_z.clear();
for (LayerIndex layer_idx = layer_begin; layer_idx < layer_end; ++ layer_idx) {
const double print_z = layer_z(slicing_params, config, layer_idx);
const double bottom_z = layer_idx > 0 ? layer_z(slicing_params, config, layer_idx - 1) : 0.;
slice_z.emplace_back(float(0.5 * (bottom_z + print_z)));
}
std::vector<Polygons> slices = slice_mesh(partial_mesh, slice_z, mesh_slicing_params, throw_on_cancel);
bottom_contacts.clear();
//FIXME parallelize?
for (LayerIndex i = 0; i < LayerIndex(slices.size()); ++ i)
slices[i] = diff_clipped(slices[i], volumes.getCollision(0, layer_begin + i, true)); //FIXME parent_uses_min || draw_area.element->state.use_min_xy_dist);
size_t num_empty = 0;
if (slices.front().empty()) {
// Some of the initial layers are empty.
num_empty = std::find_if(slices.begin(), slices.end(), [](auto &s) { return !s.empty(); }) - slices.begin();
} else {
if (branch.has_root) {
if (branch.path.front()->state.to_model_gracious) {
if (config.settings.support_floor_layers > 0)
//FIXME one may just take the whole tree slice as bottom interface.
bottom_contacts.emplace_back(intersection_clipped(slices.front(), volumes.getPlaceableAreas(0, layer_begin, [] {})));
} else if (layer_begin > 0) {
// Drop down areas that do rest non - gracefully on the model to ensure the branch actually rests on something.
struct BottomExtraSlice {
Polygons polygons;
double area;
};
std::vector<BottomExtraSlice> bottom_extra_slices;
Polygons rest_support;
coord_t bottom_radius = support_element_radius(config, *branch.path.front());
// Don't propagate further than 1.5 * bottom radius.
//LayerIndex layers_propagate_max = 2 * bottom_radius / config.layer_height;
LayerIndex layers_propagate_max = 5 * bottom_radius / config.layer_height;
LayerIndex layer_bottommost = branch.path.front()->state.verylost ?
// If the tree bottom is hanging in the air, bring it down to some surface.
0 :
//FIXME the "verylost" branches should stop when crossing another support.
std::max(0, layer_begin - layers_propagate_max);
double support_area_min_radius = M_PI * sqr(double(config.branch_radius));
double support_area_stop = std::max(0.2 * M_PI * sqr(double(bottom_radius)), 0.5 * support_area_min_radius);
// Only propagate until the rest area is smaller than this threshold.
//double support_area_min = 0.1 * support_area_min_radius;
for (LayerIndex layer_idx = layer_begin - 1; layer_idx >= layer_bottommost; -- layer_idx) {
rest_support = diff_clipped(rest_support.empty() ? slices.front() : rest_support, volumes.getCollision(0, layer_idx, false));
double rest_support_area = area(rest_support);
if (rest_support_area < support_area_stop)
// Don't propagate a fraction of the tree contact surface.
break;
bottom_extra_slices.push_back({ rest_support, rest_support_area });
}
// Now remove those bottom slices that are not supported at all.
#if 0
while (! bottom_extra_slices.empty()) {
Polygons this_bottom_contacts = intersection_clipped(
bottom_extra_slices.back().polygons, volumes.getPlaceableAreas(0, layer_begin - LayerIndex(bottom_extra_slices.size()), [] {}));
if (area(this_bottom_contacts) < support_area_min)
bottom_extra_slices.pop_back();
else {
// At least a fraction of the tree bottom is considered to be supported.
if (config.settings.support_floor_layers > 0)
// Turn this fraction of the tree bottom into a contact layer.
bottom_contacts.emplace_back(std::move(this_bottom_contacts));
break;
}
}
#endif
if (config.settings.support_floor_layers > 0)
for (int i = int(bottom_extra_slices.size()) - 2; i >= 0; -- i)
bottom_contacts.emplace_back(
intersection_clipped(bottom_extra_slices[i].polygons, volumes.getPlaceableAreas(0, layer_begin - i - 1, [] {})));
layer_begin -= LayerIndex(bottom_extra_slices.size());
slices.insert(slices.begin(), bottom_extra_slices.size(), {});
auto it_dst = slices.begin();
for (auto it_src = bottom_extra_slices.rbegin(); it_src != bottom_extra_slices.rend(); ++ it_src)
*it_dst ++ = std::move(it_src->polygons);
}
}
#if 0
//FIXME branch.has_tip seems to not be reliable.
if (branch.has_tip && interface_placer.support_parameters.has_top_contacts)
// Add top slices to top contacts / interfaces / base interfaces.
for (int i = int(branch.path.size()) - 1; i >= 0; -- i) {
const SupportElement &el = *branch.path[i];
if (el.state.missing_roof_layers == 0)
break;
//FIXME Move or not?
interface_placer.add_roof(std::move(slices[int(slices.size()) - i - 1]), el.state.layer_idx,
interface_placer.support_parameters.num_top_interface_layers + 1 - el.state.missing_roof_layers);
}
#endif
}
layer_begin += LayerIndex(num_empty);
while (! slices.empty() && slices.back().empty()) {
slices.pop_back();
-- layer_end;
}
if (layer_begin < layer_end) {
LayerIndex new_begin = tree.first_layer_id == -1 ? layer_begin : std::min(tree.first_layer_id, layer_begin);
LayerIndex new_end = tree.first_layer_id == -1 ? layer_end : std::max(tree.first_layer_id + LayerIndex(tree.slices.size()), layer_end);
size_t new_size = size_t(new_end - new_begin);
if (tree.first_layer_id == -1) {
} else if (tree.slices.capacity() < new_size) {
std::vector<Slice> new_slices;
new_slices.reserve(new_size);
if (LayerIndex dif = tree.first_layer_id - new_begin; dif > 0)
new_slices.insert(new_slices.end(), dif, {});
append(new_slices, std::move(tree.slices));
tree.slices.swap(new_slices);
} else if (LayerIndex dif = tree.first_layer_id - new_begin; dif > 0)
tree.slices.insert(tree.slices.begin(), tree.first_layer_id - new_begin, {});
tree.slices.insert(tree.slices.end(), new_size - tree.slices.size(), {});
layer_begin -= LayerIndex(num_empty);
for (LayerIndex i = layer_begin; i != layer_end; ++ i) {
int j = i - layer_begin;
if (Polygons &src = slices[j]; ! src.empty()) {
Slice &dst = tree.slices[i - new_begin];
if (++ dst.num_branches > 1) {
append(dst.polygons, std::move(src));
if (j < int(bottom_contacts.size()))
append(dst.bottom_contacts, std::move(bottom_contacts[j]));
} else {
dst.polygons = std::move(std::move(src));
if (j < int(bottom_contacts.size()))
dst.bottom_contacts = std::move(bottom_contacts[j]);
}
}
}
tree.first_layer_id = new_begin;
}
}
}
}, tbb::simple_partitioner());
tbb::parallel_for(tbb::blocked_range<size_t>(0, trees.size(), 1),
[&trees, &throw_on_cancel](const tbb::blocked_range<size_t> &range) {
for (size_t tree_id = range.begin(); tree_id < range.end(); ++ tree_id) {
Tree &tree = trees[tree_id];
for (Slice &slice : tree.slices)
if (slice.num_branches > 1) {
slice.polygons = union_(slice.polygons);
slice.bottom_contacts = union_(slice.bottom_contacts);
slice.num_branches = 1;
}
throw_on_cancel();
}
}, tbb::simple_partitioner());
size_t num_layers = 0;
for (Tree &tree : trees)
if (tree.first_layer_id >= 0)
num_layers = std::max(num_layers, size_t(tree.first_layer_id + tree.slices.size()));
std::vector<Slice> slices(num_layers, Slice{});
for (Tree &tree : trees)
if (tree.first_layer_id >= 0) {
for (LayerIndex i = tree.first_layer_id; i != tree.first_layer_id + LayerIndex(tree.slices.size()); ++ i)
if (Slice &src = tree.slices[i - tree.first_layer_id]; ! src.polygons.empty()) {
Slice &dst = slices[i];
if (++ dst.num_branches > 1) {
append(dst.polygons, std::move(src.polygons));
append(dst.bottom_contacts, std::move(src.bottom_contacts));
} else {
dst.polygons = std::move(src.polygons);
dst.bottom_contacts = std::move(src.bottom_contacts);
}
}
}
tbb::parallel_for(tbb::blocked_range<size_t>(0, std::min(move_bounds.size(), slices.size()), 1),
[&print_object, &config, &slices, &bottom_contacts, &top_contacts, &intermediate_layers, &layer_storage, &throw_on_cancel](const tbb::blocked_range<size_t> &range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) {
Slice &slice = slices[layer_idx];
assert(intermediate_layers[layer_idx] == nullptr);
Polygons base_layer_polygons = slice.num_branches > 1 ? union_(slice.polygons) : std::move(slice.polygons);
Polygons bottom_contact_polygons = slice.num_branches > 1 ? union_(slice.bottom_contacts) : std::move(slice.bottom_contacts);
if (! base_layer_polygons.empty()) {
// Most of the time in this function is this union call. Can take 300+ ms when a lot of areas are to be unioned.
base_layer_polygons = smooth_outward(union_(base_layer_polygons), config.support_line_width); //FIXME was .smooth(50);
//smooth_outward(closing(std::move(bottom), closing_distance + minimum_island_radius, closing_distance, SUPPORT_SURFACES_OFFSET_PARAMETERS), smoothing_distance) :
// simplify a bit, to ensure the output does not contain outrageous amounts of vertices. Should not be necessary, just a precaution.
base_layer_polygons = polygons_simplify(base_layer_polygons, std::min(scaled<double>(0.03), double(config.resolution)), polygons_strictly_simple);
}
// Subtract top contact layer polygons from support base.
SupportGeneratorLayer *top_contact_layer = top_contacts.empty() ? nullptr : top_contacts[layer_idx];
if (top_contact_layer && ! top_contact_layer->polygons.empty() && ! base_layer_polygons.empty()) {
base_layer_polygons = diff(base_layer_polygons, top_contact_layer->polygons);
if (! bottom_contact_polygons.empty())
//FIXME it may be better to clip bottom contacts with top contacts first after they are propagated to produce interface layers.
bottom_contact_polygons = diff(bottom_contact_polygons, top_contact_layer->polygons);
}
if (! bottom_contact_polygons.empty()) {
base_layer_polygons = diff(base_layer_polygons, bottom_contact_polygons);
SupportGeneratorLayer *bottom_contact_layer = bottom_contacts[layer_idx] = &layer_allocate(
layer_storage, SupporLayerType::BottomContact, print_object.slicing_parameters(), config, layer_idx);
bottom_contact_layer->polygons = std::move(bottom_contact_polygons);
}
if (! base_layer_polygons.empty()) {
SupportGeneratorLayer *base_layer = intermediate_layers[layer_idx] = &layer_allocate(
layer_storage, SupporLayerType::Base, print_object.slicing_parameters(), config, layer_idx);
base_layer->polygons = union_(base_layer_polygons);
}
throw_on_cancel();
}
}, tbb::simple_partitioner());
}
} // namespace FFFTreeSupport
} // namespace Slic3r